
Jumping to the 
wrong conclusions

Harvey Goldstein shows 
how failure to account for 

measurement errors in statistical 
analysis can have profound 

impacts on social policy. He 
calls on policy-makers to take 

a more cautious approach to 
seemingly “important” findings
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Statistical methods, by default, assume 
perfectly measured data are fed into them, 
but in practice this rarely happens, which 
can make our results incorrect. We call this 
“measurement error”: instead of observing the 
true value X, we instead observe W, which 
equals X plus some measurement error U.

If errors of measurement are not 
properly adjusted for, they can bias the 
estimated values of parameters. Which is to 
say: we might draw the wrong conclusions 
from a data set, which can have important 
implications. 

To demonstrate this, we will consider 
an example from the field of education 
policy. In 2003 Leon Feinstein, then an 
academic at the London School of Economics 
and subsequently an adviser to the UK 
government’s Cabinet Office, published 
an analysis in which he claimed to show 
an increasing inequality in educational 
attainment between children from low- and 
high-income families.1 His results are 
illustrated in Figure 1.

The data are derived from tests given 
to children, which sought to measure 
developmental status but are usually referred 
to as “ability” scores. In Figure 1 the circles, 
for example, show the mean test scores of 

low-scoring children who are classified as 
having a high socio-economic status (SES), 
while the triangles represent those of the 
low-scoring, low-SES children. Children who 
were below the 10th percentile of the test 
score distribution at the age of 22 months 
were classified as low scorers; those above the 
90th percentile at the same age were classified 
as high scorers. 

If you compare the circles and triangles 
in Figure 1, you can see that the test scores 
of initially low-scoring, high-SES children 
increase steadily over time, while those of low-
scoring, low-SES children remain relatively 
low after 40 months.

This work by Feinstein has been quoted 
extensively by the media and many policy-
makers to justify the preferential targeting 
of resources at low-SES children in the early 
years of life. Thus, in 2011, for example, 
then Deputy Prime Minister Nick Clegg 
announced in a House of Commons debate 
the launch of the UK government’s social 
mobility strategy. Clegg claimed that: “By 
the age of five, bright children from poorer 
backgrounds [the diamonds in Figure 1] have 
been overtaken by less bright children from 
richer ones – and from this point on, the gaps 
tend to widen still further.” 

Despite the widespread acceptance 
of these results, there are some who have 
been critical of Feinstein’s analysis, most 
notably Jerrim and Vignoles.2 The principal 
objection has been that the measure of ability 
(developmental status) at age 22 months 
is unreliable in the sense that a non-trivial 
component is effectively random noise 
superimposed on an underlying “true value” 
(see box on page 20). If one corrects for this, 
they claimed, a very different picture emerges. 

In addition, the actual distribution of 
test scores within the lowest-scoring group 
is not the same for the two SES groups. In 
particular, the high-SES children have an 
average score that is higher than that of the 
low-SES group, and hence would be expected 
to perform better subsequently, even if there 
were no real relative change between the 
two groups. 

Clarifying terms

To be fair to Feinstein, he is far from alone 
in ignoring the effects of measurement 
unreliability, but it is important both to 
understand the implications of this and to 
encourage data analysts to take it seriously. 
In this article I shall present some results 
of a reanalysis of the data used by Jerrim 
and Vignoles from the Millennium Cohort 
Study to illustrate the problem. A more 
detailed discussion can be found in Goldstein 
and French.3 

First of all, it is important to clarify 
the terms being used in this debate. One 
term that has been used, extensively but 
confusingly, is that of “regression to the 
mean”. This notion was introduced by 
Francis Galton for the situation where there 
is a less than perfect correlation between 
two measurements over time, as is the case 
with heights of fathers and their sons. For 
example, for tall fathers, say at the upper 95th 
percentile, the average adult height (measured 
without error) of their sons will be below 
the 95th percentile of the height distribution 
of sons – hence the term “regression to the 
mean”. Likewise, the sons of short(er) men 
will, on average, be taller than their fathers.

The notion of measurement error, 
however, is entirely separate from that of 
regression to the mean, and refers instead to 
imperfectly measured variables. It is of course 
true that if one had a pair of “true” measures 
that were perfectly correlated (that is, with a 

Figure 1. Development of high- and low-ability children by socio-economic group: evidence from the existing 
literature.  high ability, low socio-economic status (SES);  high ability, high SES;  low ability, high SES; 

 low ability, low SES. Adapted from Feinstein,1 based on 1970 British cohort study data
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correlation equal to one), then the addition 
of random measurement error to these would 
lead to the same mathematical result, namely 
that the resulting correlation would be less 
than perfect, and this presumably accounts 
for the confusion with the term “regression to 
the mean”. 

In this case, if we were to select a 
group with high (standardised) scores on 
one measure then the mean (standardised) 
score for this group on the second measure 
will be less than the mean score on the 
first measurement. In essence, that is one 
possible explanation for Feinstein’s results, 
and indeed Jerrim and Vignoles claim that 
the existence of such measurement error is 
entirely consistent with no relative changes 
between SES groups over time. Clearly, then, 
it is important to examine and explain what 
is happening. 

Reanalysing the data

In our reanalysis, the response variable 
(y) in the model is the second-occasion 
Millennium Cohort Study score (age 5), x 
is the first-occasion score (age 3), and we 
include grouped income (SES) as a further 
explanatory variable. Thus the aim of the 
analysis is to see whether, having adjusted 
for the first-occasion score, there remains an 
important relationship between the second-
occasion score and SES. This formulation 
of the problem uses the available data more 
efficiently than Feinstein since it includes all 
SES groups rather than just the “rich” and 
“poor” groups. It also does not induce different 
initial mean scores for the SES groups by 
grouping the first-occasion test score. 

Table 1 summarises our results. All 
scores have been normalised so that they 
have an overall standard normal distribution. 
Column 1 shows the results from fitting 
this model with a non-linear age 3 score and 
interactions with SES group, but without 
any adjustment for measurement error. We 
see that the difference between the extreme 
SES groups is 0.44 (0.232 + 0.207). Since 

the response is normalised, these are standard 
deviation units.  

It is convenient to discuss the size of 
measurement errors in terms of the test score 
reliability, R. This is defined as

R =
true test score variance

observed test score variance

where observed test score variance is the sum 
of true test score variance and measurement 
error variance.  

Column 2 uses an adjustment for 
measurement error equivalent to a test 
score reliability of 0.75, and we see that the 
difference now is reduced to 0.26 standard 
deviation units, and for a test score reliability 
of 0.65 (column 3) it becomes just 0.13. As 
is unfortunately common with many tests, 
we do not have good estimates of the actual 
reliability of the age 3 score – hence the use 
of a range of possible values. But, in any case, 
a value of 0.65 would seem a realistic lower 
bound, since the testing literature reports few 
reliabilities below this value. 

If we accept this, then the inference from 
this sensitivity analysis is that there is indeed an 
increasing inequality between the extreme SES 
groups (but not necessarily between the lowest 
and middle SES groups). However, the size and 
importance of this inequality are unclear and 
depend on the actual value of the unreliability. 
The greater the unreliability, the smaller the 
divergence between SES groups over time.

Concluding remarks

It is unfortunate that information on test 
reliability is absent. Such information should 
ideally be provided by the constructors and 
suppliers of the tests. Users of the data require 
such information. But even without a good 
estimate of reliability, a sensitivity analysis 
over a range of values illustrates the need to 
treat Feinstein’s original conclusions with care. 

On the basis of this reanalysis it would 
seem perfectly reasonable to conclude that 
there is indeed some increasing divergence 
between high and low SES groups over 
the early years in terms of developmental 
achievement. Whether this is as large as 
0.44 standard deviation units or a more 
modest 0.13  is still an open question, and an 
important one, although the technicalities 
associated with the critiques clearly pose 
difficulties for policy-makers.

Table 1. Age 5 reading score related to age 3 reading score and SES, for different levels of test score 
reliability. SES group reference category is middle 50%. Standard errors in brackets. Sample size = 10 071

Parameter R = 1 R = 0.75 R = 0.65

Intercept 0.038 (0.013) 0.052  ( 0.013) 0.042 (0.014)
Age 3 score 0.494 (0.012) 0.712  (0.016) 0.874 (0.019)
(Age 3 score)2 –0.037 (0.006) –0.090  (0.011) –0.112 (0.014)
Lower 25% SES –0.207 (0.021) –0.092  ( 0.022) –0.006 (0.025)
Upper 25% SES 0.232 (0.021) 0.168  (0.022) 0.125 (0.024)
Age 3 × lower SES 0.054 (0.021) 0.030  (0.029) 0.024 (0.032)
Age 3 × upper SES –0.022 (0.022) 0.0016 (0.0300) 0.021 (0.029)
Residual variance 0.668 (0.009) 0.515  (0.009) 0.431 (0.011)

Estimation by Markov chain Monte Carlo with default diffuse priors: burn-in = 500, iterations = 1000.

Measurement error

As a simple illustration of measurement 
error, consider the simple regression model, 
where the observed predictor is xobs and 
modelling using this gives

y = a* + b*xobs + e*

The model we would really like to fit is 
the one that uses the “true” value of the 
predictor

y = a + bxtrue + e

where the two are connected by a simple 
model

xobs = xtrue + δ

where δ is assumed to be a random 
measurement error.

By “true value” is meant, roughly, the 
long-run mean of the predictor where it is 
(notionally and independently) measured in 
different contexts. 

 If we know the reliability

R
x
x

=
variance
variance

true

obs

( )
( )

then to obtain unbiased estimates we can 
compute b = b*/R, a = y – bxobs. Thus, the 
general effect of adjusting for measurement 
error here is to increase the strength of the 
observed relationship.
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In my view, this suggests that a more 
cautious, long-term attitude should be 
taken towards such research findings. 
Social research is a highly contested area, 
whether published in a “reputable” journal 
or as a non-peer reviewed report to a 
sponsor. Policy-makers would do well to 
promote a wide debate about any findings 
that appear important, where technical 
and interpretational issues can be debated 
in terms that are widely accessible, 

and where other relevant research can 
be referenced. 

Since many, if not most, measurements 
in the social sciences have embedded 
measurement errors, it ought to become 
routine for researchers to consider the 
implications of such measurement 
unreliability for their analyses. In some cases 
substantive conclusions may be unaffected, 
but those who use the results of research, 
including policy-makers, need to be aware of 

the issues. Moreover, since procedures such as 
those used in the present analyses, developed 
by Richardson and Gilks,4 are fairly widely 
available, there should be no reason for data 
analysts to neglect their use.
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Another approach to measurement error adjustment

Since they claim to have adjusted all SES differences by allowing for measurement error, a 
brief comment on the method used by Jerrim and Vignoles2 is worth making. They use an 
instrumental variable approach; the instrument they use is a test taken at the same time as the 
test of interest at age 3, and they assume that the former test score is uncorrelated with any 
measurement error in the test of interest. This does seem, however, a very strong assumption, 
especially since the tests were taken on the same day. Furthermore, for instrumental variable 
methods where it is likely that the instrument is uncorrelated with measurement errors in the 
test of interest, the method will often tend to lack statistical power. In addition, there is a 
substantive problem in that using the instrument as a measure of “ability” assumes that it is the 
same “ability” that is being measured by the test of interest; in other words, it is what is known 
as a parallel test. This does, however, seem questionable. For these reasons we have adapted the 
approach of Richardson and Gilks,4 but we do need to emphasise that in a sensitivity analysis, 
using more than one estimate for the measurement error variance is important. 
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