
  
Time-Varying Linear Transformation 
Models with Fixed Effects  
and Endogeneity for Short Panels 
 
 
 
 
 
Senay Sokollu 
Irene Botosaru 
Chris Muris 
Discussion Paper 22/756 
 
28 January 2022 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
School of Economics 
 
University of Bristol 
Priory Road Complex 
Bristol 
BS8 1TU 
United Kingdom 



Time-Varying Linear Transformation Models with

Fixed Effects and Endogeneity for Short Panels*

Irene Botosaru, Chris Muris, and Senay Sokullu�

January 22, 2022

Abstract

This paper considers a class of fixed-T nonlinear panel models with time-

varying link function, fixed effects, and endogenous regressors. We establish

sufficient conditions for the identification of the regression coefficients, the

time-varying link function, the distribution of counterfactual outcomes, and

certain (time-varying) average partial effects. We propose estimators for these

objects and study their asymptotic properties. We show the relevance of our

model by estimating the effect of teaching practices on student attainment as

measured by test scores on standardized tests in mathematics and science. We

use data from the Trends in International Mathematics and Science Study, and

show that both traditional and modern teaching practices have positive effects

of similar magnitudes on the performance of U.S. students on standardized

tests in math and science.
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1 Introduction

We consider a nonlinear panel model with endogeneity, where the outcome for indi-

vidual i at time t can be written as a time-varying transformation of a latent linear

variable with endogenous regressors. That is, the observed outcome is specified as:

Yit = ht (Y ∗it ) = ht(αi +X itβ̄ + Uit), i = 1, . . . , n, t = 1, . . . , T, (1)

where Yit ∈ Yt ⊆ R is a continuous random variable, ht : R → Yt is an unknown,

strictly monotonic transformation that varies with t, αi ∈ R is an unobserved indi-

vidual effect, β̄ ∈ Rk+1 is a vector of regression coefficients,1 Uit ∈ R is a stochastic

error, and

X it = (X0it, X1it, . . . , Xkit) ∈ Xt ⊆ Rk+1

is a vector of explanatory variables that may be endogenous in the sense that:

E (Uit|Xi1, . . . , XiT ) 6= 0 for all t = 1, . . . , T . (2)

In particular, the covariates are not required to be strictly exogenous. The individual

effect αi is a fixed effect, in the sense that it can be arbitrarily correlated with X it.

The distribution of Uit is left unspecified except for a conditional mean restriction in

(5) below.

We are interested in the identification and estimation of β̄ and ht, t = 1, . . . , T ,

and of the distribution of the counterfactual outcomes, the average structural func-

tion, and certain partial effects. All these parameters are time-varying, whenever the

transformation is time-varying.

An example of our framework is a nonlinear version of the standard linear dynamic

panel model:

Yi0 = h0

(
φi, X̃i0

)
, (3)

Yit = ht

(
αi + X̃itβ̃ + ρYi,t−1 + Uit

)
, t = 1, . . . , T, (4)

1In Appendix C, we allow for a nonparametric function of the covariates, e.g. ρ
(
Xit

)
.
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where φi captures additional individual-specific unobserved heterogeneity in the ini-

tial condition. This specification is nested by (1) by setting X it =
(
X̃it, Yi,t−1

)
,

β =
(
β̃, ρ
)

, and it nests the linear dynamic panel model when ht (v) = v for

t ≥ 1. To the best of our knowledge, this is the first paper showing identifica-

tion of
(
β̃, ρ, (ht) t≥1

)
and the distribution of the counterfactual outcomes for this

class of models. We study identification of this model in Appendix D.

Our solution to the endogeneity problem relies on the existence of instrumental

variables, Zit ∈ Z ⊆ Rq, q ≥ k + 1, that satisfy the following mean independence

condition: for any z ∈ Z,

E (Uit − Uit−1|Zit = z) = 0 for all t = 2, . . . , T. (5)

This conditional mean restriction is mild: it allows the instrumental variable at

time t to affect the level of the errors at time t as long as it does so in a time-

homogeneous way;2 and it does not impose any restrictions on the serial dependence

or heteroskedasticity of the stochastic errors.

First, we identify the regression coefficient and ht using insights from the non-

parametric instrumental variables (NPIV) literature, in particular Féve and Florens

(2014) and Florens and Sokullu (2017). Second, we then identify the distribution of

counterfactual outcomes, extending previous results in Botosaru and Muris (2017);

Botosaru et al. (2021). This does not require knowledge or identification of the dis-

tribution of fixed effects, and only uses the regression coefficient and ht identified

in step 1. Partial effects are identified en passant. Third, we propose estimators

based on Tikhonov regularization, and show that the regression coefficient estimator

converges at the parametric rate, even if the link functions do not. Our estimators

for the average partial effects also attain the
√
n rate. To the best of our knowledge,

this is the first paper to derive such results for nonlinear transformation models with

fixed effects and fixed-T .

2In contrast, in nonseparable models this type of conditional mean restriction is not sufficient
for identification of the structural parameters or of the partial effects. In general, it is stronger
assumptions, such as independence between Ut and Xt for each and all t that are maintained in
those models.
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We show the relevance of our approach by estimating the effect of teaching prac-

tices on student attainment. We use data from the Trends in International Mathe-

matics and Science Study, where the test score Yit of each student i is observed across

two standardized tests t, one in mathematics (t = 1) and one in science (t = 2). Test

scores are relative ranks, and thus do not have an ordinal scale. Therefore, it is

important that approaches using test scores as outcome variables be invariant to

monotone transformations, see, e.g., Cunha and Heckman (2008), Bonhomme and

Sauder (2011). Our approach is invariant, and furthermore allows the monotone

transformation to be different across math and science. On top of that, we accom-

modate fixed effects and endogenous regressors. Our application demands all of these

features, as we explain in Section 7. We are not aware of any existing approach that

delivers this combination of features. We find that both traditional and modern

teaching practices have positive effects of similar magnitudes on test scores.3 This is

different from other studies that use standardized test scores that find that modern

teaching practices have almost nonexistent effect on test scores, see, e.g. Bietenbeck

(2014).

Relative contribution. We are not aware of any existing work that combines the

following four features: (1) fixed-T , (2) fixed effects, (3) nonlinearity via a time-

varying link function, and (4) endogenous regressors. To the best of our knowledge,

our identification and estimation results are therefore novel. Our paper contributes

to at least four literatures: nonlinear panel models, dynamic panel models, transfor-

mation models, and partial effects in nonlinear panel models.

First, our results contribute to the literature on nonlinear panel models with

fixed-effects and fixed-T . Within this literature, the maintained assumption for

identification of the structural parameters, β, ht, has been of strict exogeneity of

the regressors. For example, Abrevaya (1999) considered the outcome equation (1)

and proposed an estimator for the regression coefficient. Botosaru et al. (2021) stud-

ied identification and estimation of the time-varying link function. In this paper, we

relax the assumption of strictly and weakly exogenous regressors.

That it is challenging to deal with endogenous regressors in nonlinear panel mod-

3Freyberger (2018) uses the same data but studies a different issue.
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els with fixed effects and fixed-T is evident from reviews of the literature in Arellano

and Honoré (2001); Arellano and Bonhomme (2011). A notable exception is Altonji

and Matzkin (2005), who consider an outcome equation that nests ours, and who

also allow for endogenous regressors. Altonji and Matzkin (2005) make progress by

imposing restrictions on the distribution of (αi, Xi). In contrast, we obtain identifi-

cation without imposing such restrictions.

Within the nonlinear panel literature described above, Botosaru et al. (2021) is

closest in spirit. The main differences with the specification there are that in this

paper the link function in (1) is assumed to be strictly monotonic (so that the results

of this paper apply to continuous outcomes only), and that the covariates are allowed

to be endogenous.

Second, we also contribute to the literature on dynamic panel models. As a special

case of our general result, we analyze a nonlinear version of the linear dynamic panel

model, see 3-4 above, and Appendix D. There is a large literature on linear dynamic

panels, see Bun and Sarafidis (2015) for a review. These models are very popular

in applied practice. For example, the early key contributions by Arellano and Bond

(1991); Blundell and Bond (1998) have 35, 172 resp. 24, 622 Google Scholar citations

at the time of writing. That the combination of a dynamic structure with a nonlinear

structure is difficult to handle is clear from the literature on dynamic discrete choice

models with fixed effects, cf. Honoré and Kyriazidou (2000); Honoré and Weidner

(2020); Muris et al. (2020); Honoré et al. (2021). For example, whether it is possible

to accommodate time trends and endogenous regressors in such models is an open

question. In contrast, our model allows for the transformations to vary over time in an

arbitrary fashion. Furthermore, we accommodate additional endogenous regressors.

Third, we contribute to the literature on panel transformation models with en-

dogenous regressors. We extend previous work by Florens et al. (2012), Féve and

Florens (2014), and Florens and Sokullu (2017) to nonlinear panel models. The main

difference with Féve and Florens (2014) is that our specification allows for a time-

varying link function, while the analysis in Florens et al. (2012) and Florens and

Sokullu (2017) applies to cross-sectional data (see also Féve and Florens (2010)). On

the other hand, both Florens and Sokullu (2017) and Féve and Florens (2014) allow
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for a nonparametric function of observed endogenous covariates, i.e. ρ (Xit) instead

of Xitβ̄. In Appendix C, we explain how our analysis can be extended to allow for

this possibility. Note that in this case, our framework nests that of Féve and Florens

(2014).

Other related works have addressed the problem of endogeneity in transformation

models via arguments based on special regressors, e.g. Chiappori et al. (2015), and

control functions, e.g. Vanhems and Van Keilegom (2019). These papers consider

a cross-sectional set-up, so the transformation function is not indexed by time and,

importantly, there are no fixed effects. We consider a panel data setting and our

identification argument uses instrumental variables.4

We adopt an inverse problem approach to derive sufficient conditions for the

identification of β̄ and ht. As such, we use concepts from the NPIV literature such as

invertibility of an operator, completeness, and measurable separability. Our proposed

estimator is based on Tikhonov regularization and follows closely the procedure in

Florens and Sokullu (2017).

Finally, there is a growing number of papers deriving conditions for the identifi-

cation of marginal and partial effects for static and dynamic discrete choice models,

e.g., Aguirregabiria and Carro (2021), Aguirregabiria et al. (2021), Davezies et al.

(2021), Dobronyi et al. (2021), Liu et al. (2021), Pakel and Weidner (2021). None

covers our specification with unknown and time-varying transformation. Botosaru

and Muris (2017) consider partial effects for the class of models where the outcome

equation is as in (1) with strictly exogenous Xt. Chernozhukov et al. (2013) consider

a nonseparable outcome equation, but do not allow for endogenous regressors, arbi-

trary time-varyingness, and they require boundedness of the dependent variable and

discreteness of the regressors. An important point made by recent papers starting

with Botosaru and Muris (2017) is that, even in nonlinear models, average partial

effects can be identified without identification of the distribution of the fixed effects.

Organization. The paper is organized as follows. In Section 2 we derive sufficient

conditions for the identification of β and ht, while in Section 3 we show that the

4Other related work, set in a cross-sectional setting, can be found in the literature review in e.g.
Birke et al. (2017).
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results of Section 2 are sufficient for the identification of a menu of partial effects, all

of which are time-varying. In Section 4 we introduce our estimators for β and ht and

derive asymptotic results, while in Section 6 we present Monte-Carlo results that

document the finite sample properties of our estimators. In Section 7 we present

the empirical application to the effects of teaching practices on test scores. The

Appendix contains all the proofs and extensions.

Notation. For a random variable V with support V , we let L2
V denote the space of

functions g : V → R such that E |g (V )|2 < ∞. We denote by g−1 the inverse of an

arbitrary, invertible function g : R → R. We use ⊗ to denote the tensor product.

We let C : R → R denote a bounded, continuous, symmetric, univariate kernel

function of order m, i.e.
∫
C(u)du = 1,

∫
ujC(u)du = 0 for all j = 1, ...,m − 1, and∫

umC(u)du < ∞ and
∫
C2(u)du < ∞. We let K : Rd → R denote a multivariate

kernel function defined as the product kernel K(w) =
∏d

k=1 C(wk). For an operator

K between two Hilbert spaces, we denote by R (K) the range of the operator and

by R (K)⊥ its orthogonal complement .

2 Identification

Our identification results require at least two time periods, so we let T = 2 in what

follows. We drop the i subscript in this section.

Assumption 1. For each t = 1, 2, ht : R→ Yt is strictly monotonic.

Shape restrictions such as monotonicity are quite common in the literature on

transformation models. Assumption 1 allows us to work with h−1
t , the inverse of

ht, t = 1, 2.

Assumption 2. (i) The first element of β̄ is normalized to 1, i.e. β̄ = (1, β),

β ∈ Rk. (ii) E
(
h−1

1 (Y1)
)

= 0.

Without parametric restrictions on ht and on the distribution of Ut, the outcome

in (1) follows a semiparametric single index specification. Therefore, both a scale
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normalization, 2(i), and a location normalization, 2(ii), are needed for identification,

see also Horowitz (2009).

Letting X0t ∈ R denote the covariate associated with the normalized coefficient

from Assumption 2(i) and

Xt ≡ (X1t, X2t, . . . , Xkt) ∈ Rk,

the outcome equation (1) can then be written as

Yt = ht (α +X0t +Xtβ + Ut) .

Assumption 3. There exist random variables Z ∈ Z such that for any z ∈ Z,

E (U2 − U1|Z = z) = 0.

As Assumption 3 is made on the difference over time in the errors, it does not

require that E (Ut|Z) = 0, thus allowing Z to enter the outcome equation, as long

as it does so in a time-homogeneous way.

Let ∆X ≡ X2−X1, ∆X0 ≡ X02−X01, and r (z) ≡ E (∆X0|Z = z). Assumptions

1, 2, and 3, obtain that, for any z ∈ Z,

E
(
h−1

2 (Y2)− h−1
1 (Y1)−∆Xβ

∣∣Z = z
)

= r (z) . (6)

Equation (6) is an integral equation for the parameters of interest
(
h−1

1 , h−1
2 , β

)
.

This shows that the three parameters can be characterized by the functional equation

K
(
h−1

1 , h−1
2 , β

)
= r, where K : H1 → H2 is a multilinear integral operator andH1,H2

are function spaces defined below.

Assumption 4. (i) H1 = L2
Y1 ⊗ L2

Y2 ⊗ Rk and H2 = L2
Z ; (ii) r ∈ L2

Z ; and (iii)

The joint distribution of (Y1, Y2,∆X,Z) is dominated by the product of its marginal

distributions, and its density is square integrable w.r.t. the product of marginals.

A few remarks are in order. First, Assumption 4 allows us to define K as the
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conditional expectation operator:

K : L2
Y1 ⊗ L

2
Y2 ⊗ Rk → L2

Z , (7)

that maps

(
h−1

1 , h−1
2 , β

)
7→ E

(
h−1

2 (Y2)− h−1
1 (Y1)−∆Xβ

∣∣Z = ·
)
.

Second, Assumptions 4(i) and (ii) are satisfied provided that the variances of U2 −
U1 and ∆X are finite. Assumption 4(iii) guarantees that the conditional density

fY1,Y2,∆X|Z is well-defined and that the operator K is Hilbert-Schmidt.

If the model is correctly specified, then r ∈ R (K) and the functional equation in

(6) has at least one solution for
(
h−1

1 , h−1
2 , β

)
. The following assumption guarantees

uniqueness of the solution.

Assumption 5. K is such that for any
(
δ−1

1 , δ−1
2 , b

)
∈ L2

Y1 ⊗ L
2
Y2 ⊗ Rk,

K
(
δ−1

1 , δ−1
2 , b

)
= 0 a.s. FZ =⇒ δ−1

1 = 0 a.s. FY1 , δ
−1
2 = 0 a.s. FY2 , b = 0.

Assumption 5 is an injectivity-like assumption on the multilinear operator K.5 It

is possible to state sufficient assumptions for it in terms of linear operators by using

the linearity of the expectation operator. To this end, define the following linear

operators:

Kyt : L2
Yt → L2

Z : h−1
t 7→ E

(
h−1
t (Yt)

∣∣Z = .
)
, t = 1, 2, (8)

Kx : Rk → L2
Z : β 7→ E (∆Xβ|Z = .) , (9)

so that K
(
h−1

1 , h−1
2 , β

)
= Ky2h

−1
2 −Ky1h

−1
1 −Kxβ. The following Assumption 6 is

sufficient for Assumption 5.

Assumption 6. (i) Each operator Ky1 , Ky2 , Kx is injective; (ii) R (Ky1)∩R (Ky2)∩
R (Kx) = {0}.

5Florens et al. (2012) make a similar assumption on a bilinear operator in the proof of their
Theorem 2.1.
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Assumption 6(i) is equivalent to assuming that each Yt is strongly identified by

Z, i.e. for any γ ∈ L2
Yt ,

E (γ (Yt)|Z) = 0 a.s. FZ =⇒ γ (Yt) = 0 a.s. FYt , t = 1, 2,

and that the matrix E [E (∆X|Z)E (∆X ′|Z)] has full rank. The strong identification

assumption is the standard L2-completeness assumption usually invoked in the NPIV

literature.6

Assumption 6(ii) is implied by Y1, Y2,∆X each being strongly identified by Z,

and by measurable separability of (Y1, Y2,∆X).7 Measurable separability is a high-

level assumption that rules out a linear relationship between Y1, Y2, and ∆X. The

assumption fails if there exists an additive functional relationship between Y1, Y2, and

∆X, see, e.g., Newey et al. (1999). Lemma 1 in Appendix A.1 establishes low-level

assumptions for measurable separability.

Theorem 1 (Identification). Suppose that (Y1, Y2, X01, X02, X1, X2, Z) follow the

model described by 1, 2, and 5. Let Assumptions 1, 2, 3, 4, and either 5 or 6

hold. Then h1, h2, β are identified.

Proof. The proof can be found in Appendix B.1.

6If each Yt and Z are continuous, have the same dimension, and support equal to a rectangle
then the completeness condition holds generically in the sense of Andrews (2017), see also Chen
et al. (2014), Newey and Powell (2003). It may be possible to consider weaker sufficient conditions
by adapting Proposition 2.2 in d’Haultfoeuille (2010) to the case of square integrable functions.
Other papers that provide sufficient conditions for completeness are d’Haultfoeuille (2011), Andrews
(2017), and Hu and Shiu (2018).

7The random variables (Y1, Y2,∆X) are measurably separable when, e.g., for any δt ∈ L2
Yt

and

any b ∈ Rk if
δ2 (Y2)− δ1 (Y1)−∆Xb = 0 a.s. FY1,Y2,∆X ,

then there exist constants ct ∈ R, t = 1, 2, such that

δt (Yt) = ct a.s. FYt , t = 1, 2.
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3 Partial effects

Building on results on partial effects for nonlinear panel models in Botosaru and

Muris (2017, Section 3.2), we show that identification of the structural parameters

(β, h1, h2) implies identification of certain partial effects. The main differences be-

tween the current setting and that of Botosaru and Muris (2017) are that, here, (i)

the transformation function is assumed to be invertible, and (ii) the regressors are

allowed to be endogenous. We first show that the distribution of the counterfactual

outcome at t is identified, and then we show identification of the average partial

effects.

Denote the counterfactual outcome by

Yit (x) = ht (αi + xβ + Uit) , (10)

which is the outcome of person i at time t under Xit = x, while holding (αi, Uit)

fixed. Note that Yit = Yit (Xit). The distribution of the counterfactual outcome at

time t is defined as:

P (Yit (x) ≤ y) = P (ht (αi + xβ + Uit) ≤ y) , (11)

for any value of (y, x).

Because the distribution of (Yit, Xit) is identified from the data, and (ht, β) have

been identified previously, this counterfactual quantity is also identified, and is given

by:

P (Yit (x) ≤ y) = P (ht (αi + xβ + Uit) ≤ y)

= P
(
αi + xβ + Uit ≤ h−1

t (y)
)

= P
(
αi +Xitβ + Uit ≤ h−1

t (y)− (x−Xit) β
)

= P
(
ht (αi +Xitβ + Uit) ≤ ht

(
h−1
t (y)− (x−Xit) β

))
= P

(
Yit ≤ ht

(
h−1
t (y)− (x−Xit) β

))
.
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The first equality uses the outcome equation for our model; the second uses strict

increasingness of ht; the third adds (Xit − x) β on both sides of the inequality; the

fourth applies the strictly monotone function to both sides; and the final equality

substitutes the observed Yit.

In our empirical illustration, we build on this result to obtain regressor effects.

Rather than looking at a fixed value of the regressors x, we will look at a coun-

terfactual value of the covariates that change the kth covariate by 1 unit. This

counterfactual value of the regressors can be written as Xit + ek, where ek is the unit

vector of the appropriate length, with a 1 in entry k, and zeros elsewhere. Following

the sequence of equalities above, we obtain

P (Yit (Xit + ek) ≤ y) = P
(
Yit ≤ ht

(
h−1
t (y)− βk

))
,

where βk is the value of the kth coefficient. Then, the difference in distributions

τk,t (y) ≡ P (Yit (Xit + ek) ≤ y)− P (Yit ≤ y)

= P
(
Yit ≤ ht

(
h−1
t (y)− βk

))
− P (Yit ≤ y) (12)

is the partial effect for regressor k.

In our empirical illustration, we are interested in the average effect rather than

the distribution of the counterfactual:

δk,t ≡ E [Yit (Xit + ek)− Yit] (13)

= E
[
ht
(
h−1
t (Yit) + βk

)]
− E [Yit] . (14)

The final expression depends only on observable or identified quantities, and is there-

fore identified. The resulting δk,t is the average partial effect (APE): it is the average

change in the outcome at time t when the kth covariate changes by one unit at time

t, ceteris paribus. The expression in (13) suggests using the sample analog of the

right hand side as an estimator for the APE.
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4 Estimation

Our identification argument naturally gives rise to a system of three normal equations

based on the three linear operators Ky1 , Ky2 , Kx and their adjoints. However, the

resulting system of normal equations is unnecessarily complicated.8 Instead, we

follow Florens and Sokullu (2017) and work with the following bilinear operator:

Ky : L̃2
Y1 ⊗ L

2
Y2 → L2

Z :
(
h−1

1 , h−1
2

)
7→ Ky2h

−1
2 −Ky1h

−1
1 ,

where L̃2
Y1 ≡

{
h−1

1 ∈ L2
Y1 : E

(
h−1

1 (Y1) = 0
)}

,9 so that Assumption 2(ii) holds. We

define the following dual operators or adjoints:

K∗y : L2
Z → L̃2

Y1 ⊗ L
2
Y2 : ψ 7→

(
E [ψ (Z)|Y2 = ·]
−PE [ψ (Z)|Y1 = ·]

)
,

K∗x : L2
Z → Rk : ψ 7→ E [ψ (Z) ∆X] ,

where P is the operator that projects functions from L2
Y1 to L̃2

Y1 . We can then write

(6) as:

Ky

(
h−1

1 , h−1
2

)
−Kxβ = r, (15)

and we can project the problem in (15) onto the parameter spaces, L̃2
Y1⊗L

2
Y2 and Rk,

using the dual operators above. The functions
(
h−1

1 , h−1
2 , β

)
are then characterized

as solutions to the following system of normal equations:

K∗yKy

(
h−1

1 , h−1
2

)
= K∗yr +K∗yKxβ, (16)

K∗xKy

(
h−1

1 , h−1
2

)
= K∗xr +K∗xKxβ. (17)

Letting I be the identity operator in L2
Y1 ⊗ L

2
Y2 , and Px ≡ Kx (K∗xKx)

−1K∗x and

Py ≡ Ky

(
K∗yKy

) −1K∗y be the orthogonal projection operators onto the closure of

8We show in Appendix A.2 that the system of three normal equations based on the three linear
operators that we use for identification is identical to the system with two normal equations based
on a bilinear operator that we use for estimation.

9This operator is injective given Assumption 6.
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the range of Kx and Ky, respectively, the above linear system is equivalent to:

K∗y (I − Px) r = K∗y (I − Px)Ky

(
h−1

1 , h−1
2

)
, (18)

K∗x (I − Py) r = K∗x (I − Py)Kxβ. (19)

The parameters of interest can in principle be obtained from equations (18) and

(19), after replacing Kx, Ky,K
∗
x, K

∗
y , and r by their sample analogues, call them

K̂x, K̂y, K̂
∗
x, K̂∗y , and r̂, respectively. For example,

(
ĥ−1

1 , ĥ−1
2

)′
naive

=
(
K̂∗y

(
I − P̂x

)
K̂y

)−1

K̂∗y

(
I − P̂x

)
r̂, (20)

β̂naive =
(
K̂∗x

(
I − P̂y

)
K̂x

)−1

K̂∗x

(
I − P̂y

)
r̂. (21)

It is well known in the literature on inverse problems, see, e.g. Carrasco and Florens

(2011), Horowitz (2011), Centorrino et al. (2017), Florens and Sokullu (2017), Babii

and Florens (2020), that estimating
(
h−1

1 , h−1
2

)
and β by naively inverting the sample

analogues of (18) and (19) as in (20) and (21) is a statistically ill-posed problem, in

the sense that the naive estimators are not stable with respect to estimation error.

We then use regularization to smooth out discontinuities due to inversion. In this

paper, we will use Tikhonov regularization.

Letting γn be a regularization parameter, such that γn → 0 at a rate defined in

Assumption (11) below, the regularized estimators are given by:

(
ĥ−1

1 , ĥ−1
2

)′
=
(
γnI + K̂∗y

(
I − P̂x

)
K̂y

)
−1K̂∗y

(
I − P̂x

)
∆X0, (22)

β̂ =
(
K̂∗x

(
I − P̂ γn

y

)
K̂x

)
−1K̂∗x

(
I − P̂ γn

y

)
r̂, (23)

where P̂ γn
y ≡ K̂y

(
γnI + K̂∗yK̂y

)
−1K̂∗y is the regularized projection operator Py. Note

that, although estimation of β is also affected by regularization, we show that β̂ is
√
n-consistent and asymptotically normal.10

10Note that a single regularization parameter is introduced. Although it is possible to allow for
two different regularization parameters, one for h−1

1 and one for h−1
2 , our asymptotic theory in the
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Letting {Y1i, Y2i,∆Xi0 = X02i −X01i,∆Xi = X2i −X1i, Zi}ni=1 be a random sam-

ple from a population conformable to our assumptions in Section 2, we consider the

following nonparametric estimators for the operators in (22) and (23):

K̂xγ (z) =
1

nbqz

1

f̂Z(z)

n∑
i=1

∆X ′iγK
(
Zi − z
bz

)
, for all γ ∈ Rk,

K̂y (g1, g2) (z) =
1

f̂Z (z)

(∫
g2 (y) f̂Y2,Z (y, z) dy −

∫
g1 (y) f̂Y1,Z (y, z) dy

)
, for all g1, g2 ∈ L̃2

Y1 ⊗ L
2
Y2 ,

K̂∗xg3 (z) =
1

nbqz

n∑
i=1

∆Xi

∫
g3 (z)K

(
Zi − z
bz

)
dz, for all g ∈ L2

Z ,

K̂∗yg4 (y1, y2) =

 1

f̂Y2 (y2)

∫
g4 (z) f̂Y2,Z (y2, z) dz

− 1

f̂Y1 (y1)

∫
g4 (z) f̂Y1,Z (y1, z) dz

 , for all g4 ∈ L2
Z ,

r̂ (z) =
1

nbqz

1

f̂Z(z)

n∑
i=1

∆Xi0K
(
Zi − z
bz

)
,

where K is a multivariate kernel function (see Notation in Section 1), bz a bandwidth

parameter that is assumed to be the same for each of the q components of Z and

which approaches 0 as n → ∞ at a rate specified in Assumption (11) below, and

where:

f̂Yt,Z(y, z) =
1

nbytb
q
z

n∑
i=1

C
(
Yit − y
byt

)
K
(
Zi − z
bz

)
, t = 1, 2,

f̂Yt(y) =
1

nbyt

n∑
i=1

C
(
Yit − y
byt

)
, t = 1, 2,

next section requires them to converge to zero at the same rate. Hence, for the sake of exposition,
we assume that the two regularization parameters are equal.
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f̂Z(z) =
1

nbqz

n∑
i=1

K
(
Zi − z
bz

)
,

where C is a univariate kernel function (see Notation in Section 1) and byt is a

bandwidth parameter that approaches 0 as n→∞ at a rate specified in Assumption

(11) below.

The estimators
(
ĥ−1

1 , ĥ−1
2 , β̂

)
are then the solutions to (22) and (23), where

the operators are replaced by their estimators defined above. Below, we describe

how to implement the method and give an explicit expression for the estimators(
ĥ−1

1 , ĥ−1
2 , β̂

)
.

Given
(
ĥ−1

1 , ĥ−1
2 , β̂

)
, the estimator for the APE δk,t defined in (14) is given by

the sample analog of that expression, i.e.

δ̂k,t =
1

n

n∑
i=1

[
ĥt

(
ĥ−1
t (Yit) + β̂k

)
− Yit

]
, t = 1, 2. (24)

4.1 Implementation of the estimation method

The estimators
(
ĥ−1

1 , ĥ−1
2 , β̂

)
are constructed as follows.

Let Ayt , t = 1, 2, and Az be matrices with the (i, j) element given by:

Ayt(i, j) =
C
(
Yti−Ytj
byt

)
∑n

j=1 C
(
Yti−Ytj
byt

) , t = 1, 2,

Az(i, j) =
K
(
Zi−Zj
bz

)
∑n

j=1K
(
Zi−Zj
bz

) ,
for i = 1, . . . , n, where C is the Gaussian kernel and byt and bz are bandwidths. We

set them equal to n−1/5 times the standard deviations of Yt and Z (the “rule of

thumb”), respectively.
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Letting Pn be the n× n matrix with n−1
n

on the diagonal and − 1
n

elsewhere used

to impose Assumption 2 by projecting onto the space of functions of Y1 where the

mean is 0, (22) can be written as: γnh
−1
2 + Ay2

(
I − P̂x

)
Azh

−1
2 − Ay2

(
I − P̂x

)
Azh

−1
1

−γnh−1
1 + PnAy1

(
I − P̂x

)
Azh

−1
2 − PnAy1

(
I − P̂x

)
Azh

−1
1

 = R̂, (25)

where

R̂ ≡

 Ay2

(
I − P̂x

)
Az∆X0

PnAy1
(
I − P̂x

)
Az∆X0

 ,

and

P̂x = Az∆X

(
∆X ′

n
Az∆X

)−1
∆X ′

n
.

Then the estimators
(
ĥ−1

2 , ĥ−1
1

)
are given by:

(
ĥ−1

2

ĥ−1
1

)
=

γnI + Ay2

(
I − P̂x

)
Az −Ay2

(
I − P̂x

)
Az

PnAy1
(
I − P̂x

)
Az −

(
γnI + PnAy1

(
I − P̂x

)
Az

)−1

R̂. (26)

and, given
(
ĥ−1

2 , ĥ−1
1

)
, β̂ is given by:

β̂ =
(
K̂∗xK̂x

)−1

K̂∗x

[
K̂y

(
ĥ−1

1 , ĥ−1
2

)
− r̂
]
.

We suggest choosing the regularization parameter γn that minimizes the squared

norm of residuals, following Florens and Sokullu (2017).

5 Asymptotic Properties

In this section, we derive assumptions for the
√
n- asymptotic normality of β̂ and for

the rate of convergence of
(
ĥ−1

1 , ĥ−1
2

)
.

In this section, a subscript of 0 will denote the true value of the parameter being
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estimated.

Assumption 7. The operator Ky is compact.

This assumption allows us to use singular value decomposition (SVD) of the

operator Ky.

Definition 1. Let T : E 7→ F be a compact operator and let {λj, φj, ψj} be the

singular system T such that:

T φj = λjψj and T ∗ψj = λjφj,

where λj denotes the sequence of the nonzero singular values of the compact linear

operator T , and φj and ψj, for all j ∈ N, are orthonormal sequences of functions in

E and F , respectively. The singular value decomposition for each function ϕ ∈ E can

be written as:

T ϕ =
∞∑
j=1

λj〈ϕ, φj〉ψj.

Given the definition above let {λj, φj, ψj} for j ≥ 1 be the singular system of

the operator Ky and let
{
µl, el, ψ̃l

}
for l = 1, 2, . . . , k be the singular system of the

operator Kx, such that for each β ∈ Rk we can write:

Kxβ =
k∑
l=1

µl〈β, el〉ψ̃l.

Assumption 8. Source Condition: There exists ν > 0 and η > 0 such that:

∞∑
j=1

〈(
h−1

1 , h−1
2

)
, φj
〉2

λ2ν
j

=
∞∑
j=1

(〈
h−1

1 , φ1,j

〉
+
〈
h−1

2 , φ2,j

〉)
2

λ2ν
j

<∞,

and

max
l=1,...,k

∞∑
j=1

〈
ψ̃l, ψj

〉2

λ2η
j

<∞.
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Assumption 8 is a common assumption in the NPIV literature and it defines a

regularity space for the parameters of interest. The first equation in Assumption

8 defines a regularity space for
(
h−1

1 , h−1
2

)
, in other words, this assumption adds a

smoothness condition on the unknown functions. The second equation in Assumption

8 is about collinearity between Y1, Y2 and ∆X. As it is pointed out in Florens

et al. (2012), η can be interpreted as a degree of collinearity between Y1, Y2 and ∆X

measured through a projection on the instruments Z. For instance, when η = ∞,

R (Ky) and R (Kx) are orthogonal to each other and the estimation of β is not

affected by the existence of the nonparametric component as K∗yKx and K∗xKy vanish

from the normal equations (16) and (17).

Assumption 9. The parameters ν, η in Assumption 8 satisfy ν ≤ 2 and η ≤ 2.

Assumption 9 is for the sake of exposition and it is without loss of generality. In

this paper, we solve the ill-posed inverse problem we encounter during estimation

using Tikhonov regularization. Since Tikhonov regularization has a qualification of

two, we cannot improve upon the rate of convergence when the functions we consider

have regularity greater than 2, i.e., ν, η > 2. Hence, under this assumption during the

derivation of the rates, we can simply write ν or η instead of min{ν, 2} or min{η, 2}.

Assumption 10. Let s be the minimum between the order of the kernel used in

estimation and the order of the differentiability of densities f (Y1, Y2, Z) , f (∆X,Z)

and f (∆X0, Z) and assume that s ≥ 2 and

∥∥∥K̂y −Ky

∥∥∥2

= Op

(
1

nbq+1
n

+ b2s
n

)
,∥∥∥K̂∗y −K∗y∥∥∥2

= Op

(
1

nbq+1
n

+ b2s
n

)
,∥∥∥K̂∗y r̂ − K̂∗yK̂y

(
h−1

1,0, h
−1
2,0

)∥∥∥2

= Op

(
1

n
+ b2s

n

)
,

‖r̂ − r0‖2 = Op

(
1

nbqn
+ b2s

n

)
,
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where q is the dimension of the instrument vector Z and by1 = by2 = bz = bn is the

bandwidth.

Assumption 10 is a high-level assumption on the convergence rate of the estimated

operators. Preliminary conditions leading to these rates have been studied in Darolles

et al. (2011). Note that we set the bandwidths to be equal for exposition reasons.

Below we state the rates we need for the smoothing parameters to converge to zero

to obtain our final result.

Assumption 11. limn→∞ γn → 0, limn→∞ b
2s
n → 0, limn→∞ nb

q+1
n →∞, limn→∞ nγn →

0, limn→∞ nγnb
2s
n → 0, limN→∞

γn
bq+1
n
→ 0.

Assumption 12. R (Ky)
⊥ = N

(
K∗y
)
6= {0}.

Assumption 12 implies that there exists an element ψj defined by the SVD of Ky

such that ψj ∈ R(Ky)
⊥. For example, this condition is satisfied in the joint nonde-

generate normal case, i.e, if (Y1, Y2,∆X,Z) is jointly distributed as a nondegenerate

normal distribution. In such a case, the null space of K∗y is {0} if the range of the

covariance with (Y1, Y2,∆X) and Z is equal to the dimension of Z.

Assumption 13. For θ > 0, we have: E
[
|U2 − U1|2+θ |Z

]
= c, for any c ∈ R, and

E
[
|(I − Py)Kx|2+θ

]
<∞ .

Assumption 13 gives the conditions needed to satisfy the Liapounoff condition

to apply the Liapounoff central limit theorem to obtain asymptotic normality of our

estimators.

Using equation (23) we can show that:

√
n
(
β̂ − β0

)
= M̂−1

γ

{√
n
[
K∗x (I − Py) Ê (U2 − U1|Z)

]
+Op(1)

}
,

where

M̂γ ≡ K̂∗xK̂y

(
γnI + K̂∗yK̂y

)
−1K̂∗yK̂x − K̂∗xK̂x,

Ê (U2 − U1|Z) ≡ r − K̂y

(
h−1

1 , h−1
2

)
+ K̂xβ.
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This decomposition is useful for the following result.

Theorem 2. Assume that V ar (U2 − U1|Z) = σ2. Moreover let Assumptions 8, 9,

10, 11, 12 and 13 hold. Then:

∥∥∥∥(ĥ−1
1 , ĥ−1

2

)′
−
(
h−1

1,0, h
−1
2,0

)′∥∥∥∥2

L2

= Op

(
1

γ2
n

(
1

n
+ b2s

n

)
+

1

γ2
n

(
1

nbq+1
n

+ b2s
n

)
γνn + γνn

)
,

and

√
n
(
β̂ − β0

)
→ N (0, V ) ,

where

V ≡ σ2M−1

[∑
j

E (∆Xψj)E (∆Xψj)
′

]
M−1, ψ ∈ R (Ky)

⊥,

M ≡ K∗xKy

(
K∗yKy

) −1K∗yKx −K∗xKx.

Proof. The proof can be found in Appendix B.

Theorem 2 shows that a
√
n-convergence rate and asymptotic normality for β̂

can be obtained, as well as showing the convergence rate of
(
ĥ−1

1 , ĥ−1
2

)
. Note that

the estimator for h−1
t is not necessarily monotone in its argument. We can make

the estimator monotone by rearrangement. The weak convergence result obtained

remains valid for the estimator obtained by rearrangement since the rearrangement

operator is Hadamard differentiable, see Chernozhukov et al. (2010).

Corollary 1. Let Assumptions 8 to 11 hold, and assume that s ≥ 2 (q + 1) and

γn ∼ n−
3
8 . Then ∥∥∥∥(ĥ−1

1 , ĥ−1
2

)′
−
(
h−1

1,0, h
−1
2,0

)′∥∥∥∥2

L2

= Op

(
n−1/4

)
.

Proof. The proof can be found in the Appendix.
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Consider now the limiting distribution of the estimator of the APE defined in

(24) above. The APE is characterized by the moment condition

E
[
ht
(
h−1
t (Yit)− βk

)
− Yit − δk,t

]
= 0.

Then, given a random sample {Yit}ni=1 and estimators β̂, ĥt, the APE δk,t can be

estimated by the zero of the estimating equation below:

1

n

n∑
i=1

(
ĥt

(
ĥ−1
t (Yit)− β̂k

)
− Yit − δk,t

)
= 0.

This shows that δ̂k,t is a plug-in two-step Z-estimator. That this estimator can

be shown to be
√
n-asymptotically normal should be no surprise given the regularity

conditions on ht, the way that δk,t enters the estimating equation, and the rate results

on β̂ and ĥ−1
t .

A general result on two-step Z-estimators can be found in Chen et al. (2003).

In that paper, Theorems 1 and 2 state sufficient high-level conditions under which

δ̂k,t can be shown to be consistent and
√
n-asymptotically normal.11 Here we make

high-level assumptions as in Theorem 2 in Chen et al. (2003), in order to state our

result on the
√
n-asymptotic normality of δ̂k,t. Our simulation studies in Section 6

provide suggestive evidence that δ̂k,t is
√
n-asymptotically normal, e.g. Figures 3 and

4.

Using the notation in Chen et al. (2003) and assuming that ht is differentiable

11See also van der Vaart and Wellner (1996).
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on its support, define the following objects:

M (δk,t, ht, βk) ≡ E [m (δk,t, ht, βk)]

≡ E
[
ht
(
h−1
t (Yt)− βk

)
− Yt − δk,t

]
,

Mn (δk,t, ht, βk) ≡
1

n

n∑
i=1

(
ht
(
h−1
t (Yit)− βk

)
− Yit − δk,t

)
,

Γ1 (δk,t, ht, βk) ≡
∂

∂δk,t
M (δk,t, ht, βk) = −1,

Γ2 (δk,t, ht, βk)
[
h̄t − ht

]
≡ d

dγ
M
(
δk,t, ht + γ

(
h̄t − ht

)
, βk
)∣∣∣∣
γ=0

= E

[(
1−

h′t
(
h−1
t (Yt)− βk

)
h2
t (Yt)

)[
h̄t (Yt)− ht (Yt)

]]
,

Γ3 (δk,t, ht, βk) ≡
∂

∂βk
M (δk,t, ht, βk)

= −E
[
h′t
(
h−1
t (Yt)− βk

)]
,

where h′t is the first derivative of ht with respect to its argument.

Theorem 3. Let the assumptions of Corollary 1 hold, and assume that (i) ht is

continuously differentiable on its support, and Lipschitz continuous with a uniformly

bounded derivative for t = 1, 2; (ii) the density of Yt is bounded away from zero and

is bounded from above for t = 1, 2; (iii) for t = 1, 2,

‖M (δk,t, ht, βk)−M (δk,t, ht0, βk0)− Γ2 (δk,t, ht0, βk0) [ht − ht0]− Γ3 (δk,t, ht0, βk0)‖

≤ c
(
‖ht − ht0‖2

L2 + ‖βk − βk0‖2) ;

(iv) for t = 1, 2, and some finite matrix V1,

√
n
(
Mn (δk,t,0, ht0, βk0) + Γ2 (δk,t,0, ht0, βk0)

[
ĥt − ht0

]
+ Γ3 (δk,t,0, ht0, βk0)

)
→ N (0, V1) .

Then t = 1, 2,
√
n
(
δ̂k,t − δk,t

)
→ N (0, V1) .
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Proof. The proof can be found in the Appendix.

6 Simulation study

In this section we illustrate the small sample performance of our proposed estimator

through Monte Carlo simulations. We consider the case of T = 2, and let

(Z1, Z2) ∼ N

((
0

0

)
,

(
1 0

0 1

))
,

ξ ∼ U [0, 1] ,

(ω1, ω2) ∼ N

((
0

0

)
,

(
σ2
ω 0

0 σ2
ω

))
, σ2

ω = 0.5,

(U1, U2) ∼ N

((
0

0

)
,

(
σ2
u 0

0 σ2
u

))
, σ2

u = 0.6,

so that

X01 = 0.7Z1 + 0.5U1 + ξ,

X02 = 0.8Z2 + 0.4U2 + ξ + 20,

X1 = 0.8Z1 + 0.7Z2 + ω1 + U1,

X2 = 0.7Z1 + 0.8Z2 + ω2 + U2.

Additionally, let

α ∼ N (0, 1) +
1

2
(X1 +X2) ,

and h1(s) = s, h2(s) = log(s), β = 1, so that

Y1 = α +X01 + βX1 + U1,

Y2 = log (α +X02 + βX2 + U2) .

We simulate the model 500 times for sample sizes n ∈ {100, 200, 500, 1000}. We
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estimate the functions h1, h2 and the finite dimensional parameter β following the

method described in Section 4. We impose monotonicity of the infinite dimensional

parameters by rearrangement. We choose the regularization parameter that mini-

mizes the squared norm of residuals, following Florens and Sokullu (2017). Figures 1

and 2 show the estimated functions ĥ−1
1 and ĥ−1

2 , respectively. The light gray shaded

area shows the estimated curves obtained at each draw plotted pointwise, dark gray

dots show the pointwise average across simulations of the estimated functions, i.e.
1

500

∑500
s=1 ĥs,t (y∗t ) , t = 1, 2, whereas the black dots show the true (pointwise) func-

tion. Table 1 shows the mean and standard error of β̂ for different sample sizes. As

expected, both bias and standard deviation decrease with increasing sample size.

After obtaining ĥ−1
1 , ĥ−1

2 and β̂, we compute δ̂k,2 as in (24). Table 2 shows the

mean, standard error, and RMSE of estimated average partial effects for different

sample sizes as well as the true average partial effect at t = 2 which is calculated

using true values of h1, h2, and β. We show two different figures, one for n = 500

(Figure 3) and one for n = 1000 (Figure 4), which provide suggestive evidence that

our estimator of the APE attains
√
n-asymptotic normality.
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Figure 1: Simulation result with 500 draws for h1, monotonicity imposed by

rearrangement, n = 500.
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Figure 2: Simulation result with 500 draws for h2, monotonicity imposed by

rearrangement, n = 500.

Table 1: Estimation results for β
Mean Std. Err

n = 100 0.8614 0.2767
n = 200 0.9696 0.2145
n = 500 1.0363 0.1736
n = 1000 1.0583 0.1326

Table 2: Estimation results for APE
Mean Std. Err RMSE True APE

n = 100 0.0589 0.0165 0.0186 0.0505
n = 200 0.0612 0.0113 0.0154 0.0506
n = 500 0.0607 0.0084 0.0131 0.0506
n = 1000 0.0597 0.0062 0.0109 0.0506
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Figure 3: Histogram of ˆAPE for n=500.
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Figure 4: Histogram of ˆAPE for n=1000.

.

7 Empirical Illustration

In this section, we analyze the effect of teaching practices on student achievement as

measured by test scores on standardized tests in mathematics and science. Because

test scores are relative ranks, any monotonic transformation of a test score is a valid

score. Hence, our method is well suited to this application because it is invariant

to monotonic transformations of the outcome variable. This allows us to avoid both

arbitrary normalizations of test scores (see, e.g., Bonhomme and Sauder (2011)) and

anchoring the scale of test scores to a measure with a well-defined cardinal scale (see,
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e.g., Cunha and Heckman (2008)). In addition, our method allows for endogeneity in

the factors that generate a student’s test scores beyond student-specific fixed effects,

such as, for example, a measure of teaching practices based on the student’s own

answer.

We use data from the Trends in International Mathematics and Science Study

(TIMSS), which is an international assessment of mathematics and science knowl-

edge of fourth and eight-grade students. Students in selected classes are administered

standardized tests in mathematics and science, and background information is ob-

tained from students and their teachers in both subjects via questionnaires. We use

the 2007 wave of TIMSS for the US, that was used and described in detail in Bi-

etenbeck (2014) and in Freyberger (2018). Our data set contains test scores of 6057

students in the eight grade on the two subjects, so that each student is observed

twice: once in mathematics and once in science. Information on teaching practices

comes from a questionnaire asking students how often they engaged in a range of

classroom activities in each subject. Activities are classified as either traditional or

modern, with the former relying on rote learning and individual work, and the latter

relying on teamwork and involvement of students in discussions and presentations.

We use the classification in Bietenbeck (2014), so that measurements of teaching

practices are class-averages of the frequency (or percentage of lessons) of traditional

or modern classroom activities. As Bietenbeck (2014) explains, these class-level in-

dices do not add up to 100%, because teachers that use a variety of both traditional

and modern teaching practices in all their lessons can score high on both indices.

Our empirical specification models student i’s test score in subject t ∈ {math, science}
as the output of a production function that takes as inputs student-specific covari-

ates:

Yit = ht
(
αi + R̄it + M̄itβ + Uit

)
, (27)

where Yit is the overall (raw) score of student i in subject t, ht is an unknown

monotonic function specific to subject t, αi is a student fixed effect, e.g., a student’s

initial endowment such as her cognitive ability, and R̄it and M̄it are class-level indices

of, respectively, traditional and modern teaching practices in subject t as reported
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by both student i and her classmates, and Uit are shocks to educational attainment

of student i in subject t, that could reflect luck on an exam or an improvement or

worsening in academic achievement in a particular subject relative to the long-run

performance in that subject, see, e.g. Bonhomme and Sauder (2011).

Since class-averages R̄it and M̄it contain student i’s own response, there may

be simultaneity issues. Following Bietenbeck (2014), we use class averages without

student i’s response, R̄(−i)t and M̄(−i)t, as instrumental variables,12 i.e.

E
(
Ui,math − Ui,science| R̄(−i)math, M̄(−i)math, R̄(−i)science, M̄(−i)science

)
= 0, (28)

which is Assumption 3 stated in the context of our application. Note that our

assumptions in Section 2 allow student i’s shocks to educational attainment to be

correlated across mathematics and science, so that if a student shows an improvement

in academic achievement in mathematics in one year relative to her long-run academic

performance, then she may show an academic improvement in science as well.

We are interested in estimating the following APEs: (i) the effect on mathematics

and science test scores of increasing the traditional teaching index by 1 (from 0%

to 100%, for example) while holding the modern teaching index unchanged, and (ii)

the effect on test scores of increasing the modern teaching index by 1 while holding

the traditional index unchanged. These partial effects correspond to counterfactuals

associated to an increase in, respectively, traditional and modern teaching practices

at the expense of practices that are neither traditional nor modern, such as reviewing

an exam or homework. Using expression (13) in Section 3, we compute the following

APEs:

δR,t = E
(
Yit
(
R̄it + 1

))
− E (Yit) , (29)

δM,t = E
(
Yit
(
M̄it + β

))
− E (Yit) . (30)

Before estimating ht and β in our preferred outcome equation (27), which are

12In the linear equivalent to (27) (i.e. ht (x) = x), Bietenbeck (2014) uses R̄(−i)t and M̄(−i)t as
exogenous regressors.
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needed to compute the APEs above, we run a few linear panel regression specifica-

tions in order to (i) compare our results to those in Bietenbeck (2014), (ii) establish

that using R̄it and M̄it as covariates and R̄(−i)t and M̄(−i)t as instrumental variables

replicates the effects of using R̄(−i)t and M̄(−i)t as covariates (as in Bietenbeck, 2014),

and (iii) motivate arbitrary subject-specific monotonic transformations of the test

scores, by showing that there are subject-specific effects and that using standardized

test scores versus raw scores obtains different results.

First, we run the following linear panel data regressions where the outcomes Ỹit

are the standardized scores and λt are subject-specific effects. Specification (31)

below is that of Table 3 column 3 in Bietenbeck (2014):

Ỹit = αi + λt + R̄(−i)t + M̄(−i)tβ + Uit. (31)

Specification (32) uses R̄it and M̄it as covariates to establish that there is an endo-

geneity problem as explained in Bietenbeck (2014):

Ỹit = αi + λt + R̄it + M̄itβ + Uit, (32)

while specification (33) below corrects the endogeneity problem by using as R̄(−i)t

and M̄(−i)t as instrumental variables in:

Ỹit = αi + λt + R̄it + M̄itβ + Uit, and (28) holds. (33)

We then run the same regressions with the raw scores, Yit.

The results of these six regressions can be found in Table 3. The results for the

specifications using the standardized scores show that our specification in (31) re-

produces those in Table 3 column 3 in Bietenbeck (2014);13 our specification in (32)

suffers from an endogeneity problem, which is then corrected by the specification in

(33). The specification in (33) recovers the results associated with the specification in

13We do not exactly reproduce the results since we do not control for teacher-specific covariates
and we do not use student sampling weights as in Bietenbeck (2014).
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(31), giving peace of mind about the validity of the instrumental variables.14 When

we repeat the exercise with the raw scores Yit, we find that our specifications corre-

sponding to (31) and (33) obtain a positive and significant effect of modern teaching

practices, which is different from the results using the standardized test scores Ỹit.

We also ran these specifications using a wide range of Box-Cox transformations of

the raw scores, and obtained similar results. Our results then suggest that the type

of transformation applied to test scores matters.

Standardized scores Raw scores
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Traditional teaching index 0.312 0.374 0.325 16.251 20.810 16.999
(0.053) (0.054) (0.055) (4.130) (4.211) (4.279)

Modern teaching index 0.047 0.076 0.050 12.009 14.500 12.460
(0.045) (0.046) (0.047) (3.546) (3.594) (3.640)

Course effects 0.015 0.018 0.016 11.914 12.104 11.942
(0.007) (0.007) (0.007) (0.510) (0.511) (0.512)

Sample size 6057 6057 6057 6057 6057 6057
R2 0.948 0.948 0.948 0.947 0.948 0.948
Adjusted R2 0.897 0.897 0.897 0.895 0.895 0.895

Table 3: The results for specification (31) are shown under Model 1, for specification
(32) are shown under Model 2, and for specification (33) are shown under Model 3.
Standard errors in parantheses.

Second, we document via linear panel regressions similar to those above, the

existence of subject-specific effects and the lack of invariance of the results to dif-

ferent normalizations of the outcome variable. More precisely, we run the following

regression:

Ỹit = c0i + c1tR̄(−i)t + c2tM̄(−i)t + λt + Uit, (34)

where the effects of teaching practices vary across the two subjects, and where the

outcome variable is the standardized test score Ỹit. We then run the same specifica-

14We repeat the exercise associated to specification 31 with both differenced instruments,
i.e. R̄(−i)t=math − R̄(−i)t=science, M̄(−i)t=math − M̄(−i)t=science, and instruments in levels,
i.e.R̄(−i)t=math, R̄(−i)t=science, M̄(−i)t=math, M̄(−i)t=science. Our results are virtually unchanged.
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tion with the raw scores Yit. The results of these regressions can be found in Table

4.

Standardized scores Raw scores
Traditional teaching index

mathematics 0.397 (0.063) 16.927 (4.906)
science 0.217 (0.070) 17.148 (5.459)

Modern teaching index
mathematics 0.075 (0.058) 14.438 (4.535)

science 0.071 (0.060) 9.798 (4.653)
Course effects 0.129 (0.051) 14.265 (4.018)
Sample size 6057 6057
Adjusted R2 0.897 0.895

Table 4: The results for specification (34) with the standardized test scores and with
the raw test scores. Standard errors in parantheses.

We find that, when using the raw scores, the effect of teaching practices on overall

test scores varies across subjects and that both traditional teaching and modern

teaching have a positive and statistically significant effect. Using standardized test

scores instead obtains that modern teaching practices do not have a significant effect

on overall test scores. Our results then suggest that there may be heterogeneous

effects of teaching practices across subjects.

Taken together, we interpret the results of Tables 3 and 4 as suggestive evidence

that the effects of teaching practices are sensitive to the type of transformation

applied to the test scores and that they are heterogeneous across subjects – which

justifies ht (·) in our outcome equation specification in (27), and that we can use class-

level indices that include student i’s response as covariates and class-level indices that

exclude it as instrumental variables.

We show below our results from estimating the model in (27) and (28). We use

the rule-of-thumb bandwidth parameters and a regularization parameter of 10−5 for

both functions. We also use all four instrumental variables, R̄(−i)t, M̄(−i)t, t ∈ {m, s}.
The estimate for β is 1.79, while the two functions hmath and hscience are shown in

Figures 5 and 6, respectively.
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Figure 5: Estimated transformation of mathematics test scores.

Figure 6: Estimated transformation of science test scores.
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The estimated APEs for the effects of increasing traditional methods to 100% in

(29) are δ̂R,math = 12.04 and δ̂R,science = 13.34, and those of increasing modern meth-

ods to 100% in (30) are δ̂M,math = 21.09 and δ̂M,science = 23.95. These results suggest

that increasing traditional teaching methods has a similar effect on mathematics and

science, and that the effect is much smaller than that of increasing modern teaching

methods. The results remain unchanged when adjusting for the standard deviation

of the test scores (74.5 points for mathematics and 79.8 for science).
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A Additional results

A.1 Measurable separability

In this section, we establish low-level assumptions for measurable separability, which

is a sufficient assumption for Assumption 6(ii) in the main text.

Assumption 14. The random variables W ≡ (Y1, Y2,∆X) are such that for any

δ2 − δ1 ∈ L2
W and any b ∈ Rk , if

δ2 (Y2)− δ1 (Y1)−∆Xb = 0 a.s. FY1,Y2,∆X ,

then there exist constants ct ∈ R, t = 1, 2, such that

δt (Yt) = ct a.s. FYt , t = 1, 2.
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Assumption 14 is a high-level assumption that rules out a linear relationship

between Y1, Y2, and ∆X. The assumption is a slightly weaker version of the mea-

surable separability assumption made in the NPIV literature. The assumption fails

if there exists an additive functional relationship between Y1, Y2, and ∆X, see, e.g.,

Newey et al. (1999).15 Identification may still occur in the presence of a non-additive

functional relationship between the three random variables. The Lemma below es-

tablishes sufficient low-level assumptions for Assumption 14.

Lemma 1. Let the following assumptions hold: (L1) ht is continuously differentiable

for all t; (L2) the support of Xt contains an open set and is continuous on that set;

(L3) Ut is continuous for all t and is serially independent. Then for any h1, h2, β

satisfying Assumptions 1 to 5 and Assumptions L1, L2, L3, for any random variables

Yt, Xt, Z following the model above, and for any δ2− δ1 ∈ L2
W and for any b ∈ Rk,

if

δ2 (Y2)− δ1 (Y1)−∆Xb = 0 a.s. FY1,Y2,∆X , (35)

then there exist constants ct ∈ R such that δt (Yt) = ct a.s. FYt, t = 1, 2.

Proof. The conclusion of the Lemma follows by contradiction. That is, assuming

both (35) and δ1 (Y1) 6= c1 a.s. or δ2 (Y2) 6= c2 a.s. for all c1, c2 ∈ R, leads to a

contradiction.

First, solve for α from the outcome equation for Y1 and plug the resulting expres-

sion in the outcome equation for Y2 to obtain:

Y2 = h2

(
h−1

1 (Y1) + (X2 −X1) β + U2 − U1

)
.

15For example, Newey et al. (1999) write that there exists a functional relationship between two
random variables W1 and W2 provided that there exist functions H (W1,W2) and a set W such
that P (W) > 0 and

P (H (W1,W2) = 0) = 1

P
(
H
(
W1, W̄2

)
= 0
)
< 1

for all fixed W̄2 ∈ W. In fact, Assumption 14 is implied by two measurable separability assumptions:
one between (Y1, Y2) and ∆X, and another between Y1 and Y2.
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Consider then (35):

δ2

(
h2

(
h−1

1 (y1) + (x2 − x1) β − u1 + u2

))
− δ1 (y1) ≡ (x2 − x1) b, (36)

for all xt ∈ Xt, yt ∈ Yt, ut ∈ Ut, t = 1, 2.

First, note that since X2 and U2 are correlated, we can think of X2 as a function of

U2, e.g., X2 = γ (U2)+η2, η2 = X2−γ (U2). Second, note that ht being differentiable

guarantees that δt is also differentiable. Then differentiating (36) with respect to u2

obtains
∂δ2

∂h2

(
∂h2

∂x2

∂γ2

∂u2

β +
∂h2

∂u2

)
=
∂γ2

∂u2

b, (37)

where we used Assumptions L1, L2, and L3, and that X2 is correlated with U2.

However, since δ2 (Y2) 6= c2 a.s. it follows that

∂δ2

∂h2

(
∂h2

∂x2

∂γ2

∂u2

β +
∂h2

∂u2

)
6= 0. (38)

Combining (37) and (38), it must be that for all b ∈ Rk,

∂γ2

∂u2

b 6= 0.

Since X2 is correlated with U2, ∂γ2
∂u2
6= 0. Hence it follows that b 6= 0, which is not

true since b ∈ Rk.

Similarly, we can show that assuming (35) and δ1 (Y1) 6= c1 for all c1 ∈ R leads

to a contradiction.

A.2 Normal equations

In this section we show that the system of three normal equations based on the

three linear operators that we use for identification is identical to the system of two

equations based on a bilinear operator that we use for estimation.

The normal equations using the three operators Kx, Ky1 , and Ky2 are:
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K∗y1r = K∗y1Ky2h
−1
2 −K∗y1Ky1h

−1
1 −K∗y1Kxβ, (39)

K∗y2r = K∗y2Ky2h
−1
2 −K∗y2Ky1h

−1
1 −K∗y2Kxβ, (40)

K∗xr = K∗xKy2h
−1
2 −K∗xKy1h

−1
1 −K∗xKxβ. (41)

Notice that (41) can be written as

K∗xr = K∗x
(
Ky2h

−1
2 −Ky1h

−1
1

)
−K∗xKxβ = K∗xKy

(
h−1

1 , h−1
2

)
−K∗xβ,

where we used the definition of Ky. The expression above is (17) in the main text.

Consider now (39) and (40), and rewrite them as

K∗y1Ky

(
h−1

1 , h−1
2

)
= K∗y1r +K∗y1Kxβ,

K∗y2Ky

(
h−1

1 , h−1
2

)
= K∗y2r +K∗y2Kxβ.

Imposing Assumption 2(ii), multiplying the second equation above by −1, and using

the definition of K∗y , obtains equation (16) in the main text.

B Proofs

B.1 Proof of Theorem 1

Let (h1, h2, β) be the true value of the model parameters, and let (g1, g2, B) ∈ L2
Y1 ⊗

L2
Y2 ⊗ Rk be alternative values such that

(g1, g2, B) 6= (h1, h2, β)

and such that they satisfy the same assumptions as (h1, h2, β), i.e. Assumptions 1,

2, 3, and 4. In particular, for any z ∈ Z:

E
(
g−1

2 (Y2)− g−1
1 (Y1)−∆XB

∣∣Z = z
)

= E (∆X0|Z = z) . (42)
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Equating (6) and (42), and re-arranging yields

E (δ2 (Y2)− δ1 (Y1)−∆Xb|Z = z) = 0,

where

δt (Yt) ≡ h−1
t (Yt)− g−1

t (Yt) , t = 1, 2, (43)

b ≡ β −B. (44)

Assumption 5 obtains that

δ2 (Y2) = 0, δ1 (Y1) = 0, ∆Xb = 0 a.s. FY1,Y2,∆X , (45)

which is a contradiction. Then since h−1
t , t = 1, 2 have been identified, the pre-images

of ht, t = 1, 2, and, hence ht, t = 1, 2, are identified.

Here, we show by contradiction that Assumptions 6(i) and 6(ii) imply Assumption

5. Suppose that Assumptions 6(i) and 6(ii) hold and that Assumption 5 does not.

Let δ1, δ2, b be such that a.s.

Ky1δ1 = 0, Ky2δ2 = 0, and Kxb = 0

so that, by injectivity of the operators, δ1 = δ2 = b = 0. Then

K (δ1, δ2, b) = Ky2δ2 −Ky1δ1 −Kxb = 0 a.s.

and (δ1, δ2, b) 6= (0, 0, 0) since Assumption 5 does not hold. This leads to a contra-

diction.

B.2 Proof of Theorem 2

Proof. The proof follows from Florens and Sokullu (2017). Here we provide a sketch.

First, note that

Ĥγn −H = A+B + C,
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where

A ≡ (γnI + K̂∗y (I − P̂x)K̂y)
−1K̂∗y (I − P̂x)r̂ − (γnI + K̂∗y (I − P̂x)K̂y)

−1K̂∗y (I − P̂x)K̂yH,

(46)

B ≡ (γnI + K̂∗y (I − P̂x)K̂y)
−1K̂∗y (I − P̂x)K̂yH − (γnI −K∗y (I − Px)Ky)

−1K∗y (I − Px)KyH,

(47)

C ≡ (γnI −K∗y (I − Px)Ky)
−1K∗y (I − Px)KyH −H, (48)

where A captures the estimation error on the right hand side of the equation, B shows

the error coming from estimation of the operators, and C captures the regularisation

bias. Following Florens and Sokullu (2017), A can be shown to be Op

(
1
γ2n

(
1
n

+ b2s
n

))
,

while B and C are Op

(
1
γ2n

(
1

nbq+1
n

+ b2s
n

)
γνn

)
and Op(γ

ν
n), respectively.

Second,
√
n(β̂ − β) can be decomposed as:

√
n(β̂ − β) = M̂−1

γ

√n[K∗x(I − Py)Ê(U2 − U1|Z)]︸ ︷︷ ︸
I

−
√
n[K∗x(I − Py)− K̂∗x(I − P̂ γ

y )]Ê(U2 − U1|Z)︸ ︷︷ ︸
II

+
√
n[K̂∗x(I − P̂ γ

y )K̂y(h
−1
1 , h−1

2 )]︸ ︷︷ ︸
III


where P̂ γ

y = K̂y(γI + K̂∗yK̂y)
−1K̂∗y . The proof then proceeds showing the following

which lead to the final result:

‖M̂−1
γ −M−1‖ → op(1),

where

M = K∗xKy(K
∗
yKy)

−1K∗yKx −K∗xKx,

and

46



‖II‖ → Op(1),

‖III‖ → Op(1),

M̂−1
γ

{√
n[K∗x(I − Py)Ê(U2 − U1|Z)]

}
→ N

0, σ2M−1

 ∑
j/ψj∈R(Ky)⊥

E(∆Xψj)E(∆Xψj)
′)M−1

 .

B.3 Proof of Corollary 1

Following Darolles et al. (2011), we first show that rate of convergence of Ĥγn can

be shown to be equal to n−
ν

2+ν . And then we show that ν = 2/3, this rate is equal to

n−1/4. Consider the convergence rate of Ĥγn given in Theorem 1. The proof based on

making the middle term negligible. Assume that b2s
n ∼ 1

n
, together with assumption

nbq+1
n →∞, this implies that s ≥ q+1

2
and then the middle term is Op

(
γν−2
n

nbq+1
n

)
.

If the middle term is negligible, together with b2s
n ∼ 1/n, optimal γn is obtained

by setting equal the first and the third term:

1

γ2
nn
∼ γνn,

which will lead to γn ∼ n−
1

2+ν . Going back to the middle term, one can then choose

a bandwidth which satisfies:

1

nbq+1
n

= Op

(
γνn

γνn − 2

)
If we replace the γn with its optimal rate in the above equation, we obtain the first

condition of the corollary. Then under γn ∼ n−
1

2+ν and if s ≥ (q+1)(ν+2)
2ν

, the rate of

convergence of Ĥγn is given by:

‖Ĥγn −H‖2 = Op(n
−ν/ν+2),
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which is equal to Op(n
−1/4) for ν = 2/3.

B.4 Proof of Theorem 3

The proof consists in verifying the conditions in Theorem 2 in Chen et al. (2003).

Conditions (2.1), (2.2), (2.4) are standard and hold. Condition (2.5) holds since

the conditions of Lemma 1 in Chen et al. (2003) hold, which is sufficient for Condi-

tion (2.5), see Remark 2 in Chen et al. (2003). In particular, the class of functions

{m (δk,t, ht, βk) : ht ∈ L2 (R) , βk ∈ R, δk,t ∈ R} is P−Donsker, where P is the proba-

bility measure of Yt given that ht is strictly increasing and Lipschitz continuous, and

given Donsker preservation results in van der Vaart and Wellner (1996). Conditions

(2.3) and (2.6) are directly assumed at the time of writing.

C Extension

It is possible to analyze the more general model below. For any zt ∈ Zt,

Yit = ht (ρ (Xit) + αi + Uit) , E (Uit − Uit−1|Zit = zt) = 0. (49)

This model nests that of Féve and Florens (2014) when ht (s) = s.

Assuming that the instrumental variable is time-invariant obtains for t = 2 :

E
(
h−1

2 (Y2)− h−1
1 (Y1) + ρ (X2)− ρ (X1)

∣∣Z = z
)

= 0. (50)

Via an observational equivalence argument as above with (g1, g2, R) that are

observationally equivalent to (h1, h2, ρ) and, in particular, that satisfy

E
(
g−1

2 (Y2)− g−1
1 (Y1) +R (X2)−R (X1)

∣∣Z = z
)

= 0, (51)

subtracting (51) from (50) obtains

E
(
δ̃2 (Y2)− δ̃1 (Y1) + r (X2)− r (X1)

∣∣∣Z = z
)

= 0, (52)
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where

δ̃t (Yt) ≡ h−1
t (Yt)− g−1

t (Yt) , t = 1, 2, (53)

and

r (Xt) = ρ (Xt)−R (Xt) , t = 1, 2. (54)

As before, the identification argument involves completeness and measurable sep-

arability assumptions.

Assumption 15. (i) E
(
h−1
t (Yt)

∣∣Z) ∈ L2
Z , E (ρ (Xt)|Z) ∈ L2

Z , t = 1, 2; (ii) The

random variables (Y1, Y2, X1, X2) are strongly identified by Z, i.e. for δ̃t ∈ L2 (Yt) , r ∈
L2 (Xt) , t = 1, 2, defined in (53) and (54), respectively, if

E
(
δ̃2 (Y2)− δ̃1 (Y1) + r (X2)− r (X1)

∣∣∣Z) = 0 a.s. Fz

then

δ̃2 (Y2)− δ̃1 (Y1) + r (X2)− r (X1) = 0 a.s. FY1,Y2,X1,X2 ;

(iii) The random variables Y1, Y2, X1, X2 are measurably separable in the sense that

for δ̃t (Yt) , r (Xt) , t = 1, 2, defined in (53) and (54), respectively, if

δ̃2 (Y2)− δ̃1 (Y1) + r (X2)− r (X1) = 0 a.s. FY1,Y2,X1,X2,

then there exist constants c̃t, dt ∈ R, t = 1, 2, such that

δ̃t (Yt) = c̃t a.s. FYt ,

r (Xt) = dt a.s. FXt .

(iv) E
(
h−1
t (Yt)

)
= 0, E (ρ (Xt)) = 0, t = 1, 2.

Theorem 4. Let Assumptions 1 and 15 hold, and let Yt, Xt, Zt satisfy (49). Then

ht and ρ are identified.

Proof. Consider (52). By Assumption 15(ii), it follows that:

δ̃2 (Y2)− δ̃1 (Y1) + r (X2)− r (X1) = 0 a.s.
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By Assumption 15(iii) there exist constants c̃t, dt ∈ R such that δ̃t (Yt) = c̃t a.s., r (Xt) =

dt a.s. By Assumption 15(iv) these constants are all equal to zero.

D Illustration: A nonlinear dynamic panel model

The nonlinear panel model studied in this paper nests a nonlinear version of the

canonical linear panel data model. Consider the outcome equations in (3) and (4).

Setting ht (v) = v for t ≥ 1 obtains the outcome equation of the standard dynamic

panel model. The period-0 equation has its own φi that can capture i-specific terms

regarding to the initial condition, the history of a given unit i, and a period-0 error

term.

In the linear version of this model, estimation via differences is problematic be-

cause ∆Yi,t−1 is correlated with ∆Uit. Naturally, this problem carries over to the

nonlinear generalization. We can use internal instruments to address this endogene-

ity issue. Internal instruments are available under a strict exogeneity assumption

and restrictions on the serial correlation in Uit.

Assumption 16. For each t, E [Uit] does not depend on t, and

Uit ⊥
(
X̃i0,··· ,X̃iT , αi, φi, Ui1, · · ·Ui,t−1

)
.

This assumption is stronger than necessary: serial independence in the errors

and the strict exogeneity condition on the regressors can be relaxed to a form of

mean-independence, However, given the nonlinear nature of our model, it will be

convenient to maintain statistical independence.

To place the nonlinear panel model in the notation of the general specification

above, set

Xit =
(
X̃it, Yi,t−1

)
,

β =
(
β̃, ρ
)
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and assume that X̃it is non-empty. Then we can rewrite the nonlinear dynamic panel

model as

Yit = ht
(
αi +Xitβ + Uit

)
, i = 1, · · · , n, t = 1, · · · , T, (55)

and, with three periods of data on Yi and two periods onXi, we can use as instruments

Zi =
(
Yi0, X̃i1, X̃i2

)
for the difference Ui2 − Ui1. We have the following result:

Theorem 5. Suppose that
(
Y0, Y1, Y2, X̃1, X̃2

)
follow the nonlinear dynamic panel

model above and that Assumptions 1, 3, 4, either 5 or 6, and 16 hold. Then h1, h2,

β̃, and ρ are identified.

Proof. This follows immediately from Theorem 1 once we verify that Assumption 16

implies Assumption 3, i.e. that

E (Ui,2 − Ui,1|Y0, X1, X2) = 0.

But this follows immediately from the fact that (Ui1, Ui2) ⊥ (φi, Xi1, Xi2).

Note that it may be possible to relax the completeness assumption for this dy-

namic model along the lines of those in Féve and Florens (2014). It may also be

possible to derive sufficient conditions for the completeness assumptions using argu-

ments from d’Haultfoeuille (2010).
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