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Control variables provide an important means of controlling for endogene-

ity in econometric models with nonseparable and/or multidimensional hetero-

geneity. We allow for discrete instruments, giving identification results under
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variables affect the outcome. We consider many structural objects of interest,
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1 Introduction

Nonseparable and/or multidimensional heterogeneity is important. It is present in

discrete choice models as in McFadden (1973) and Hausman and Wise (1978). Mul-

tidimensional heterogeneity in demand functions allows price and income elasticities

to vary over individuals in unrestricted ways, e.g., Hausman and Newey (2016) and

Kitamura and Stoye (2017). It allows general variation in production technologies.

Treatment effects that vary across individuals require intercept and slope heterogene-

ity.

Endogeneity is often a problem in these models because we are interested in the

effect of an observed choice, or treatment variable on an outcome. Control variables

provide an important means of controlling for endogeneity with multidimensional

heterogeneity. A control variable is an observed or estimable variable that makes het-

erogeneity and treatment independent when it is conditioned on. Observed covariates

serve as control variables for treatment effects (Rosenbaum and Rubin, 1983). The

conditional cumulative distribution function (CDF) of a choice variable given an in-

strument can serve as a control variable in economic models (Imbens and Newey,

2009).

Nonparametric identification of many objects of interest, such as average or quan-

tile treatment effects, requires a full support condition, that the support of the control

variable conditional on the treatment variable is equal to the marginal support of the

control variable. This restriction is often not satisfied in practice; e.g., see Imbens and

Newey (2009) for Engel curves. It cannot be satisfied when instruments are discrete.

One approach to this problem is to focus on identified sets for objects of interest,

as for quantile effect in Imbens and Newey (2009). Another approach is to consider

restrictions on the model that allow for point identification. Florens et al. (2008)
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did so by showing identification when the structural function is a polynomial in the

endogenous variable and a measurable separability condition is satisfied. Torgovitsky

(2015) and D’Haultfœuille and Février (2015) did so by showing identification for

discrete instruments when the structural disturbance is a scalar.

In this paper we give identification results under a variety of restrictions on the way

the treatment and control variables enter the control regression of the outcome of in-

terest on the endogenous and control variables. The restrictions we consider generalise

those of Florens et al. (2008) to allow for nonpolynomial functions of endogenous vari-

ables or control variables. We also take a different approach to identification, focusing

here on conditional nonsingularity of second moment matrices instead of measurable

separability.

A main benefit of our approach is that it allows for discrete instruments. We show

that identification of average, distribution and quantile treatment effects requires that

the instrument have at least as many points of support as there are known functions

of the endogenous variable or the control variable that appear in the control regres-

sion. These results are obtained by viewing various control regression specifications

as varying coefficient models.

These results provide an alternative approach to identifying objects of interest in

nonseparable models with discrete instruments. Instead of restricting the dimension

of the heterogeneity to obtain identification with discrete instruments we can allow for

multidimensional heterogeneity but restrict the way the treatment or controls affect

the outcome.

We illustrate our results using an empirical application to Engel curves estimation

using British expenditure survey data. We find that estimates of average, distribu-

tional and quantile treatment effects of total expenditure on food and leisure expen-
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diture are not very sensitive to discretisation of the income instruments. We find

that as we “coarsen” the instrument by only using knowledge of income intervals the

structural estimates do not change much until the instrument is very coarse. Thus,

in this empirical example we find that one can obtain good structural estimates even

with discrete instruments.

These results also generalise the identification conditions for the baseline paramet-

ric models considered by Chernozhukov et al. (2017). Identification conditions based

on conditional nonsingularity as considered here are more general than identification

conditions based on support conditions.

In Section 2 we introduce the parametric models we consider. In Section 3 we

give basic identification results for parametric models where either the endogenous

variable or the control variable affects the outcome linearly. In Section 4 we extend

these identification results to general parametric models. Section 5 gives results for

partially parametric models that allow for nonparametric components. Section 6

reports the results of an empirical application to Engel curve estimation.

2 Parametric Modelling of Control Regressions

Let Y denote an outcome variable of interest and X an endogenous treatment with

supports denoted by Y and X , respectively. For ε a structural disturbance vector of

unknown dimension, a nonseparable control variable model takes the form

Y = g(X, ε), (2.1)

where X and ε are independent conditional on an observable or estimable control

variable denoted V . Conditioning on the control variable allows to identify general
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features of the structural relationship between X and Y in model (2.1), such as

those captured by the structural functions of Blundell and Powell (2003, 2004), and

Imbens and Newey (2009). An important kind of model where X is independent of

ε conditional on V is a structural triangular system where X = h(Z, η) and h(z, η)

is one-to-one in η. If (ε, η) are jointly independent of Z then V = FX|Z(X | Z), the

conditional CDF of X given Z, is a control variable in this model (Imbens and Newey,

2009).

Leading examples of structural functions are the average structural function, µ(x),

the distribution structural function (DSF), G(y, x), and the quantile structural func-

tion (QSF) Q(p, x), given by

µ(x) :=

ˆ
g(x, ε)Fε(dε), G(y, x) := Pr(g(x, ε) ≤ y),

Q(p, x) := pth quantile of g(x, ε),

where x is fixed in these expressions. These structural functions may be identifiable

from control regressions of Y onX and V , including the conditional mean E[Y | X, V ],

CDF, FY |XV (Y | X, V ), and quantile function, QY |XV (U | X, V ), of Y given (X, V ).

In particular, when the support Vx of V conditional on X = x equals the marginal

support V of V we have

µ(x) =

ˆ
V
E[Y | X = x, V = v]FV (dv), G(y, x) =

ˆ
V
FY |XV (y | x, v)FV (dv),

Q(p, x) = G←(p, x) := inf{y ∈ R : G(y, x) ≥ p}; (2.2)

see Blundell and Powell (2003) and Imbens and Newey (2009).

The key condition for equation (2.2) is full support, that the support Vx of V

conditional on X = x equals the marginal support of V . Without full support the

5



integrals would not be well defined because integration would be over a range of (x, v)

values that are outside the joint support of (X, V ). Having a full support for each

x is equivalent to (X, V ) having rectangular support. In the absence of a rectan-

gular support, global identification of the structural functions at all x must rely on

alternative conditions that identify FY |XV (y | x, v) for all (x, v) ∈ X × V and not

merely over the joint support XV of (X, V ). An example of such conditions are func-

tional form restrictions on the controlled regressions FY |XV and QY |XV which thus

constitute natural modelling targets in the context of nonseparable conditional inde-

pendence models. Imbens and Newey (2009) did show that structural effects may be

partially identified without the full support condition. Here we focus on achieving

identification via restricting the form of control regressions.

We begin with parametric specifications that are linear combinations of a vector

of known functions w(X, V ) having the kronecker product form p(X)⊗ q(V ), where

p(X) and q(V ) are vectors of transformations of X and V , respectively. Let Γ denote

a strictly increasing continuous CDF, such as the Gaussian CDF Φ, with inverse

function denoted Γ−1. The control regression specifications we consider are

E[Y | X, V ] = β′0[p(X)⊗ q(V )], FY |XV (y | X, V ) = Γ(β(y)′[p(X)⊗ q(V )]),

QY |X,V (u | X, V ) = β(u)′[p(X)⊗ q(V )], u ∈ (0, 1), (2.3)

where the coefficients β(y) and β(u) are functions of y and u, respectively. When Y

is discrete the conditional distribution specification can be thought of as a discrete

choice model as in McFadden (1973). As usual the quantile and conditonal mean

coefficients are related by β0 =
´ 1
0
β(u)du. Chernozhukov et al. (2017) gives examples

of structural models that give rise to control regressions as in equation (2.3).

It is convenient in what follows to use a common notation for the conditional
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mean, distribution, and quantile control regressions. For U = (0, 1) and an index set

T = {0}, Y , or U , we define the collection of functions indexed by τ ∈ T ,

ϕτ (x, v) =


E[Y | X = x, V = v] if T ={0}

Γ−1
(
FY |XV (τ | x, v)

)
if T =Y

QY |XV (τ | x, v) if T =U

.

While the coefficients y 7→ β(y) and u 7→ β(u) in (2.3) are infinite-dimensional param-

eters, for each τ in T the three control regression specifications share the essentially

parametric form

ϕτ (X, V ) = β′τw(X, V ), w(X, V ) := p(X)⊗ q(V ),

where the coefficient βτ is a finite-dimensional parameter vector. This interpretation

motivates the following definition of a parametric class of conditional independence

models.

Assumption 1. (a) For the model in (2.1), there exists a control variable V such

that X and ε are independent conditional on V . (b) For a specified set T = {0}, Y,

or U , and each τ ∈ T , the outcome Y conditional on (X, V ) follows the model

ϕτ (X, V ) = β′τw(X, V ), w(X, V ) := p(X)⊗ q(V ). (2.4)

Standard results such as those of Newey and McFadden (1994) imply that point

identification of βτ only requires positive definiteness of the second moment matrix

E [w(X, V )w(X, V )′]. Under this condition knowledge of the control regressions is
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achievable at all (y, x, v) ∈ Y × X × V , and the structural functions are then point

identified as functionals of ϕτ (X, V ) without full support. The formulation of prim-

itive conditions under which E [w(X, V )w(X, V )′] is positive definite thus provides

a characterisation of the identifying power of parametric conditional independence

models without the full support condition. Chernozhukov et al. (2017) gave simple

sufficient conditions when the joint distribution of X and V has a continuous compo-

nent. Here we generalize these results in a way that allows for the distribution of V

given X (or X given V ) to be discrete.

Our identification analysis will also apply to other interesting structural objects

that do not require the rectangular support assumption for identification. For exam-

ple, by independence of ε from X conditional on V,

ϕy(x, v) = FY |XV (y | x, v) =

ˆ
1(g(x, ε) ≤ y)Fε|V (dε | v),

and its inverse,

ϕu(x, v) = QY |XV (u | x, v) = inf {y ∈ R : ϕy(x, v) ≥ u} ,

are structural objects. For instance, when the treatment X is continuous,

∂ϕu(x, v)

∂x
= E

[
∂g(x, ε)

∂x
| V = v, g(x, ε) = ϕu(x, v)

]

is an average derivative of the structural function with respect to x conditional on

the control variable taking value v and the outcome taking value ϕu(x, v), that is the

Local Average Structural Derivative of Hoderlein and Mammen (2007) and defined

as the Local Quantile Structural Function in Fernandez-Val et al. (2018). All these

objects will be identified under our conditions.
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We next give primitive conditions for identification in parametric conditional in-

dependence models. For triangular systems, we show that these conditions can be

satisfied with discrete valued instrumental variables. Estimation and inference meth-

ods for control regression functions (2.4) and the corresponding structural functions

in triangular systems are extensively analysed by Chernozhukov et al. (2017), and

directly apply when V is observable.

Remark 1. An additional vector of exogenous covariates Z1 can be incorporated

straightforwardly in our models. Let r(Z1) be a vector of known transformations

of Z1, and define w(X,Z1, V ) := p(X) ⊗ r(Z1) ⊗ q(V ) the augmented vector of re-

gressors. The control regressions then take the form

ϕτ (X,Z1, V ) = β′τw(X,Z1, V ), τ ∈ T .

Our identification analysis is not affected by the presence of additional covariates

and for clarity of exposition we do not include them in the remaining of the paper.

Chernozhukov et al. (2017) provide a detailed exposition of the models we consider

in the presence of exogenous covariates.

3 Identification in Baseline Parametric Models

In this Section we formulate conditions for positive definiteness of

E [w(X, V )w(X, V )′] in the important particular case where one of the ele-

ments q(V ) or p(X) of the vector of regressors w(X, V ) is restricted to its first two

components. With either q(V ) = (1, V )′ or p(X) = (1, X)′, each type of restriction

defines a class of baseline parametric models. For triangular systems we show that

a binary instrumental variable is sufficient for identification of the corresponding
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control regression and structural functions. These baseline specifications are thus of

substantial interest for empirical practice, and are important instances of the general

parametric framework we consider in Section 4.

3.1 Main Result

In the first class of baseline models we set q(V ) = (1, V )′ and the correspond-

ing vector of regressors in the control regression function ϕτ (X, V ) is w(X, V ) =

(p(X)′, V p(X)′)′. We denote the cardinality of a set such as X and Vx by |X | and

|Vx|. The condition for identification can then be formulated in terms of the support

of V conditional on X: letting

X o
V = {x ∈ X : |Vx| ≥ 2} ,

a sufficient condition is that E[1(X ∈ X̃ )p(X)p(X)′] be positive definite with X̃ ⊆ X o
V .

Under this condition X o
V is a set with positive probability and V has positive variance

conditional on X = x for each x in that set.

Alternatively, with p(X) = (1, X)′, the vector of regressors in the control regres-

sion function ϕτ (X, V ) that defines the second class of baseline models is w(X, V ) =

(q(V )′, Xq(V )′)′. The condition for identification can then be formulated in terms of

the support of X conditional on V : letting

VoX = {v ∈ V : |Xv| ≥ 2} ,

a sufficient condition is that E[1(V ∈ Ṽ)q(V )q(V )′] be positive definite with Ṽ ⊆ VoX .

Under this condition VoX is a set with positive probability and X has positive variance

conditional on V = v for each v in that set.
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Let C < ∞ denote some generic positive constant whose value may vary from

place to place.

Assumption 2. (a) We have that E[p(X)p(X)′] exists, supx∈X E[||q(V )||2 | X =

x] ≤ C and, for some specified set X̃ , E[1(X ∈ X̃ )p(X)p(X)′] is positive definite. (b)

We have that E[q(V )q(V )′] exists, supv∈V E[||p(X)||2 | V = v] ≤ C, and, for some

specified set Ṽ, E[1(V ∈ Ṽ)q(V )q(V )′] is positive definite.

The following theorem states our first main result. The proofs of all our formal

results are given in Appendix A.

Theorem 1. (i) Let q(V ) = (1, V )′. If Assumption 2(a) holds with X̃ ⊆ X o
V , then

E [w(X, V )w(X, V )′] exists and is positive definite. (ii) Let p(X) = (1, X)′. If As-

sumption 2(b) holds with Ṽ ⊆ VoX , then E [w(V,X)w(V,X)′] exists and is positive

definite.

The formulation of sufficient conditions for identification in terms of X o
V and

VoX emphasises the fact that the full support condition Vx = V is not required for

E [w(V,X)w(V,X)′] to be positive definite in the baseline specifications. Under As-

sumption 1, identification of the control regressions and structural functions then

follows by Theorem 1 in Chernozhukov et al. (2017). We also note that identification

does not depend on the dimension of the unrestricted element p(X) or q(V ) entering

the vector of regressors w(X, V ). Thus the baseline specifications allow for flexible

modelling of either how X affects the control regression functions or how V affects the

control regression functions. When q(V ) = (1, V )′, complex features of the relation-

ship between X and Y can also be incorporated in the specification of the structural

functions.

An example illustrating the modelling trade-offs inherent to our baseline specifi-
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cations is the random coefficient model

Y = g(X, ε) =
J∑
j=1

pj(X)εj, (3.1)

where the unobserved heterogeneity components εj, j ∈ {1, . . . , J}, satisfy the condi-

tional independence property

εj = Qεj |XV (U | X, V ) =
K∑
k=1

βjk(U)qk(V ), U | X, V ∼ U(0, 1), (3.2)

and the control variable V is normalised to have mean zero. For the specification with

q(V ) = (1, V )′ and K = 2, for each u ∈ U the control conditional quantile function is

QY |XV (u | X, V ) =
J∑
j=1

pj(X)[βj1(u) + βj2(u)V ]

=
J∑
j=1

βj1(u)pj(X) +
J∑
j=1

βj2(u){pj(X)V } = β′u[p(X)⊗ q(V )],

where βu = (β′u1, β
′
u2)
′, βuk = (βu1k, . . . , βuJk)

′, βujk := βjk(u), j ∈ {1, . . . , J}, k ∈

{1, 2}, which has the form of (2.4) with T = U and τ = u in Assumption 1. The

corresponding control conditional mean function is

E[Y | X, V ] =

ˆ 1

0

QY |X,V (u | X, V )du = β′0[p(X)⊗ q(V )],

where β0 = (β′01, β
′
02)
′, β0k = (β01k, . . . , β0Jk)

′, β0jk :=
´ 1
0
βjk(u)du, j ∈ {1, . . . , J},

k ∈ {1, 2}, which has the form of (2.4) with T = {0} and τ = 0 in Assumption 1.

Upon using that
´
V vFV (dv) = 0, the corresponding average structural function takes

the form

µ(x) =

ˆ
V
E[Y | X = x, V = v]FV (dv) = β′01p(x).
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Model (3.1)-(3.2) thus allows for flexible modelling of the relationship between the

treatment X and the outcome Y in both the control regression and average structural

functions, which are identified under the conditions of Theorem 2. Similarly, when

p(X) = (1, X)′ and setting J = 2 in (3.1), complex features of the relationship

between the source of endogeneity V and the outcome Y can be captured by the

model specification, while the average structural function will be linear in X.

3.2 Identification in Triangular Systems

In triangular systems with control variable V = FX|Z(X | Z), the conditions given

above for E [w(X, V )w(X, V )′] to be positive definite translate into primitive condi-

tions in terms of Zx, the support of Z conditional on X = x. Letting

X o
Z = {x ∈ X : |Zx| ≥ 2} ,

the matrix E [w(X, V )w(X, V )′] will be positive definite if Assumption 2(a) holds for

a set X̃ ⊆ X o
Z such that FX|Z(x | z) 6= FX|Z(x | z̃) for some z, z̃ ∈ Zx and all x ∈ X o

Z .

For v 7→ QX|Z(v | Z) denoting the quantile function of X conditional on Z, the result

also holds if Assumption 2(b) is satisfied for a set Ṽ ⊆ (0, 1) with positive probability

such that QX|Z(v | z) 6= QX|Z(v | z̃) for some z, z̃ ∈ Z and all v ∈ Ṽ .

Assumption 3. (a) For some specified set X̃ , we have FX|Z(x | z) 6= FX|Z(x | z̃) for

some z, z̃ ∈ Zx and all x ∈ X̃ . (b) For some specified set Ṽ, we have QX|Z(v | z) 6=

QX|Z(v | z̃) for some z, z̃ ∈ Z and all v ∈ Ṽ.

Under this condition a discrete instrument, including binary, is then sufficient for

our baseline parametric models to identify the structural functions.

13



Theorem 2. Suppose that either the conditions of Theorem 1(i) and Assumption 3(a)

hold with X̃ ⊆ X o
Z, or the conditions of Theorem 1(ii) and Assumption 3(b) hold with

Ṽ ⊆ (0, 1). If Assumption 1 holds with T = Y or U then the average, distribution

and quantile structural functions are identified. If Assumption 1 holds with T = {0}

then the average structural function is identified.

Theorem 2 demonstrates the relevance of the parametric specifications in a wide

range of empirical settings, for instance triangular systems with a binary or discrete

instrument and including a discrete or mixed continuous-discrete outcome.1

4 Generalisation

We generalise the results of the previous Section by expanding the set of regressors

in the baseline specifications. In the more general case we consider here, both p(X)

and q(V ) are vectors of transformations of X and V , respectively. In practice these

will typically consist of basis functions with good approximating properties such as

splines, trigonometric or orthogonal polynomials (cf. Appendix D.2 for an illustration

to parametric demand analysis with splines).

4.1 Identification in Parametric Models

One general condition for positive definiteness of E [w(X, V )w(X, V )′] is the existence

of a set of values x of X with positive probability such that the smallest eigenvalue of

E[q(V )q(V )′ | X = x] is bounded away from zero. An alternative general condition is

the existence of a set of values v of V with positive probability such that the smallest

1For instance our baseline models can be used for the specification of parametric sample selection
models with censored selection rule as considered in Fernandez-Val et al. (2018).
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eigenvalue of E[p(X)p(X)′ | V = v] is bounded away from zero. This characterisation

leads to natural sufficient conditions for E [w(X, V )w(X, V )′] to be positive definite

when the vectors p(X) and q(V ) are unrestricted.

With B > 0 denoting some generic constant whose value may vary from place to

place, let λmin(x) denote the smallest eigenvalue of E[q(V )q(V )′ | X = x], and define

X ∗V = {x ∈ X : λmin(x) ≥ B > 0} .

The smallest eigenvalue of E[q(V )q(V )′ | X = x] is then bounded away from zero

uniformly over x ∈ X ∗V , and a sufficient condition for identification is that Assumption

2(a) holds with X̃ ⊆ X ∗V . Alternatively, let λmin(v) denote the smallest eigenvalue of

E[p(X)p(X)′ | V = v], and define

V∗X = {v ∈ V : λmin(v) ≥ B > 0} .

The eigenvalues of E[p(X)p(X)′ | V = v] are then bounded away from zero uniformly

over v ∈ V∗X , and a sufficient condition for identification is that Assumption 2(b)

holds with Ṽ ⊆ V∗X .

Theorem 3. For some B > 0, if either Assumption 2(a) holds with X̃ ⊆ X ∗V , or

Assumption 2(b) holds with Ṽ ⊆ V∗X , then E [w(X, V )w(X, V )′] exists and is positive

definite

Remark 2. For the baseline specifications, Proposition 2 in Appendix B shows that the

conditions of Theorem 3 are satisfied by the conditions of Section 3. In the simple case

q(V ) = (1, V )′, if Assumption 2(a) holds with X̃ ⊆ X o
V then Var(V | X = x) ≥ B > 0

for each x ∈ X o
V , and Assumption 2(a) also holds with X̃ ⊆ X ∗V . In the simple case

p(X) = (1, X)′, if Assumption 2(b) holds with Ṽ ⊆ VoX then Var(X | V = v) ≥ B > 0
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for each v ∈ VoX , and Assumption 2(b) also holds with X̃ ⊆ X ∗V .

4.2 Discussion

Theorem 3 gives a general identification result for models with regressors of a Kro-

necker product form w(X, V ) = p(X) ⊗ q(V ). Positive definiteness of the matrix

E [w(V,X)w(V,X)′] is then a sufficient condition for uniqueness of the control re-

gression functions with probability one. Thus the conditions of Theorem 3 are also

sufficient for the models we consider to identify their corresponding structural func-

tions.

Theorem 4. Suppose the assumptions of Theorem 3 are satisfied. If Assumption 1

holds with T = Y or U then the average, distribution and quantile structural func-

tions are identified. If Assumption 1 holds with T = {0} then the average structural

function is identified.

The formulation of identification conditions in terms of the second conditional

moment matrices of p(X) and q(V ) is a considerable simplification relative to existing

conditions in the literature. The assumptions of Theorems 3 and 4 are more primitive

and easier to interpret than the dominance condition2 proposed by Chernozhukov et

al. (2017) for positive definiteness of E [w(X, V )w(X, V )′]. These conditions are

also weaker than the full support condition or the measurable separability condition

of Florens et al. (2008), which require the control variable to have a continuous

distribution conditional on X.

2Chernozhukov et al. (2017) assume that the joint probability distribution of X and V dominates
a product probability measure µ(x)× ρ(v) such that Eµ[p(X)p(X)′] and Eρ[q(V )q(V )′] are positive
definite. This condition is sufficient for E [w(X,V )w(X,V )′] to be positive definite, but is difficult
to interpret.
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In a triangular system with control variable V = FX|Z(X | Z), our identification

conditions can be satisfied by a discrete valued instrument, and admit an equivalent

formulation in terms of the first stage model and the instrument Z. Letting λ̃min(x)

denote the smallest eigenvalue of

E[q(FX|Z(X | Z))q(FX|Z(X | Z))′ | X = x],

for x ∈ X , define the corresponding set X ∗Z = {x ∈ X : λ̃min(x) ≥ B > 0}. Then

λ̃min(x) = λmin(x) and X ∗Z = X ∗V . Thus Assumption 2(a) with X̃ ⊆ X ∗Z is sufficient

for identification by Theorem 3. Moreover, when Z is discrete a necessary condition

for this to hold is that there is a set X̃ with positive probability such that, for each

x ∈ X̃ , the set R(x) of distinct values3 of FX|Z(x | z) for z ∈ Zx has cardinality

greater than or equal to K ≡ dim(q(V )).

Alternatively, letting λ̃min(v) denote the smallest eigenvalue of

E[p(QX|Z(v | Z))p(QX|Z(v | Z))′],

for v ∈ (0, 1), define the corresponding set V∗Z = {v ∈ (0, 1) : λ̃min(v) ≥ B >

0}. Then, by independence of V from Z, λ̃min(v) = λmin(v) and V∗Z = V∗X . Thus

Assumption 2(b) with Ṽ ⊆ V∗Z is sufficient for identification by Theorem 3. Moreover,

when Z is discrete with support Zx = {z1, . . . , z|Zx|} conditional onX = x, a necessary

condition for this to hold is that there is a set Ṽ with positive probability such that,

3Formally, for x ∈ X , we define R(x) =
{
FX|Z(x | zm)

}
m∈M(x)

, where

M(x) =
{
m ∈ {1, . . . , |Zx|} : FX|Z(x | zm) 6= FX|Z(x | zm′) for all m′ ∈ {1, . . . , |Zx|}/{m}

}
.
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for each v ∈ Ṽ , the set Q(v) of distinct values4 of QX|Z(v | z) for z ∈ Z has cardinality

greater than or equal to J ≡ dim(p(X)).

Proposition 1. Suppose that |Z| < ∞. Then Assumptions 2(a) and 2(b) hold with

X̃ ⊆ X ∗Z and Ṽ ⊆ V∗X , respectively, only if there exist sets X̃ ⊆ X and Ṽ ⊆ (0, 1) of

positive probability such that infx∈X̃ |R(x)| ≥ K and infv∈Ṽ |Q(v)| ≥ J , respectively.

Proposition 1 shows that the flexibility of parametric triangular systems is re-

stricted by the cardinality of the set of instrumental values. Thus identification can

be achieved in the presence of a binary instrument only when one of the two vectors

q(V ) and p(X) is of dimension two. More generally, identification in the class of

models we consider cannot be achieved whenever |Z| < min(J,K).

5 Partially Parametric Specifications

An important generalisation of the parametric specifications of the previous sections is

one where either the relationship between X and Y or between V and Y is unspecified

in the control regression functions. This gives rise to two classes of models with known

functional form of either how X affects the control regression functions or how V

affects the control regression functions, but not both. These models are special cases

of functional coefficient regression models.

The first class of partially parametric models we consider is one where X is known

to affect the control regression function ϕτ (X, V ) only through a vector of known

4Formally, for v ∈ (0, 1), we define Q(v) =
{
QX|Z(v | zm)

}
m∈N (v)

, where

N (v) =
{
m ∈ {1, . . . , |Z|} : QX|Z(v | zm) 6= QX|Z(v | zm′) for all m′ ∈ {1, . . . , |Z|}/{m}

}
.
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functions p(X). We assume that

ϕτ (X, V ) = p(X)′qτ (V ), τ ∈ T , (5.1)

where the vector of functions qτ (V ) is now unknown, rather than a linear combination

of finitely many known transformations of V . This model is studied in Newey and

Stouli (2018) and generalises the polynomial specifications of Florens et al. (2008) to

allow p(X) to be any functions of X rather than just powers of X. An example of a

structural model that gives rise to control regression functions as in (5.1) is the random

coefficient model (3.1), where the outcome Y =
∑J

j=1 pj(X)εj is continuous and the

unobserved heterogeneity components εj satisfy the the conditional independence

property

εj = Qεj |X,V (U | X, V ) = Qεj |V (U | V ), U | X, V ∼ U(0, 1), j ∈ {1, . . . , J}. (5.2)

Letting qj(u, v) := Qεj |V (u | v), j ∈ {1, . . . , J}, and substituting representation (5.2)

in the outcome equation, the control regression representation for Y conditional on

(X, V ) is:

Y =
J∑
j=1

pj(X)Qεj |V (U | V ) = p(X)′q(U, V ),

with p(x) = (p1(x), . . . , pJ(x))′ and q(u, v) = (q1(u, v), . . . qJ(u, v))′. The correspond-

ing control conditional quantile function is:

QY |X,V (u | X, V ) = p(X)′q(u, V ) =: p(X)′qu(V ), u ∈ U ,

which has the form of (5.1) with T = U and τ = u. The corresponding control
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conditional mean function is:

E[Y | X, V ] =

ˆ 1

0

QY |X,V (u | X, V )du

=

ˆ 1

0

p(X)′q(u, V )du = p(X)′
{ˆ 1

0

q(u, V )du

}
=: p(X)′q0(V ),

which has the form of (5.1) with T = {0} and τ = 0. Thus this is a model with

known functional form of how X affects the control conditional mean and quantile

functions.

The second class of partially parametric models we consider is one where V is

known to affect the control regression function ϕτ (X, V ) only through a vector of

known functions q(V ). We assume that

ϕτ (X, V ) = pτ (X)′q(V ), τ ∈ T , (5.3)

where the vector of functions pτ (X) is now unknown, rather than just a linear com-

bination of finitely many known transformations of X. When Y is continuous, an

example of a structural model that gives rise to a control regression function as in

(5.3) is the latent random coefficient model

ξ =
K∑
k=1

εkqk(V ), ξ | X, V ∼ Γ, (5.4)

where the unobserved heterogeneity components εk satisfy the restrictions

εk = pk(Y,X), k ∈ {1, . . . , K}, (5.5)
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with y 7→ pk(y, x) strictly increasing, and the conditional independence property

Fεk|V (εk | V ) = Fεk|XV (εk | X, V ), k ∈ {1, . . . , K}.

Upon substituting expression (5.5) for εk in the latent variable equation (5.4), the

control regression representation for ξ conditional on (X, V ) is:

ξ =
K∑
k=1

pk(Y,X)qk(V ) = p(Y,X)′q(V ),

with q(v) = (q1(v), . . . , qK(v)) and p(y, x) = (p1(y, x), . . . pK(y, x))′. The correspond-

ing control conditional CDF satisfies:

Γ−1
(
FY |XV (y | X, V )

)
= p(y,X)′q(V ) =: py(X)′q(V ), y ∈ Y ,

which has the form of (5.3) with T = Y and τ = y. Thus this is a model with known

functional form of how V affects the control conditional CDF.

Remark 3. Additional exogenous covariates Z1 can be incorporated straightforwardly

in these models through the known functional component of the control regression

function ϕτ (X, V ). With an exogenous vector of covariates Z1, model (5.1) takes the

form

ϕτ (X,Z1, V ) = p(X,Z1)
′qτ (V ),

where p(X,Z1) is a vector of known functions of (X,Z1), and model (5.3) takes the

form

ϕτ (X,Z1, V ) = pτ (X)′q(Z1, V ),

where q(Z1, V ) is a vector of known functions of (Z1, V ).

The following assumption gathers the two classes of partially parametric specifi-
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cations.

Assumption 4. (a) For a specified set T = {0}, Y, or U , and each τ ∈ T , the

outcome Y conditional on (X, V ) follows the model

ϕτ (X, V ) = p(X)′qτ (V ); (5.6)

we have E [Y 2] < ∞ and E
[
‖p (X)‖2

]
< ∞; and E

[
p (X) p (X)′ | V

]
exists and is

nonsingular with probability one; or (b) for a specified set T = {0}, Y, or U , and

each τ ∈ T , the outcome Y conditional on (X, V ) follows the model

ϕτ (X, V ) = q(V )′pτ (X); (5.7)

we have E [Y 2] < ∞ and E
[
‖q (V )‖2

]
< ∞; and E

[
q (V ) q (V )′ | X

]
exists and is

nonsingular with probability one.

The next result states our main identification result of this Section.

Theorem 5. (i) If Assumption 4(a) holds then qτ (V ) is identified for each τ ∈ T .

(ii) If Assumption 4(b) holds then pτ (X) is identified for each τ ∈ T .

We earlier discussed conditions for nonsingularity of E
[
p (X) p (X)′ | V

]
and

E
[
q (V ) q (V )′ | X

]
. All those conditions are sufficient for identification of qτ (V ) and

pτ (X), including those that allow for discrete valued instrumental variables, under

the important stricter condition that they hold on sets of V and X having proba-

bility one, respectively. We also note that identification of qτ (V ) and pτ (X) means

uniqueness on sets of V and X having probability one, respectively. Thus the struc-

tural functions corresponding to models (5.6) and (5.7) are identified. For example,

in the first class of models the quantile and distribution structural functions will be
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identified as

Q(p, x) = G←(p, x), G(y, x) =

ˆ
V

Γ
(
p (x)′ qy (v)

)
FV (dv),

since p (X) and Γ are known functions and qy (V ) is identified, and hence

Γ
(
p (x)′ qy (v)

)
also is.

Theorem 6. Suppose Assumption 1(a) holds. If Assumption 4 holds with T = Y or

U then the average, distribution and quantile structural functions are identified. If

Assumption 4 holds with T = {0} then the average structural function is identified.

6 Empirical Application

In this Section we illustrate our identification results by estimating the QSF for a

parametric triangular system for Engel curves. We focus on the structural relationship

between household’s total expenditure and household’s demand for two goods: food

and leisure. We take the outcome Y to be the expenditure share on either food

or leisure, and X the logarithm of total expenditure. We use as an instrument a

discretised version Z̃ of the logarithm of gross earnings of the head of household

Z∗. We also include an additional binary covariate Z1 accounting for the presence of

children in the household.

There is a large literature using nonseparable triangular systems for the identi-

fication and estimation of Engel curves (Imbens and Newey, 2003, Chernozhukov et

al., 2015, Chernozhukov et al., 2017). We follow Chernozhukov et al. (2017) who

consider estimation of structural functions for food and leisure using triangular para-

metric control regression specifications. For comparison purposes we use the same

dataset, the 1995 U.K. Family Expenditure Survey. We restrict the sample to 1,655
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married or cohabiting couples with two or fewer children, in which the head of the

household is employed and between the ages of 20 and 55 years. For this sample

we estimate the QSF for both goods using discrete instruments and then compare

our results to those obtained with a continuous instrument by Chernozhukov et al.

(2017).

We consider the triangular system,

Y = QY |X,V (U | X, V ) = β(U)′[p(X)⊗ r(Z1)⊗ q(V )], U | X,Z1, V ∼ Unif(0, 1)

X = QX|Z(V | Z) = π(V )′[s(Z̃)⊗ r(Z1)], V | Z ∼ Unif(0, 1), Z := (Z̃, Z1)
′,

where s(Z̃) = (1, Z̃)′, r(Z1) = (1, Z1)
′, p(X) = (1, X)′ and q(V ) = (1,Φ−1(V ))′.

The corresponding QSFs are estimated by the quantile regression estimators of Cher-

nozhukov et al. (2017), described in Appendix C. For our sample of n = 1, 655 ob-

servations {(Yi, Xi, Zi)}ni=1, we construct two sets of four discrete valued instruments

taking M = 2, 3, 5 and 15 values, respectively, and then estimate the QSFs using one

instrument at a time. In the first set the instrument Z̃ is uniformly distributed across

its support (Design 1). For tm = m/M , m ∈ {0, 1, . . .M}, let Q̂Z∗(tm) denote the

sample tm quantile of Z∗. For i ∈ {1, . . . , n} and m ∈ {0, 1, . . .M − 1} such that

Z∗i ∈ [Q̂Z∗(tm), Q̂Z∗(tm+1)), we define

Z̃i = Q̂Z∗(tm) +
1

2

[
Q̂Z∗(tm+1)− Q̂Z∗(tm)

]
.

For an observation i such that Z∗i = maxi≤n(Z∗i ), we define Z̃i = Q̂Z∗(tM−1) +

1
2

[
Q̂Z∗(tM)− Q̂Z∗(tM−1)

]
. In the second set the instrument Z̃ is discretised according

to a non uniform distribution (Design 2). Define the equispaced grid mini≤n(Z∗i ) =

ξ0 < ξ1 < . . . < ξM = maxi≤n(Z∗i ). For i ∈ {1, . . . , n} and m ∈ {0, . . . ,M − 1} such
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(d) M = 15.

Figure 6.1: Design 1. QSF for food with discrete instrument Z̃ (coloured) and with
continuous instrument Z∗ (black).

that Z∗i ∈ [ξm, ξm+1) we define

Z̃i = ξm +
1

2
[ξm+1 − ξm] .

For an observation i such that Z∗i = maxi≤n(Z∗i ), we define Z̃i = ξM−1+ 1
2

[ξM − ξM−1].

Figures 6.1 and 6.2 show the 0.25, 0.5 and 0.75-QSFs for food estimated with each

set of four instruments, respectively, as well as the corresponding benchmark QSFs
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(d) M = 15.

Figure 6.2: Design 2. QSF for food with discrete instrument Z̃ (coloured) and with
continuous instrument Z∗ (black).

estimated using the original continuous instrument Z∗. Figures 6.3 and 6.4 show the

corresponding QSFs for leisure. For comparison purposes the implementation is ex-

actly as in Chernozhukov et al. (2017). We report weighted bootstrap 90%-confidence

bands that are uniform over the support regions of the displayed QSFs,5 constructed

5All QSFs and uniform confidence bands are obtained over the region [Q̂X(0.1), Q̂X(0.9)] ×
{0.25, 0.5, 0.75}, where the interval [Q̂X(0.1), Q̂X(0.9)] is approximated by a grid of 5 points

{Q̂X(0.1), Q̂X(0.3), . . . , Q̂X(0.9)}. For graphical representation the QSFs are then interpolated by
splines over that interval.
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(d) M = 15.

Figure 6.3: Design 1. QSF for leisure with discrete instrument Z̃ (coloured) and
with continuous instrument Z∗ (black).

with 199 bootstrap replications. Our empirical results show that both discretisation

schemes deliver very similar QSF estimates and confidence bands that capture the

main features of the benchmark QSFs estimated with a continuous instrument. The

largest deviations from the benchmark QSFs occur for M = 2 and the non uniform

Design 2, where the first value of Z̃ is allocated to 6% of the observations only.

In Appendix D we show that our empirical findings also hold for the average

and distribution structural functions. We also show that similar results hold for
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Figure 6.4: Design 2. QSF for leisure with discrete instrument Z̃ (coloured) and
with continuous instrument Z∗ (black).

nonlinear estimates of the QSF, when the vector p(X) is augmented with spline

transformations of X. Thus for this dataset the main features of Engel curves for

food and leisure are well captured when estimation is performed with a discrete valued

instrumental variable. Overall our empirical findings support our identification results

and illustrate the use of discrete instruments for the estimation of structural functions

in parametric triangular systems.
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A Proof of Main Results

A.1 Proof of Theorem 1

Proof. Part (i). The proof builds on the proof of Lemma S3 in Spady and Stouli

(2018). The matrix E [w(X, V )w(X, V )′] is of the form

E [w(X, V )w(X, V )′] = E [{p(X)⊗ q(V )}{p(X)⊗ q(V )}′]

= E [{p(X)p(X)′} ⊗ {q(V )q(V )′}]

= E

 p(X)p(X)′ p(X)p(X)′V

p(X)p(X)′V p(X)p(X)′V 2

 .
Assumption 2(a) implies that E[p(X)p(X)′] is positive definite. Thus

E [w(X, V )w(X, V )′] is positive definite if and only if the Schur complement of

E[p(X)p(X)′] in E [w(X, V )w(X, V )′] is positive definite (Boyd and Vandenberghe,

2004, Appendix A.6), i.e. if and only if

Υ := E
[
p(X)p(X)′V 2

]
− E [p(X)p(X)′V ]E [p(X)p(X)′]

−1
E [p(X)p(X)′V ]

satisfies det(Υ ) > 0.

With

Ξ = E [p(X)p(X)′V ]E [p(X)p(X)′]
−1
,

we have that

Υ = E
[
{p(X)V − Ξp(X)} {p(X)V − Ξp(X)}

′
]
,

a finite positive definite matrix, if and only if for all λ 6= 0 there is no d such that

Pr[{λ′p(X)}V = d′{Ξp(X)}] > 0; this is an application of the Cauchy-Schwarz in-
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equality for matrices stated in Tripathi (1999).

For X̃ ⊆ X o
V , positive definiteness of E[1(X ∈ X̃ )p(X)p(X)′] under Assumption

2(a) implies that for all λ 6= 0, E[1(X ∈ X̃ ){λ′p(X)}2] > 0, which implies that for all

λ 6= 0, the set {x ∈ X̃ : λ′p(x) 6= 0} has positive probability. By definition of Vx and

the variance, we have that Var(V | X = x) > 0 for each x ∈ X o
V . Thus for all λ 6= 0, by

Ξ being a constant matrix, there is no d such that Pr[{λ′p(X)}V = d′{Ξp(X)}] > 0,

and E [w(X, V )w(X, V )′] is positive definite.

Part (ii). The proof is similar to Part (i).

A.2 Proof of Theorem 2

Proof. Under the conditions of Theorem 1(i), E [w(X, V )w(X, V )′] exists and is pos-

itive definite. This follows from the proof of Theorem 1(i) upon substituting for

V = FX|Z(X | Z) throughout, and using that Assumption 3(a) and the definitions of

Zx and the variance imply that Var(FX|Z(x | Z) | X = x) > 0 for each x ∈ X o
Z . A

similar argument shows that E [w(X, V )w(X, V )′] exists and is positive definite under

the conditions of Theorem 1(ii) and Assumption 3(b). Identification of the structural

functions then follows by Theorem 1 in Chernozhukov et al. (2017).

A.3 Proof of Theorem 3

Proof. By iterated expectations, E [w(X, V )w(X, V )′] can be expressed as

E [w(X, V )w(X, V )′] = E [{p(X)p(X)′} ⊗ E[q(V )q(V )′ | X]] .

30



We show that E [w(X, V )w(X, V )′] is positive definite. By Assumption 2(a), there is

a positive constant B such that

E [{p(X)p(X)′} ⊗ E[q(V )q(V )′ | X]] ≥ E
[
1(X ∈ X̃ ){p(X)p(X)′} ⊗ λmin(X)IK

]
≥ E

[
1(X ∈ X̃ ){p(X)p(X)′}

]
⊗BIK ,

where IK is the K ×K identity matrix, and the inequality means no less than in the

usual partial ordering for positive semi-definite matrices. The conclusion then follows

by the matrix following the last inequality being positive definite by Assumption 2(a).

Under Assumption 2(b) the proof is similar upon using thatE [w(X, V )w(X, V )′] =

E [E[p(X)p(X)′ | V ]⊗ {q(V )q(V )′}].

A.4 Proof of Theorem 4

Proof. By Theorem 3 the matrix E [w(X, V )w(X, V )′] exists and is positive definite.

The result then follows by Theorem 1 in Chernozhukov et al. (2017).

A.5 Proof of Proposition 1

Proof. The proof builds on the proof of Proposition 1 in Newey and Stouli (2018).

For x ∈ X ∗Z , by definition of Zx we have that Pr(Z = zm | X = x) ≥ δ > 0 for

m ∈ {1, . . . , |Zx|}, and

E[q(V )q(V )′ | X = x] =

|Zx|∑
m=1

{{
q(FX|Z(x | zm))q(FX|Z(x | zm))′

}
×Pr(Z = zm | X = x)} ,
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is a sum of |R(x)| ≤ |Zx| rank oneK×K distinct matrices which is singular if |R(x)| <

K. If there is no set X̃ ⊆ X of positive probability such that infx∈X̃ |R(x)| ≥ K, the

matrix E[q(V )q(V )′ | X] is then singular with probability one, and Assumption 2(a)

cannot hold with X̃ ⊆ X ∗Z , by definition of X ∗Z . Therefore Assumption 2(a) holds with

X̃ ⊆ X ∗Z only if there is a set X̃ of positive probability such that infx∈X̃ |R(x)| ≥ K. A

similar argument shows that V∗Z has positive probability only if there is a set Ṽ ⊆ (0, 1)

of positive probability such that infv∈Ṽ |Q(v)| ≥ J .

A.6 Proof of Theorem 5

Proof. The result follows from the proof of Theorem 1 in Newey and Stouli (2018).

A.7 Proof of Theorem 6

Proof. The proof builds on the proof of identification of the average structural func-

tion in Theorem 2 of Newey and Stouli (2018). Under Assumption 4(a), qτ (V ) is

identified for each τ ∈ T by Theorem 5. This implies that, for T = Y , the con-

ditional CDF FY |XV (y | X, V ) = Γ(p(X)′qy(V )) is unique with probability one for

each y ∈ Y , since p (X) and Γ are known functions. The structural functions are

then identified by (2.2) in the main text. For T = U , when Y is continuous the

conditional quantile function QY |XV (u | X, V ) = p(X)′qu(V ) is unique with prob-

ability one for each u ∈ U . Since y 7→ FY |XV (y | XV ) is the inverse function of

u 7→ QY |XV (u | X, V ), the structural functions are also identified by (2.2) in the main

text.
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B Formal Statement of Remark 2

Proposition 2. (i) Let q(V ) = (1, V )′. If Assumption 2(a) holds with X̃ ⊆ X o
V then

it also holds with X̃ ⊆ X ∗V . (ii) Let p(X) = (1, X)′. If Assumption 2(a) holds with

Ṽ ⊆ VoX then it also holds with Ṽ ⊆ V∗X .

Proof. Part (i). Each x ∈ X o
V satisfies |VX | ≥ 2, which by the definitions of VX and

the variance implies that Var(V | X = x) ≥ B > 0. For q(V ) = (1, V )′, the smallest

eigenvalue of E[q(V )q(V )′ | X = x] is then bounded away from zero for each x ∈ X o
V ,

by Lemma 1 below. Therefore each x ∈ X o
V also satisfies x ∈ X ∗V , so that X o

V ⊆ X ∗V .

The result follows.

Part (ii). The proof is similar to Part (i).

Lemma 1. For a set of random variables {X(t)}t∈T such that E[X(t)2] ≤ C and

Var(X(t)) ≥ B > 0, the smallest eigenvalue of

Σ(t) = E


 1

X(t)

( 1 X(t)

)
is bounded away from zero.

Proof. det(Σ(t)) = Var(X(t)) = λmax(t)λmin(t) where λmax(t) and λmin(t) are the

largest and smallest eigenvalues of Var(X(t)), respectively. Note that for all t ∈ T

λmax(t) = sup
λ:||λ||=1

λ′Σ(t)λ ≤ ||λ||2||Σ(t)|| ≤ ||Σ(t)|| ≤ C̃

by E[X(t)2] bounded. Therefore

λmin(t) =
Var(X(t))

λmax(t)
≥ Var(X(t))

C̃
≥ B

C̃
,
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and the result follows.

C Quantile Regression Estimation of Structural

Functions

In this Section we give a simplified summary of the key steps in the implementation

of the quantile regression-based estimators for structural functions proposed by Cher-

nozhukov et al. (2017). A detailed description and implementation algorithms for

estimation and the weighted bootstrap procedures are given in Chernozhukov et al.

(2017).

The estimators implemented in the empirical application have three main stages.

In the first stage, we estimate the control variable, {V̂i}ni=1. In the second stage,

we estimate the CDF, F̂Y |XZ1V (y | x, z1, v). In the third and final stage, estima-

tors Ĝ(y, x), Q̂(τ, x) and µ̂(x) of the distribution, quantile and average structural

functions, respectively, are obtained.

[First stage.] Denoting the usual check function by ρv(z) = (v − 1(z < 0))z, the

quantile regression estimator for FX|Z is, for (x, z) ∈ XZ,

F̂X|Z(x | z) = ε+

ˆ 1−ε

ε

1 {π̂(v)′[s(z̃)⊗ r(z1)] ≤ x} dv,

π̂(v) ∈ arg min
π∈Rdim(Z)

n∑
i=1

ρv(Xi − π′[s(Z̃i)⊗ r(Z1i)]),

for some small constant ε > 0. The control function estimator is then V̂i = F̂X|Z(Xi |

Zi), i ∈ {1, . . . , n}.

[Second stage.] The quantile regression estimator for FY |XZ1V is, for (y, x, z1, v) ∈
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YXZ1V ,

F̂Y |XZ1V (y | x, z1, v) = ε+

ˆ 1−ε

ε

1
{
β̂(u)′w(x, z1, v) ≤ y

}
du,

β̂(u) ∈ arg min
β∈Rdim(W )

n∑
i=1

ρu(Yi − β′w(Xi, Z1i, V̂i)).

[Third stage.] Given estimates ({V̂i}ni=1, F̂Y |XZ1V ), the estimator for the DSF takes

the form

Ĝ(y, x) =
1

n

n∑
i=1

F̂Y |XZ1V (y | x, Z1i, V̂i).

Given the DSF estimate, the QSF estimator is then defined as

Q̂(p, x) =

ˆ
Y+

1{Ĝ(y, x) ≤ p}dy −
ˆ
Y−

1{Ĝ(y, x) ≥ p}dy,

and the ASF estimator as

µ̂(x) =

ˆ
Y+

[1− Ĝ(y, x)]ν(dy)−
ˆ
Y−
Ĝ(y, x)ν(dy).

D Additional Results for the Empirical Applica-

tion

In this Section we complement the empirical analysis of Section 6 by studying the

robutness of the empirical findings for the QSF. We first report estimates for the

DSF in Section D.1. We also estimated the average structural function for each

good and each instrument and the results lead to similar conclusions to the QSF and

DSF, and are thus omitted. We then report more flexible QSF estimates including

spline transformations of the endogenous variable X. Overall, our robustness checks
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show that our empirical results are robust across structural functions and instrument

specifications, and our additional results confirm our findings for the QSF discussed

in the main text.

D.1 Distribution Structural Functions

To further check the robustness of our empirical findings we also estimated the DSF.

For the DSF estimate Ĝ(y, x) we give weighted bootstrap confidence bands uniform

over the region [Q̂Y (0.1), Q̂Y (0.9)] × {Q̂X(0.1), Q̂X(0.5), Q̂X(0.9)}, constructed with

199 bootstrap replications. For the equispaced grid 0.1 = t1 < . . . < t15 = 0.9, in our

implementation the interval [Q̂Y (0.1), Q̂Y (0.9)] is approximated by a grid of 15 points

{Q̂Y (t1), . . . , Q̂Y (t15)}.

For each x ∈ {Q̂X(0.1), Q̂X(0.5), Q̂X(0.9)}, Figures D.1 and D.2 show the corre-

sponding three DSFs for food estimated with each set of four instruments, respectively,

as well as the corresponding benchmark DSFs estimated using the original continu-

ous instrument Z∗. Figures D.3 and D.4 show the corresponding DSFs for leisure.

Similarly to the QSF estimates, our empirical results show that both discretisation

schemes deliver very similar DSF estimates and confidence bands that capture the

main features of the benchmark DSFs, and the largest deviations from the benchmark

DSFs occur for M = 2 and the non uniform Design 2.
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(d) M = 15.

Figure D.1: Design 1. DSF for food with discrete instrument Z̃ (coloured) and with
continuous instrument Z∗ (black).
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Figure D.2: Design 2. DSF for food with discrete instrument Z̃ (coloured) and with
continuous instrument Z∗ (black).
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Figure D.3: Design 1. DSF for leisure with discrete instrument Z̃ (coloured) and
with continuous instrument Z∗ (black).

39



0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3
Leisure Expenditure Share

Di
st

rib
ut

io
n 

St
ru

ct
ur

al
 F

un
ct

io
n

(a) M = 2.

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3
Leisure Expenditure Share

Di
st

rib
ut

io
n 

St
ru

ct
ur

al
 F

un
ct

io
n

(b) M = 3.

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3
Leisure Expenditure Share

Di
st

rib
ut

io
n 

St
ru

ct
ur

al
 F

un
ct

io
n

(c) M = 5.

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3
Leisure Expenditure Share

Di
st

rib
ut

io
n 

St
ru

ct
ur

al
 F

un
ct

io
n

(d) M = 15.

Figure D.4: Design 2. DSF for leisure with discrete instrument Z̃ (coloured) and
with continuous instrument Z∗ (black).
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D.2 Nonlinear Estimation

Our results in the main text show that identification is robust to increasing the num-

ber of terms in the specification of the regressor vector. Here we consider includ-

ing spline transformations of X in the specification of p(X) in order to account for

potential nonlinearities in data. This increased flexibility allows for the estimation

of nonlinear QSF without the need for a continuous instrument. We estimate the

QSF for food and leisure by taking cubic B-splines transformations with 4 knots of

log-total expenditure, with each set of four instruments, respectively. For the QSF

estimate Q̂(p, x) we give weighted bootstrap confidence bands uniform over the region

[0.15, 0.85]× [Q̂X(0.1), Q̂X(0.9)], constructed with 199 bootstrap replications. Figures

D.5 and D.6 show the QSFs for food for each set of instruments. Figures D.7 and D.8

show the QSFs for leisure for each set of instruments. These results show that our

flexible estimates of the structural relationship between total expenditure and food

and leisure shares are robust to instrument discretisation for both food and leisure.
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Figure D.5: Design 1. QSF for food.
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Figure D.6: Design 2. QSF for food.
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Figure D.7: Design 1. QSF for leisure.
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Figure D.8: Design 2. QSF for leisure.
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