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Abstract

We investigate the problem of counting biased forecasters among a group
of unbiased and biased forecasters of macroeconomic variables. The inno-
vation is to implement a procedure controlling for the expected proportion
of unbiased forecasters that could be erroneously classified as biased (i.e.,
the false discovery rate). Monte Carlo exercises illustrate the relevance of
controlling the false discovery rate in this context. Using data from the Sur-
vey of Professional Forecasters, we find that up to 7 out of 10 forecasters
classified as biased by a procedure not controlling the false discovery rate
may actually be unbiased.
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1. Introduction

A large body of empirical literature evaluating forecasters’ preferences focuses

on counting biased forecasters among a group of biased and unbiased forecast-

ers (see e.g., Figlewski and Wachtel, 1981; Brown and Maital, 1981; Zarnowitz,

1985; Keane and Runkle, 1990; Batchelor and Dua, 1991; Davies and Lahiri, 1995;

Bonham and Cohen, 2001; Lim, 2001; Schuh, 2001; Elliot, Komunjer and Tim-

mermann, 2008; Boero, Smith and Wallis, 2008; Capistran and Timmermann,

2009). The main difficulty when counting biased forecasters is that, since we

do not observe the actual but the estimated bias of each forecaster, we can er-

roneously classify an unbiased forecaster as biased (and viceversa). One could

attack this difficulty by using the estimated bias to calculate for each forecaster

a p-value associated to the null hypothesis of unbiasedness and then, after choos-

ing a significance level, to count the number of forecasters with a p-value below

the pre-specified significance level. This procedure, called here for conciseness the

uncorrected procedure, does not control however for the proportion of unbiased

forecasters that can be erroneously classified as biased (i.e, the false discovery

rate). This lack of control of the false discovery rate leads to wrong conclusions

about the actual number of biased forecasters (see the Monte Carlo exercises in

the text) because it overcounts the number of biased forecasters leading From the

literature on multiple testing (see e.g., Efron, 2010), we know that an improvement

in this sense can be obtained by applying multiple testing techniques controlling

for the false discovery rate. Although there are potential gains from using these

techniques, after reviewing the literature it appears that multiple testing has not

been applied yet to the problem of counting the number of biased forecasters.

Motivated by the previous situation, the purpose of this paper is to implement

and compare different multiple testing techniques controlling the false discovery

rate to count the number of biased forecasters. These techniques offer the possibil-
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ity to keep the expected proportion of unbiased forecasters that can be erroneously

classified as biased controlled up to a convenient pre-specified threshold. The tech-

niques, pioneered by Benjamini and Hochberg (1995), are easy to implement and

they involve to compare ranked p-values associated to the null hypothesis of un-

biasedness. It is worth mentioning that these techniques apply not only to the

problem of counting biased forecasters but to any problem involving to count the

number of rejected null hypotheses among a large number of multiple null hypothe-

ses (see e.g., Stekler, 1987; Batchelor, 1990; D’Agostino, McQuinn and Whelan,

2012).

We illustrate the gains of controlling the false discovery rate in the context of

counting biased forecasters by implementing multiple testing techniques to simu-

lated and real data. The exercises on simulated data show that, when the number

of forecasters being evaluated is large (say 50 or more), the multiple testing pro-

cedures have a better ability than the uncorrected procedure to detect biased

forecasters while keeping the false discovery rate under control. The exercise with

real data demonstrates the empirical relevance of controlling for false discoveries.

We analyze data from the Survey of Professional Forecasters for real output fore-

casts. We find that, when controlling for the false discovery rate by employing the

Benjamini-Hochberg procedure, up to 7 out of 10 forecasters classified as biased

by the uncorrected procedure may be actually unbiased (i.e., false discoveries).

The rest of this paper is organized as follows. In the next section, we review

the existing literature on counting biased forecasters. In Section 3, we describe

the available procedures to count biased forecasters and discuss whether they

control for false discoveries. In Section 4, we implement Monte Carlo exercises

to illustrate the gains from using multiple testing procedures controlling the false

discovery rate. In Section 5, we implement these procedures using data from the

Survey of Professional Forecasters. Finally, Section 6 concludes.
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2. Related Literature

The econometric literature on counting biased forecasters among a group of

forecasters dates back to the work by Theil (1958) and Mincer and Zarnowitz

(1969). Since these seminal papers, the literature has explored several dimensions

of this problem: (i) testing procedure and error rate control; (ii) series, (iii) forecast

horizon, (iv) data vintage, (v) subsample of forecasters. This paper intends to

contribute in the first dimension. Following the literature, we implement a testing

procedure based on a regression approach (see e.g., Zarnowitz, 1985; Schuh, 2001).

In this context, the existing literature has either not controlled at all for false

discoveries or has controlled for the probability of erroneously classifying as biased

one or more genuine unbiased forecasters (i.e., the so-called family-wise error rate)

using the so-called Bonferroni correction procedure.1 Not controlling at all for false

discoveries is not an attractive procedure because leads to overcount the number

of biased forecasters. The Bonferroni correction procedure satisfactorily controls

the family-wise error rate (see e.g., Efron, 2010; Romano, Shaikh and Wolf, 2010),

but we can expect its ability to detect genuine biased forecasters to be very low

when the number of forecasters being evaluated is large, say more than 50 (see

the Monte Carlo exercises in the text). In this sense, controlling for the false

discovery rate instead of the family-wise error rate, as we propose in this paper,

it is of interest to avoid wiping out evidence in favor of biased forecasters.

The second and third dimensions of the problem of counting the number of

biased forecasters are the series of forecasts to be explored and the forecast hori-

zons. The literature finds some differences in the estimated number of biased

forecasters across series, between univariate and multivariate forecasts, and fore-

cast horizons (Brown and Maital, 1981; Zarnowitz, 1985; Komunjer and Owyang,

2012). Though the techniques in this paper applies to any series of forecasts and

1The Bonferroni correction procedure consists in counting the number of forecasters with a
p-value below the threshold level resulting from dividing the pre-specified significance level by
the total number of forecasters. In the text, we discuss this procedure in detail.
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forecast horizons, for the sake of simplicity, we focus on the case of a univariate

forecast. We choose the series for gross domestic product, which has been widely

used in other papers (see Elliot et al., 2008).

Finally, the fourth and fifth dimensions of the problem are the data vintage

and the subsample of forecasters. On one hand, many macroeconomic series are

subject to revisions and forecasting performance can differ depending on whether

real time or final data vintages are used (see Keane and Runkle, 1990). On

other hand, there is evidence indicating that the number of biased forecasters may

change over time, depending on the starting and ending date of the subsample

(Croushore, 2010). To evaluate the sensitivity of our results to the choice of

the data vintage, we measure “actual” values of the target variable using both

the real time data (second revision) and the most recent vintage. To evaluate

the sensitivity of our results to the choice of the subsample, we consider three

subsamples of forecasters: forecasters observed during the period 1968:4-1979:1

(as in Zarnowitz, 1985), forecasters observed during the period 1981:3-2006:3 (as

in Elliot et al., 2008), and forecasters observed during the period 1981:3-2012:4.

We show that the relevance of our result does not hinge upon the data vintage or

the subsample of forecasters.

3. Controlling for False Discoveries

In this section we formally describe the problem of counting biased forecast-

ers. Next, we explain the problem generated by false discoveries. Finally, we

describe different procedures to count biased forecasters, stress the importance of

controlling for false discoveries and compare the accuracy of these procedures.

3.1 The Setup

Following the empirical literature evaluating forecasters’ preferences (Zarnowitz,

1985; Elliot et al., 2008), our objective is to count the number of biased forecasters
5



among a group of n biased and unbiased forecasters. Since we observe the target

variable and the forecasts but we do not observe the bias of each forecaster, this

objective raises two concerns. The first concern is to determine whether there are

biased forecasters at all. If the answer to this question is negative, nothing more

is required: the finding is that none of the forecasters is biased. If the answer

is positive, a further concern comes up: How many are the biased forecasters?

One possibility to address the first concern is to test the single null hypothesis

that all the forecasters are unbiased. The second concern, however, requires more

elaboration, as it is clear that testing a single hypothesis about all the forecasters

is not going to answer how many the biased forecasters are. We next frame these

concerns in the context of a multiple testing problem.

Formally, for i = 1, .., n indexing forecasters and t = 1, .., T indexing periods

of time, let yt denote the target value at period t of an economic variable, and

let xit denote the predicted value by forecaster i of that variable. The variable yt

might be, for instance, the gross domestic product (GDP) growth rate at quarter

t, and xit might the growth rate predicted by a Central Bank. If forecaster i is

unbiased we must have:

E(yt) = E(xit) (1)

For a given forecaster i, following the literature (see e.g., Zarnowitz, 1985; Elliot

et al., 2008), a test of unbiasedness can be performed by testing in the regression

model

yt = αi + βixit + uit; E(uit|xit) = 0 (2)

the null hypothesisH0i : αi = 0 and βi = 1 on the basis of a dataset {yt, xit}n,Ti=1,t=1.
2

Following the recent literature (see e.g., Elliot et. al., 2008), we view the null hy-

pothesis H0i as a statement about unbiasedness but not necessarily for rationality.

2This regression-based approach is not the only approach to test unbiasedness. Schuh (2001)
discusses an alternative procedure. As already suggested, the techniques reviewed below would
apply to any test of unbiasedness (or efficiency) delivering a p-value for each forecaster.
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To tackle our first concern, namely to determine whether there are biased

forecasters at all, we may test the single null hypothesis

Hs
0 : αi = 0, βi = 1 for all i (3)

using the corresponding F-test. Implementing this test is straightforward, thus it

is not be discussed.

If the single null hypothesis Hs
0 is rejected (i.e. if we find that there are biased

forecasters), the next step is to tackle the second concern, namely, to count the

number of biased forecasters. To do so, we may test the multiple null hypotheses

H01 : α1 = 0, β1 = 1 ; ... H0i : αi = 0, βi = 1 ; ...; H0n : αn = 0, βn = 1, (4)

and count the number of rejected null hypotheses. For the sake of presentation,

we assume that some decision rule produces a statistic zi for each forecaster i,

which will determine a decision of unbiased or biased for each of the n forecasters.

For example, in the application below, zi is the F-statistic associated to the null

hypothesis H0i. We denote the ordered p-values associated to the zi statistics by

p(1) ≤ p(2) ≤ ... ≤ p(n) (5)

with their corresponding null hypotheses labeled accordingly: H(1), H(2), ..., H(n).

The existing literature has treated the two concerns raised above using the

same procedures. We next explain why tackling the problem of testing a single

null hypothesis like Hs
0 or H0i and the problem testing the multiple null hypotheses

H01,..,H0n may benefit from using different procedures.

3.2 The Problem of Multiple Testing and False Discoveries

The standard procedure to test a single null hypothesis like H0i is to compute
7



a test statistic zi and its associated p-value, to choose a significance level γ, and

to reject H0i if the p-value is below that significance level γ. The straightforward

procedure to test the multiple null hypotheses H01,..,H0n is to repeat the procedure

for a single null hypothesis over the set of multiple hypotheses. This amount to

test each single hypothesis in (4) at a chosen significant level γ, to reject the

null hypothesis of unbiasedness for all forecaster i such that p(i) < γ, and then

to count the number of rejected null hypotheses. As already said, we call this

procedure the uncorrected procedure. Although the uncorrected procedure is easy

to implement, it does not control for the possibility of erroneously classifying an

unbiased forecaster as biased. Such a problem does not arise when testing the

single null hypothesis Hs
0 , and it is a case of the so-called multiple testing problem

(see Lehmann and Romano, 2005, Chapter 9).

To illustrate the multiple testing problem, Figure I presents a simplified Gaus-

sian hypothetical example with T = 52 time periods. We suppose that the n

forecasters are either unbiased (i.e. αi = 0 βi = 1) or upward biased (i.e. αi = 1

and βi = 1) with probability π0 = .7 or 1− π0 = .3, respectively. We wish to test

simultaneously (not jointly) the null hypotheses in (4). In this hypothetical exam-

ple, the F-statistic associated to the ordinary least squares estimator of (αi, βi) has

either F-density with (2, 50)-degrees of freedom (when the null hypothesis of un-

biasedness is valid) or a non-central F-density with (2, 50)-degrees of freedom and

non-centrality parameter equal to 4 (when the null hypothesis of unbiasedness is

not valid). These two densities are shown in Figure I, Panel A. The density shown

in panel B is the cross-section density that (hypothetically) would be observed by

a researcher. This density is a mixture of the two densities in Panel A, where the

weight on each density is equal to the proportion of unbiased and biased forecast-

ers. Suppose that we choose a significance level, γ, of 10%. With the uncorrected

procedure described above, the researcher would expect to find 10% percent of

the forecasters with a positive and significant F-statistic. This proportion is rep-
8



resented by the shaded region in the right tail of the cross-sectional density (Panel

B). Does this area consist of only biased forecasters? Clearly not, because some

forecasters are just unlucky; as shown in the shaded region of the right tail of Panel

A, unbiased forecasters can exhibit positive and significant estimated F-statistics

(the shaded region in the left tail of Panel B).

INSERT FIGURE I ABOUT HERE

The message conveyed by Figure I is that the uncorrected procedure does not con-

trol for unbiased forecasters that falsely exhibit significant statistics (i.e., a false

discovery). Indeed, with the uncorrected procedure, the probability of erroneously

classifying at least one biased forecaster rapidly increases with the number of fore-

casters in the sample. This is problematic because the uncorrected procedure may

lead to reject the null hypothesis of unbiasedness more often than necessary. For

instance, when the number of hypotheses is around 50 (as it is in our application)

we shall be nearly certain to detect some biased forecaster even if all them are

unbiased.

3.3 The Procedures

In this subsection, we review procedures to tackle the problem of counting biased

forecasters while controlling for false discoveries.

3.3.1 Counting the Number of Biased Forecasters

Suppose that we reject the single hypothesis that all forecasters are unbiased.

The following question is to determine how many biased forecasters there are. As

already said, this question cannot be answered by testing the single null hypothesis

(3). Moreover, the uncorrected procedure is a non-starter because it does not

control for false discoveries. One possibility to improve upon the uncorrected

procedure is to control the so-called false discovery rate (FDR).
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Before defining the FDR, we need to introduce some notation. Let D denote

the number of forecasters classified as biased (i.e., the number of discoveries) and

let a denote the number of those that are actually unbiased (i.e., the number of

false discoveries). The false discovery rate, is defined as the expected number of

incorrectly rejected null hypotheses over the total number of rejections, FDR :=

E(a/D) if D > 0 and 0 otherwise. Control of the FDR means that, for a given

pre-specified level γ, the average realized proportion of incorrectly classified biased

forecasters will be at most γ.

The following rule, pioneered by Benjamini and Hochberg (1995), is known to

control the FDR under independence of the statistics {zi}ni=1:

Lemma 1 (False Discovery Rate Control under Independence [Benjamini-

Hochberg]) Assume that the p-values (p1, .., pn) are independent. For a fixed value

γ in (0, 1), let k be the largest index for which

p(k) ≤
γk

n
(6)

The decision rule that rejects H(1), .., H(k−1) and does not reject H(k), .., H(n) con-

trols the false discovery rate in the sense FDR ≤ γ.

The proof of Lemma 1 may be found in Efron (2010, Theorem 4.1).

The Benjamini-Hochberg procedure controls the FDR when the p-values are

independent or exhibits positive regression dependence (see Benjamini and Yeku-

tieli, 2001). In a given application, this may not be the case. A procedure that

controls for FDR when p-values exhibit an unknown form of dependence is due to

Benjamini and Yekutieli (2001):

Lemma 2 (False Discovery Rate Control under Dependence [Ben-

jamini - Yekutieli]) For a fixed value γ in (0, 1), let k be the largest index

for which

p(k) ≤
γk

n
∑n

i=1
1
i

(7)
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The decision rule that rejects H(1), .., H(k−1) and does not reject H(k), .., H(n) con-

trols the false discovery rate in the sense FDR ≤ γ.

3.3.2 Is There any Biased Forecaster in the Sample?

We have assumed that the single hypothesis that all forecasters are unbiased

can be rejected. We now review alternative procedures to test this null hypothesis.

As stated above, to decide whether there are biased forecaster at all, one

possibility is to test the single null hypothesis (3). An alternative procedure would

be to test the multiple null hypotheses (4) while controlling the so-called family-

wise error rate (FWER). The FWER, is defined as the probability of one or more

false discoveries, FWER := P (a > 0). Control of the FWER means that, for

a given significance level γ, the probability of classifying as biased at least one

unbiased forecaster (rejecting at least one true null hypothesis) is less than γ.

Controlling the FWER allows us to be 1− γ confident that there are no unbiased

forecasters among those classified as biased by our decision rule.

The most basic method to control the FWER is the Bonferroni correction

procedure.

Lemma 3 (Family-wise Error Rate Control [Bonferroni]). For a fixed

value γ in (0, 1), reject H0i if pi < γ/n. Then, the family-wise error rate is

controlled in the sense FWER ≤ γ.

The proof of Lemma 3 may be found in Lehmann and Romano (2005, Theo-

rem 9.1.1). While the Bonferroni correction procedure satisfactorily controls the

FWER, its ability to detect cases in which the null H0i is false (i.e., a genuine

biased forecaster) will typically be very low for large n (see the Monte Carlo ex-

ercises below). An improvement in this sense is obtained by the method of Holm

(1979):

Lemma 4 (Family-wise Error Rate Control [Holm]). For a fixed value γ
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in (0, 1), let k be the minimal index such that:

p(k) ≤
γ

n+ 1− k
(8)

The decision rule that reject H(1), .., H(k−1) and does not reject H(k), .., H(n) controls

the family-wise error rate in the sense FWER ≤ γ.

The proof of Lemma 4 may be found in Lehmann and Romano (2005, Theorem

9.1.2). Both Bonferroni and Holm correction procedures can be applied when the

p-values are dependent. The Holm correction procedure is more powerful than

the Bonferroni’s one because, by being less stringent in erroneously detecting a

biased forecaster (γ/n ≤ γ/(n+ 1− k)), it allows to detect more genuinely biased

forecasters. Then, there seems to be no reason to use the Bonferroni correction

procedure because it is dominated by the Holm correction procedure.

3.3.3 Comparing Procedures

We stress the fact that we propose to apply different procedures to tackle

different concerns related to the problem of counting biased forecasters. This

point has not been discussed in the literature. In particular, when the concern is

to count the number of biased forecasters, we propose to use Benjamini-Hochberg

or Benjamini-Yukutieli procedures. These procedures avoid to wipe out evidence

favoring the classification of a forecaster as biased while keeping under control the

proportion of incorrectly classified biased forecasters. When the concern relates

to whether there are biased forecasters at all, we suggest to use the Bonferroni

or the Holm correction procedures. The reason is that these procedures deliver a

result close to the one obtained from testing the single null hypothesis that all the

forecasters are unbiased. As theoretically stated above and further validated with

data below, the Bonferroni or the Holm procedures are not convenient to count

the number of biased forecasters because they miss the chances of detecting biased

forecasters in the fear of incorrectly classifying them.
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We can sort the different procedures according to the number of significant

hypotheses they produce (i.e., discoveries). On one extreme, the less conserva-

tive procedure is the uncorrected procedure, which may incur a large proportion

of incorrectly classified biased forecasters. On the other extreme, we have the

Bonferroni and Holm correction procedures, that undercount the number of bi-

ased forecasters. The Benjamini-Hochberg and Benjamini-Yukutieli procedures,

by allowing to keep under control the proportion of incorrectly classified biased

forecasters, will deliver a number of biased forecasters between these two extremes.

4. Monte Carlo Exercises

In this section, we implement Monte Carlo exercises to illustrate the gains

of controlling for the false discovery rate when counting the number of biased

forecasters. In particular, we show that when the number of biased forecasters

is large (say 50 or more): (i) The uncorrected procedure does not control for the

false discovery rate; (ii) The Bonferroni correction procedure has a low ability to

detect genuine biased forecasters; (iii) The Benjamini-Hochberg procedure, unlike

the uncorrected procedure, it does control the false discovery rate and it has better

ability than the Bonferroni correction procedure to detect biased forecasters.

4.1 Data Generating Process

We begin by describing the data generating process. For a given number of

forecasters n ∈ {10, 50, 100}, we simulate T ∈ {50, 100, 150} independent repli-

cations of the vector (yt, x1t, .., xtn) from a multivariate normal distribution with

13



mean and variance:

µ :=



.5

(.5− α1)/β1
...

(.5− αn)/βn


; Σ2

o :=



4 2 2 ... 2

2 2 1 ... 1

2 1 2 ... 1

...
...

...
. . .

...

2 1 1 ... 2


with αi = 0 and βi = 1 for i ∈ {1, .., n × .7}, αi = .9 and βi = 1 for i ∈

{n × .7 + 1, .., n × .8}, αi = 1.1 and βi = 1 for i ∈ {n × .8 + 1, .., n × .9}, and

αi = .3 and βi = 1 for i ∈ {n × .9 + 1, .., n}. This design implies that, in each

Monte Carlo experiment, 30% of the forecasters are biased. Moreover, the vector of

disturbance terms (u1t, .., unt) is independent of the vector of forecasts (x1t, .., xnt),

and the variance of uit is the same across forecasters i and periods of time t. The

number of forecasters n and the number of periods T are similar to those in the

empirical application below. We set the number of Monte Carlo replications equal

to 1000.3

4.2 Test Statistic

We now describe the test statistic employed to count the number of forecasters.

Since the variance of the disturbance terms in the design above does not depend

either on the forecaster i or on the time period t, for each forecaster i, we calculate

the homoskedastic-only F-statistic:

Fi := (Rθ̂i − r)′(RΩ̂R′)−1(Rθ̂ − r)/2

with R the 2-dimensional identity matrix, θ̂i the ordinary least squares (OLS)

estimator of (αi, βi), r := (0, 1), and Ω̂ the homoskcedastic-only estimator of

3The experiments were carried out in R using the package “mvtnorm” to simulate draws from
the multivariate normal distribution. The seed was set equal to the number of the Monte Carlo
replication.
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the covariance matrix of the (OLS) estimator θ̂i. Since the disturbance term uit

is independent of xit and normally identically distributed over t, the statistic Fi

follows a F -distribution with (2, T −2) degrees of freedom for all i. Since the same

target variable yt is used to calculate all the elements of the vector of statistics

(F1, .., Fi, .., Fn), the p-values are not independent across forecasters. Indeed, the

vector (F1, .., Fi, .., Fn) follows a multivariate F-distribution. The multivariate F-

distribution exhibits positive regression dependence (see e.g., Sarkar, 2002), which

implies that we can expect the Benjamini-Hochberg procedure to control the false

discovery rate (see Benjamini and Yekutieli, 2001) even if the statistics are not

independent.

In this context, a discovery is a forecaster classified as biased for a given pro-

cedure. A false discovery is an unbiased forecaster classified as biased by a given

procedure. To evaluate the performance of the different procedures, we calculate

the Monte Carlo average of discoveries and the Monte Carlo false discovery rate for

each of the procedures described in the previous section. From our discussion in

the previous section, recall that implementing these procedures requires to choose

a pre-specified level γ for the error rate under control. To evaluate the sensitivity

of results to a particular choice of γ, we make γ vary in {.01, .05, .1}. Results are

summarized in Table I below.

4.3 Results

We now comment on the results. They are summarize in Table I. By comparing

the number of discoveries across procedures, Table I shows that the uncorrected

procedure is the one that finds the largest number of biased forecasters. Under

the uncorrected procedure the false discovery rate is not under control (see that

the false discovery rate in column 14 associated to the uncorrected procedure is

higher than the pre-specified level). This means that many of the discoveries made

by the uncorrected procedure are actually false discoveries. In particular, when
15



the number of forecasters being evaluated increases, the number false discoveries

increases. This result highlights the importance of controlling the false discovery

rate when the number of forecasters being evaluated is large (say more than 50).

On the opposite extreme is the Bonferroni correction procedure. This is the pro-

cedure that finds the lowest number of biased forecasters. This procedure is too

conservative, in the sense that it detects less biased forecasters than those in the

sample.

As predicted by theory, the number of biased forecasters obtained by applying

the Benjamini-Hochberg procedure is between these two extremes. Under this

procedure the false discovery rate is lower than the pre-specified critical value

(compare columns 1 and 12), which means that it is under control, while the num-

ber of discoveries is higher than the one obtained under the Bonferroni correction

procedure (compare columns 5 and 7). This means that the Benjamini-Hochberg

procedure improves over the uncorrected procedure by keeping the false discovery

rate under control and over the Bonferroni Correction procedure by being less

conservative. We see this result as evidence favoring the use of the Benjamini-

Hochberg procedure.

Regarding to the Benjamini-Yekutieli procedure, its ability to detect biased

forecasters is lower than the Benjamini-Hochberg procedure (compare columns 7

and 8). In all cases the Benjamini-Yekutieli procedure delivers a false discovery

rate below the critical value.

Finally, under the Holm correction procedure, the number of detected bi-

ased forecasters is slightly higher than under the Bonferroni correction procedure

and the rate of false discovery is below the pre-specified level in all cases. This

shows the advantage of the Holm correction procedure over the Bonferroni’s one.

However, when compared with the Bejanmini-Hochberg or with the Benjamini-

Yekutieli procedures, its ability to detect biased forecaster is lower (compare

columns 6 and 7, and 6 and 8).
16



INSERT TABLE I ABOUT HERE

We conclude then that for the data generating process in the Monte Carlo

exercise, the Benjamini-Hochberg procedure is the preferred procedure to count

the number of biased forecasters.

5. Revisiting the Survey of Professional Forecasters

To demonstrate the empirical relevance of controlling for false discoveries when

counting biased forecasters, in this section we revisit the Survey of Professional

Forecasters (SPF) data on real output growth in the US - a series that has been

the subject of many previous studies (e.g., Zarnowitz, 1985; Elliott et al., 2008).4

From our understanding, these studies either employ the uncorrected procedure

or the Bonferroni correction procedure. We next show that, when controlling for

the false discovery rate by employing the Benjamini- Hochberg procedure, 7 out

of 10 forecasters classified as biased by the uncorrected procedure may actually be

unbiased (i.e., false discoveries). We also find that 1 out of 10 forecasters classified

as unbiased by the Bonferroni correction procedure may be actually biased (i.e.,

true discoveries).

5.1 The Data

We begin the analysis by describing the data. Survey participants in the SPF

are professional forecasters who provide point forecasts for several macroeconomic

variables on a quarterly basis. As a target variable, we consider real output growth

measured using either the real time data (second revision) and the most recent

vintage. For the output growth forecasts, we use the one-quarter-ahead forecast of

that variable (data label RGDP). So, from the perspective of this application, yt

4For other sources of expectational data to which the methods described above could apply
see the survey by Pesaran and Weale (2006).
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and xit are, respectively, the real output growth in quarter t and the one-period-

ahead forecast made by forecaster i.5 The SPF data set is an unbalanced panel.

Each quarter some forecasters leave the sample and new ones are included. We

follow the existing literature (e.g., Zarnowitz, 1985 and Elliot et al., 2008) and

report results for forecasters participating for a minimum of 12, 20 or 30 quarters.

We denote by Ti the number of periods we observe the forecaster i. We report

results for three subsamples: forecasters observed during the period 1968:4-1979:1

(as in Zarnowitz, 1985), forecasters observed during the period 1981:3-2006:3 (as

in Elliot et al., 2008), and forecasters observed during the period 1981:3-2012:4.

Notice that we do not consider multivariate forecasts. Evaluating multivariate

forecasts would require to modify the F-statistics implemented below along the

lines discussed by Komunjer and Owyang (2012).

5.2 Counting Biased Forecasters

We now describe the procedures employed to count the number of biased fore-

casters. For each forecaster i, we first estimate the parameters αi and βi in Equa-

tion (2) by ordinary least squares, and then calculate the homoskedasticity-only F-

statistic associated to the null hypothesis of unbiasedness H0i : αi = 0 and βi = 1.

Heteroskedasticity and serial correlation in the forecast errors may produce

large values of the homoskedasticity-only F-statistic, wrongly causing them to re-

ject the null hypothesis of unbiasedness. To address the issue of heteroskedasticity,

we also calculate heteroskedasticity-robust F-statistics. The issue of autocorre-

latation can be disregarded because, under the null hypothesis of unbiasedness,

one-period-ahead forecast errors would optimally follow a white noise process (see

Granger and Newbold, 1977, pp. 121-22). For a 1%, 5% and 10%-level, we employ

the F-statistics to calculate p-values using the F distribution with (2, Ti−2) degrees

5The variable yt is calculated as four hundreds times the difference in logs of the gross domestic
product at period t and t−1. The variable xit is calculated as four hundreds times the difference
in logs of the one-quarter-head gross domestic product forecast at t− 1 and the forecast for the
current gross domestic product at quarter t− 1.
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of freedom for the homoskedasticity-only F-statistic and (2,∞) degrees of freedom

the for heteroskedasticity-robust F-statistic. Since we calculate p-values only for

those forecasters with non-negative F-statistics, the number of forecasters eval-

uated by the homoskedasticity-only F-statistic and the heteroskedasticity-robust

F-statistic differ.

With the p-values at hand, we count the number of rejected null hypotheses

associated to the uncorrected procedure (UC), the Benjamini-Hochberg procedure

(BH), the Bonferroni correction procedure (BC), the Holm correction procedure

(HP) and the the Benjamini-Yekutieli procedure (BY). To our knowledge, neither

the BH nor the BY procedures have been applied before to the problem of counting

biased forecasters. Before going on, it is worth to note that the BC, HC and

BY procedures apply under any type of dependence but BH procedure may not

control the FDR if the statistics are dependent across forecasters. In our case, the

F-statistics are not independent because they are all calculated using the same

target variable yt, and the forecasts xit are correlated across forecasters. Indeed,

the vector of F-statistics follow a multivariate F-distribution. The multivariate F-

distribution, however, exhibits positive regression dependence (see Sarkar, 2002).

Since the BH procedure controls the FDR under this type of dependence (see

Benjamini and Yekutieli, 2001), we expect the BH procedure to still produce

reliable results.

5.3 Results

Table II summarizes the results about the number of biased forecasters along

the dimensions discussed above. In particular, Panel A presents results for the

same sample period considered by Zarnowitz (1985), Panel B for the same sample

period considered by Elliot et al. (2008), and Panel C for the updated version

of the subsample period considered by these latter authors. The first column in

Table II, γ, represents the value of the error rate under control. For the BH and
19



BY procedures, it should be understood as the FDR. For the UC procedure, it

represents the significance level. Finally, for the BC and HC procedures, γ should

be interpreted as the FWER.

INSERT TABLE III ABOUT HERE

Our preferred results are highlighted in gray. In this case, the difference in the

number of biased forecasters across procedures is the most pronounced.6 They

correspond to the case when γ is equal to .1, at least 12 observations per forecaster

are requested, and the heteroskedasticity-robust F- statistic is used. There, we

analyze 81 forecasters.

The BC and BH procedures find 2 biased forecasters. Thus, we can be 90%

confident that there are biased forecasters in this subsample. As already discussed,

to calculate the number of biased forecasters, the more convenient procedure is

BH, which detects 9 biased forecasters while the FDR is below 10%. For the sake

of completeness, we also present the results delivered by BY procedure. If instead

of using the BH procedure, we used the UC procedure to calculate the number

of biased forecasters, we would count 28 biased forecasters. These findings illus-

trate our message: 7 out of 10 biased forecasters detected by the UC procedure

may actually be unbiased forecasters (i.e., false discoveries). Regarding the other

results in Table I, the BC and the HC procedures find evidence of biased fore-

casters across all the subsamples, except for Panel B where no biased forecaster

is detected according to the heteroskedasticity-robust F-statistic when at least

30 observations per forecaster are required. This suggests that biased forecasters

might leave the sample. According to the heteroskedasticity-robust F-statistic, the

number of biased forecasters detected by the BH procedure varies greatly across

subsamples. There are between 3 and 13 biased forecasters in Panel A, between

1 and 9 in Panel B, and between 11 and 27 biased forecasters in Panel C. Our

6Obviously, in other results the difference is less pronounced. We recall that the objective of
this application is to illustrate the potential gains of using multiple testing techniques.
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findings do not qualitatively change and an even greater number of biased fore-

caster is detected when the homoskedasticity-only F-statistic is used instead of the

heteroskedasticity-robust F-statistic. When comparing the number of biased fore-

casters in the periods 1981:3-2006:3 and 1981:3-2012:4, we find that the number

of biased forecasters is greater in the last subsample. This suggests that unbiased

forecasters during the period 1981:3-2006:3 may have become biased afterwards.

Table III summarizes the results about the number of biased forecasters when

the target variable is the growth rate of the fully revised output.

INSERT TABLE III ABOUT HERE

Results are qualitatively similar to those presented in Table II, except for the

subsample covering the period 1981:3-2006:3. For this subsample the BH and the

BC procedures provide more evidence in favor to the conclusion that there are

biased forecasters. Both procedures detect at least 5 biased forecasters for any

value of γ and sample sizes. When comparing the number of biased forecasters in

the periods 1981:3-2006:3 and 1981:3-2012:4, we find that the number of biased

forecasters is lower in the last subsample (Panel B versus Panel C in Table III).

This finding suggests that forecasters might be more concerned about forecasting

the fully revised growth rate of real output.

6. Conclusions

This paper shows that applying the Benjamini-Hochberg multiple testing pro-

cedure to the problem of counting biased forecasters improves upon procedures

implemented in the existing literature. We apply the Benjamini-Hochberg pro-

cedure to data from the Survey of Professional Forecasters and find that up to

7 out of 10 forecasters classified as biased by the uncorrected procedure may ac-

tually be unbiased (i.e., false discoveries). This evidence soften the asymmetric

loss interpretation of judgments made by forecasters of macroeconomic variables
21



and the perception that the mean squared error loss function may not be able to

capture how some professional forecasters form expectations about future values

of macroeconomic variables (see e.g., Granger, 1969).
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Figure I. False Discoveries
Panel A. Mixture Components

Panel B. Mixture

This figure illustrates the presence of false discoveries in a mixture model where the components

are F-densities. The dashed line in both panels correspond to the threshold point defining the

rejection region associated to the uncorrected procedure.
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Table I. Monte Carlo Exercises - Average Discoveries and False Discovery Rates

Average Discoveries False Discovery Rate
γ n T Bias BC HC BH BY UC BC HC BH BY UC

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
1% 10 50 3 1.6 1.7 1.8 1.6 2.0 .20% .20% .63% .21% 1.9%
1% 10 100 3 2.0 2.0 2.1 2.0 2.2 .17% .24% .72% .20% 1.8%
1% 10 150 3 2.1 2.1 2.2 2.1 2.4 .21% .29% .55% .25% 1.4%
1% 50 50 15 7.0 7.1 8.8 7.4 10.3 .02% .03% .45% .08% 2.4%
1% 50 100 15 10.0 10.0 10.6 10.2 11.4 .03% .06% .63% .12% 2.2%
1% 50 150 15 10.3 10.4 11.2 10.5 12.2 .02% .03% .55% .08% 2.1%
1% 100 50 30 12.7 13.0 17.5 14.4 20.7 .14% .15% .74% .20% 2.7%
1% 100 100 30 19.8 19.9 21.2 20.3 22.9 .05% .07% .62% .17% 2.4%
1% 100 150 30 20.5 20.6 22.5 21.2 24.6 0% .03% .66% .15% 2.4%

5% 10 50 3 1.9 1.9 2.1 1.9 2.6 1.1% 1.2% 2.9% 1.0% 9.5%
5% 10 100 3 2.1 2.2 2.4 2.2 2.7 .84% 1.1% 3.2% .99% 8.0%
5% 10 150 3 2.3 2.3 2.5 2.3 2.9 .75% .89% 2.8% .85% 7.4%
5% 50 50 15 8.4 8.6 10.4 8.9 12.7 .17% .20% 2.9% .52% 10.0%
5% 50 100 15 10.3 10.4 11.7 10.6 13.8 .25% .33% 3.0% .72% 9.5%
5% 50 150 15 10.7 10.8 12.6 11.2 14.8 .15% .21% 3.1% .60% 9.4%
5% 100 50 30 15.7 16.0 21.1 17.7 25.7 .48% .55% 3.3% .73% 10.5%
5% 100 100 30 20.3 20.4 23.5 21.1 28.0 .19% .21% 3.1% .59% 10.2%
5% 100 150 30 21.3 21.4 25.4 22.5 29.9 .15% .19% 3.3% .65% 9.9%

10% 10 50 3 2.0 2.1 2.4 2.0 3.0 1.9% 2.3% 6.8% 2.1% 16.4%
10% 10 100 3 2.2 2.3 2.6 2.3 3.3 1.8% 2.3% 6.4% 2.2% 15.1%
10% 10 150 3 2.4 2.4 2.8 2.4 3.3 1.4% 2.0% 6.1% 1.8% 14.0%
10% 50 50 15 9.0 9.1 11.5 9.6 15.0 .58% .63% 5.7% 1.2% 17.8%
10% 50 100 15 10.5 10.6 12.8 11.0 16.1 .54% .65% 6.0% 1.3% 16.4%
10% 50 150 15 11.0 11.2 13.9 11.7 17.1 .36% .54% 6.4% 1.2% 16.5%
10% 100 50 30 17.0 17.2 23.4 19.0 30.5 .67% .72% 6.3% 1.2% 18.3%
10% 100 100 30 20.6 20.8 25.7 21.9 32.8 .29% .34% 6.4% 1.2% 17.8%
10% 100 150 30 21.7 22.2 27.8 23.4 34.7 .2 % .3% 6.6 % 1.3% 17.5%

This table presents estimates, based on simulated data, of the number of forecasters for whom
the null hypothesis of unbiasedness could be rejected (discoveries) and the ratio between the
number of those forecasters for whom the null hypothesis of unbiasedness could be erroneously
rejected and the number of discoveries (false discovery rate) according to the Bonferroni pro-
cedure (BC), Holm procedure (HC), Benjamini-Hochberg procedure (BH), Benjamini-Yekutieli
procedure (BY) and the uncorrected procedure (UC) described in the previous section. The
number of Monte Carlo replications is 1000.
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Table II. Estimated Number of Biased Forecasters: Real Output (Real Time)

Homoske’y-only F-stat Heteroske’y-robust F-stat
γ min Ti n BC HC BH BY UC n BC HC BH BY UC
Panel A: 1968:4 - 1979:1

.01 12 79 6 6 19 7 30 57 10 10 13 11 13

.01 20 45 5 5 8 5 14 36 7 7 9 8 9

.01 30 17 0 0 3 0 4 13 2 2 3 1 3

.05 12 79 9 9 34 19 38 57 12 12 13 13 13

.05 20 45 5 7 14 8 15 36 8 9 9 9 9

.05 30 17 3 3 4 3 4 13 3 3 3 3 3
.1 12 79 15 16 34 23 37 57 13 13 13 13 14
.1 20 45 8 9 15 10 16 36 9 9 9 9 10
.1 30 17 4 4 4 4 4 13 3 3 3 3 3
Panel B: 1981:3 - 2006:3

.01 12 88 29 31 44 34 51 81 1 1 1 1 9

.01 20 54 17 17 22 18 29 50 0 0 0 0 7

.01 30 31 5 5 5 5 14 28 0 0 0 0 2

.05 12 88 34 35 59 43 60 81 1 1 8 1 20

.05 20 54 18 18 32 22 33 50 1 1 6 0 15

.05 30 31 5 5 17 5 18 28 0 0 0 0 10

.1 12 82 36 37 62 52 64 81 2 2 9 1 28

.1 20 51 18 20 34 30 36 50 2 2 8 0 23

.1 30 31 5 6 18 15 19 28 0 0 0 0 15
Panel C: 1981:3 - 2012:4

.01 12 109 59 63 73 66 74 85 21 21 24 21 26

.01 20 70 39 41 44 42 45 54 18 18 21 18 23

.01 30 45 25 26 27 26 28 32 11 11 11 11 11

.05 12 109 65 66 81 72 87 85 21 21 26 24 30

.05 20 68 42 42 51 45 54 54 18 19 23 21 25

.05 30 45 26 27 32 28 34 32 11 11 11 11 13
.1 12 109 65 66 87 74 87 85 21 22 27 24 40
.1 20 68 42 43 54 46 54 54 19 21 25 22 33
.1 30 45 26 27 34 29 34 32 11 11 13 11 20

This table presents estimates, based on data from the Survey of Professional Forecasters, of the
number of forecasters for whom the null hypothesis of unbiasedness could be rejected according
to the Bonferroni procedure (BC), Holm procedure (HC), Benjamini-Hochberg procedure (BH),
Benjamini-Yekutieli procedure (BY) and the uncorrected procedure (UC) described in the pre-
vious section. The target variable is the real-time (second revision) growth rate of real output
(GNP for the subsample 1968:4 - 1979:1 and GDP for the subsamples 1981:3 - 2006:3 and 1981:3
- 2012:4).
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Table III. Estimated Number of Biased Forecasters: Real Output (Fully Revised)

Homoske’y-only F-stat Heteroske’y-robust F-stat
γ min Ti n BC HC BH BY UC n BC HC BH BY UC

1968:4 - 1979:1
.01 12 79 5 5 11 6 14 50 10 10 10 10 13
.01 20 45 4 4 7 4 9 31 8 8 8 8 10
.01 30 17 1 1 1 1 3 15 3 3 3 3 4
.05 12 79 9 10 14 11 21 50 10 10 13 10 18
.05 20 45 7 7 9 8 13 31 8 8 12 8 14
.05 30 17 2 2 3 2 6 15 3 3 5 3 7
.10 12 79 10 11 16 12 28 50 10 10 18 10 20
.10 20 45 8 8 12 8 17 31 8 8 14 10 16
.10 30 17 3 3 5 2 8 15 4 4 7 4 8
1981:3 - 2006:3
.01 12 88 59 64 73 67 74 39 8 8 8 8 9
.01 20 54 39 40 45 41 45 24 7 7 7 7 7
.01 30 31 24 24 26 24 26 13 5 5 5 5 5
.05 12 88 65 67 79 73 79 39 8 8 9 8 10
.05 20 54 40 42 48 45 48 24 7 7 7 7 8
.05 30 31 24 26 27 26 27 13 5 5 5 5 6
.10 12 88 67 70 80 76 80 39 8 9 9 9 10
.10 20 54 41 45 48 47 48 24 7 7 7 7 8
.10 30 31 24 27 27 27 27 13 5 5 6 5 6
1981:3 - 2012:4
.01 12 109 40 43 56 47 60 72 6 6 7 6 8
.01 20 70 24 25 33 27 35 49 5 5 7 6 7
.01 30 45 12 13 18 13 19 33 5 5 6 5 6
.05 12 109 45 47 68 56 72 72 7 7 8 7 10
.05 20 70 27 30 40 33 42 49 6 6 7 7 8
.05 30 45 15 16 22 18 24 33 6 6 7 6 7
.10 12 109 52 56 79 67 82 72 8 8 9 8 15
.10 20 70 31 32 44 37 48 49 7 7 8 7 13
.10 30 45 16 18 24 19 28 33 6 6 7 6 11

This table presents estimates, based on data from the Survey of Professional Forecasters, of the
number of forecasters for whom the null hypothesis of unbiasedness could be rejected according
to the Bonferroni procedure (BC), Holm procedure (HC), Benjamini-Hochberg procedure (BH),
Benjamini-Yekutieli procedure (BY) and the uncorrected procedure (UC) described in the pre-
vious section. The target variable is the fully revised (latest revision) growth rate of real output
(GNP for the subsample 1968:4 - 1979:1 and GDP for the subsamples 1981:3 - 2006:3 and 1981:3
- 2012:4).
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