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Abstract

This paper presents a simple model of strategic network formation with local com-

plementarities in e�ort levels and positive local externalities. Equilibrium networks

display - other than the complete and the empty network - a core-periphery structure,

which is commonly observed in empirical studies. Ex-ante homogenous agents may

obtain very di�erent ex-post outcomes. These �ndings are relevant for a wide range

of social and economic phenomena, such as educational attainment, criminal activity,

labor market participation and R&D expenditures of �rms.

Key Words: Network formation, peer e�ects, strategic complements, positive ex-

ternalities. JEL Codes: D62, D85.

1 Introduction

Peer e�ects and social structure play an important role in determining individual behavior

and aggregate outcomes in many social and economic settings. This has been documented

by a large body of empirical work, which �nds peer e�ects and network position crucial for

decisions concerning educational attainment, criminal activity, labor market participation

and R&D expenditures of �rms. In these settings an agent's optimal action and payo� is

thought to depend directly on the action or payo� of others (peer e�ects), while the relevant

reference group is determined by the network of relationships between agents (social struc-

ture). This stands in contrast to markets, where individuals interact through an anonymous

process of price formation.

This paper presents a model of strategic network formation in the presence of peer e�ects.

In accordance with empirical studies, peer e�ects are modeled as local positive externalities
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and guidance. I also thank Sergio Currarini, Andrea Galeotti, Paolo Pin, Brian Rogers and the participants
of the Networks Working Group at the European University Institute and participants of the UECE Lisbon
Meetings 2010 for helpful comments. All remaining errors are mine. Contact: timo.hiller@bristol.ac.uk,
Address: Department of Economics, University of Bristol, 8 Woodland Road, BS81TN, UK.
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and strategic complementarities.1 The setup is fairly simple. Agents simultaneously choose

a non-negative e�ort level and create links at a cost. We solve for two speci�cations of the

model. First, two-sided link formation, where linking cost are shared equally. Here, we use

Pairwise Nash equilibrium as equilibrium concept, since re�ects the bilateral nature of cre-

ating a link (and sharing the cost). Second, one-sided link formation, where linking cost are

borne unilaterally. This speci�cation allows us to employ Nash equilibrium.2 The meaning

of a link is that agents bene�t directly from e�orts exerted by their neighbors (local positive

externalities). We assume payo�s such that the value function is convex. That is, when

best responding, own payo�s are convex in the sum of e�ort levels of direct neighbors. For

both, one-sided and two-sided link formation, we show that equilibrium network structures

are of only three di�erent types: empty, core-periphery and complete.3 We de�ne a com-

plete core-periphery network as a network where all agents in the periphery are connected

to the core. For the case of linear-quadratic payo� functions, we provide necessary and suf-

�cient conditions for the existence of a star network in the two-sided speci�cation and for a

periphery-sponsored core-periphery network in the one-sided speci�cation. These structures

are of particular interest, since they are frequently observed in empirical work.

Two related papers in the empirical networks literature are Calvó-Armengol, Pattacchini

and Zenou (2005 and 2009). The authors use a detailed data set on friendship networks in

U.S. high schools (AddHealth) to test a structural model with linear-quadratic payo�s on a

�xed network. This allows for measurement of peer e�ects in education and delinquent be-

havior, respectively. In both studies Calvó-Armengol, Pattacchini and Zenou �nd a positive

relationship between grades and delinquency rates on the one hand and centrality on the

other hand. Network position turns out to be a key determinant for an individual's e�ort

level. This emphasizes the importance of social structure for peer in�uences, as opposed to

average in-group e�ects. In both papers local spillovers and strategic complementarities are

observed, much in line with the assumptions of my model. Further note that the linear-

quadratic payo� function used in their model is a special case of the class of payo� functions

considered here.

A recent paper by König, Tessone, and Zenou (2012) addresses link formation for the

linear-quadratic speci�cation. However, their link formation process is very di�erent. The

setup is dynamic and in each time period players play a two-stage game. In the �rst stage,

1See Hoxby (2000), Sacerdote (2001) for a treatment of peer e�ects in education, Glaeser, Sacerdote and
Scheinkman (1996), Case and Katz (1991) and Ludwig et al (2001) for criminal and delinquent behaviour,
Topa (2001) and Conley and Topa (2001) for labor markets and Cohen and Levinthal (1989, 1990) and Levin
and Reiss (1988) for R&D expenditure of �rms.

2Pairwise Nash equilibrium was �rst discussed in Jackson and Wolinsky (1996). For applications see, for
example, Goyal and Joshi (2003) and Belle�amme and Bloch (2004). The one-sided speci�cation follows
Bala and Goyal (2000).

3In a core-periphery network the set of agents can be partitioned into two sets, the core and the periphery,
such that all pairs of agents in the core are connected and no pair of agents in the periphery is connected.
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agents choose their e�ort levels on a �xed network, while in the second stage a randomly

selected player may create a new link in the current network, at no cost. Links decay

over time, with more valuable links decaying at a slower rate. König, Tessone, and Zenou

(2012) then introduce noise into the model and derive the stochastically stable networks.

Interestingly, these are shown to be nested split graphs, which subsume the core-periphery

structures obtained here.4 The approach undertaken by Galeotti and Goyal (2010) is similar

to mine. They also solve a simultaneous move game, where agents choose a non-negative,

continuous e�ort level and link formation is one-sided. Externalities are also positive and

local, but di�erent from the paper presented here, Galeotti and Goyal (2010) assume strategic

substitutes. The only strict equilibria in Galeotti and Goyal (2010) are (complete) core-

periphery networks, a network architecture for which we provide necessary and su�cient

conditions in the linear-quadratic case. This is interesting from a theoretical point of view,

as it shows that in a model with continuous e�ort levels, core-periphery networks are not a

feature of strategic substitutes alone, but may also arise under strategic complementarities.

The model presented by Baetz (2012) is also closely related. The setup is as in the one-sided

link formation speci�cation of my paper, but instead of convex value functions, Baetz assumes

concave value functions. A complete characterization is not yet obtainable, but it can be

shown that biregular bipartite graphs and core-periphery networks may be sustained in

equilibrium. Finally, Ballester, Calvó-Armengol and Zenou (2006) exhibits some similarities

with my work. Again the presence of a link allows agents to bene�t from each other's e�ort

levels and payo�s are linear-quadratic. Di�erent from my paper, however, Ballester, Calvó-

Armengol and Zenou (2006) assume not only local strategic complementarities, but also

allow for global strategic substitutes. The authors then link equilibrium actions to Bonacich

centrality on a �xed network.

The rest of the paper is organized as follows: Section 2 describes the model and introduces

the two-sided speci�cation. Section 3 presents the analysis and Section 4 concludes. The

proofs for the one-sided speci�cation are relegated to the Appendix.

2 The Two-Sided Model

2.1 Model Description

Let N = {1, 2, ..., n} with n ≥ 3 be the set of players. Each agent i chooses a personal

e�ort level xi ∈ X and announces a set of agents to whom he wishes to be linked to, which

we represent as a row vector gi = (gi,1, ..., gi,i−1, gi,i+1, ..., gi,n−1), with gi,j ∈ {0, 1} for each
j ∈ N\{i}. Assume X = [0,+∞) and gi ∈ Gi = {0, 1}n−1. The set of agent i′s strategies is

4A nested split graph is a graph such that, if the link between i and j exists and the degree of k is at
least as high as the degree of j, then the link between i and k also exists.
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denoted by Si = X × Gi and the set of strategies of all players by S = S1 × S2 × ... × Sn.
A strategy pro�le s = (x,g) ∈ S then speci�es the individual e�ort level for each player,

x = (x1, x2, ..., xn), and the set of intended links, g = (g1,g2, ...,gn). A link between i and

j, denoted with ḡi,j = 1, is created if and only if both agents intend to create a link. That is,

ḡi,j = 1 if gi,j = gj,i = 1, and ḡi,j = 0 otherwise. From g we thereby obtain the undirected

graph ḡ with ḡi,j = ḡj,i. The presence of a link ḡi,j = 1 allows players to directly bene�t

from the e�ort level exerted by the respective other. Let Ni(g) = {j ∈ N : gi,j = 1} be
the set of agents to which agent i extends a link and denote the corresponding cardinality

with ηi(g) = |Ni(g)|. De�ne the set of i′s neighbors in ḡ with Ni(ḡ) = {j ∈ N : ḡi,j = 1}
and de�ne ηi(ḡ) = |Ni(ḡ)|. The aggregate e�ort level of agent i′s neighbors in ḡ is written

as yi =
∑

j∈Ni(ḡ) xj. We drop the subscript of yi when it is clear from the context. Given

a network ḡ, ḡ + ḡi,j and ḡ − ḡi,j have the following interpretation. When ḡi,j = 0 in ḡ,

ḡ + ḡi,j adds the link ḡi,j = 1, while if ḡi,j = 1 in ḡ, then ḡ + ḡi,j = ḡ. Similarly, if ḡi,j = 1

in ḡ, ḡ − ḡi,j deletes the link ḡi,j, while if ḡi,j = 0 in ḡ, then ḡ − ḡi,j = ḡ. The network is

called empty and denoted with ḡe, if ḡi,j = 0 ∀i, j ∈ N and complete and denoted with ḡc if

ḡi,j = 1 ∀i, j ∈ N.
Payo�s of player i under strategy pro�le s = (x,g) are given by

Πi(s) = π(xi, yi)− ηi(g)k,

where k denotes the cost of extending a link. Gross payo�s π(xi, yi) are a function of own

e�ort, xi, and the sum of e�ort levels of direct neighbors, yi =
∑

j∈Ni(ḡ) xj. We assume strict

positive externalities and strict strategic complementarities in e�ort levels, so that ∂π(x,y)
∂y

> 0

and ∂2π(x,y)
∂x∂y

> 0. Further assume that ∂2π(x,y)
∂2x

< 0. The latter assumption, together with the

convexity of X, guarantees a unique maximizer, which is denoted by x̄(y). We also assume

x̄(y) > 0.5 From ∂2π(x,y)
∂x∂y

> 0 we know that ∂x̄(y)
∂y

> 0. Best response functions are assumed to

be either linear or concave, so that ∂2x̄(y)
∂2y

= 0 or ∂2x̄(y)
∂2y

< 0. Denote the value function with

v(y) = π(x̄(y), y) and assume that ∂2v(y)
∂2y

> 0. In order to guarantee existence, we further

assume that there exists a value of y such that ∂x̄(y)
∂y

< 1
n−1

.

One can easily check that π(xi, yi) = xi − β
2
x2
i + λxi

∑
j∈Ni(ḡ) xj ful�lls the above condi-

tions. The class of payo� functions described above therefore includes the linear-quadratic

payo� function in Ballester, Pattachini and Zenou (2005 and 2009). The payo� function

in Galeotti and Goyal (2010) is given by π(xi, yi) = f(xi +
∑

j∈Ni(ḡ) xj) − c(xi), where f

is assumed to be concave and c is linear. By making appropriate assumptions on f and c,

we can generate a model of positive externalities and strategic complements that �ts our

setup.6 Link formation in Galeotti and Goyal (2010) is one-sided and we cover this case in

5This assumption guarantees that there does not always exist a Pairwise Nash equilibrium that is empty
(for any linking cost).

6Arguably the simplest such speci�cation is to assume π(xi, yi) = (xi +
∑

j∈Ni(ḡ) xj)
2 − x3

i .
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the second part of the paper. First, however, we present the two-sided model and de�ne

pairwise Nash equilibrium (PNE).

A strategy pro�le s = (x,g) is a pairwise Nash equilibrium i�

(i) s is a Nash Equilibrium, and

(ii) for all ḡi,j = 0, if Πi(x
′
i, x
′
j,x−i,−j, ḡ + ḡi,j) > Πi(s), then Πj(x

′
i, x
′
j,x−i,−j, ḡ + ḡij) <

Πj(s), ∀x′i, x′j ∈ X.
Note that a network is pairwise Nash stable if it is both, a Nash equilibrium and pairwise

stable. Note also that due to the convexity of the value function, pairwise Nash stable and

pairwise stable networks coincide.7

2.2 Analysis

We start the analysis by providing a proof for the existence and uniqueness of a Nash

equilibrium on a �xed network. Part of the proof relies on a result provided by Kennan

(2001). As in Kennan's paper, a vector b is larger than a vector a, if and only if bi > ai

∀i ∈ N.

Proposition 1: For any �xed network, ḡ, there exists a unique NE in e�ort levels,

x∗(ḡ).

Proof. We discern two cases. First, assume linear best response functions, such that

x̄i(
∑

j∈Ni(ḡ) xj) = λ
β

∑
j∈Ni(g) xj + 1

β
. This allows us to use the existence result provided by

Ballester, Calvó-Armengol and Zenou (2006). A NE exists and is unique for β > λµ1(g),

where µ1(g) is the largest eigenvalue of the adjacency matrix of ḡ. The largest eigenvector

for a graph lies between the following bounds max{davg(ḡ),
√
dmax(ḡ)} ≤ µ1(ḡ) ≤ dmax(ḡ),8

where dmax(ḡ) is the maximum number of degree and davg(ḡ) the average degree in network

ḡ. Note that then the largest eigenvector for a graph with n agents is at most n − 1 (and

maximal and equal to n− 1 in the complete network, ḡc). Therefore, a su�cient condition

for the existence of a unique NE is that the slope of the best response function, λ
β
< 1

n−1
.

Second, assume strictly concave best response functions. De�ne the function fḡ : Xn → Xn

as

fḡ(x) =


x̄(
∑

j∈N1(ḡ) xj)
...

x̄(
∑

j∈Nn(ḡ) xj)

.

The best response function x̄(y) is assumed to be strictly concave. From strategic com-

plementarities we know that x̄(y) is strictly increasing and therefore f is increasing and

7For the relationship between pairwise Nash stability and Nash stability, see Calvó-Armengol and �lk�l�ç
(2009).

8See L. Lovasz, Geometric Representations of Graphs (2009).
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strictly concave. We can now apply a result provided by Kennan (2001), which is restated

here. Suppose f is an increasing and strictly concave function from Rn to Rn, such that

f(0) ≥ 0, f(a) > a for some positive vector a, and f(b) < b for some vector b > a. Then f

has a unique positive �xed point. Recall that x̄(0) > 0 and therefore f(0) > 0. To see that

there exists a vector a such that f(a) > a, choose a = (ε1, ..., εn) such that εi = ε < 1
n−1

x̄(0)

∀i ∈ N. The e�ort level of an agents with ηi(ḡ) neighbors is then given by ηi(ḡ)ε. Since x̄

is strictly increasing x̄(ηi(ḡ)ε) > x̄(0) > ηi(ḡ)ε. To show that f(b) < b, choose a vector

b =(b1, ..., bn) with b = bi ∀i ∈ N . The condition can be written as x̄(ηi(ḡ)b) < b, which

holds if b is su�ciently large, due to the assumption that ∂x̄(y)
∂y

< 1
n−1

for some value of y.

To show that b > a, note that we can choose ε (and therefore a) arbitrarily close to zero

for x̄(ηi(ḡ)ε) > x̄(0) > ηi(ḡ)ε to hold. Q.E.D.

The following Lemma shows that agents in a complete component exert the same e�ort

levels. This result will be useful for the equilibrium characterization.

Lemma 1: NE e�ort levels are equal for all players in a complete component.

Proof. Assume to the contrary that there exists a pair of players k and l, such that

x∗k 6= x∗l , and, without loss of generality, that x∗k > x∗l . Note that in a complete com-

ponent Nk(ḡ) \ {l} = Nl(ḡ) \ {k}. But then, if x∗k > x∗l , the sum of e�ort levels of l's

neighbors,
∑

j∈Nl(ḡ) x
∗
j , is larger than the sum of e�ort levels of k′s neighbors,

∑
j∈Nk(ḡ) x

∗
j .

We have reached a contradiction, as from strict strategic complementarities it follows that∑
j∈Nl(ḡ) x

∗
j >

∑
j∈Nk(ḡ) x

∗
j implies x∗l > x∗k. Q.E.D.

In Lemma 2 we show that e�ort levels are maximal in the complete network. We use this

result to prove Proposition 3.

Lemma 2: NE e�ort levels are maximal in the complete network.

Proof. Denote the Nash equilibrium e�ort level in the complete network, ḡc, with xc∗,

where xc∗ = x∗i (ḡ
c) ∀i ∈ N from Lemma 1. Start by deleting a link ḡi,j from ḡc and consider

each player's best response to xc∗in ḡc − ḡi,j. Agent i′s initial best response will be lower in
ḡc− ḡi,j than in ḡc, as

∑
j∈Ni(ḡc−ḡi,j) x

∗
j <

∑
j∈Ni(ḡc) x

∗
j . Iterating on best responses, any agent

l with ḡ∗i,l = 1 will decrease his e�ort level, and those sustaining links with l will decrease

their e�ort levels in turn, and so forth. The e�ort level of each agent is a decreasing sequence

of real numbers, which is bounded below by x̄(0).We have therefore established convergence

to a new equilibrium in ḡc − ḡi,j with x∗l (ḡc − ḡi,j) < x∗(ḡc) ∀l ∈ N. Note that any network

ḡ 6= ḡc can be obtained from ḡc by deleting a sequence of links. E�ort levels are weakly

decreasing at each step (strictly for any agent that is in the component from which a link is

deleted) and therefore e�ort levels are maximal in the complete network. Q.E.D.
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Next, we de�ne two cost threshold cost, k1and k2. The �rst threshold, k1, is equal to the

gross marginal payo�s when a pair of agents creates a link in the empty network. Note that

under Pairwise equilibrium we allow both agents creating the new link to adjust their e�ort

levels. The second threshold, k2, is de�ned as the average gross marginal payo�s of linking

to (n− 1) agents in the complete network. Proposition 2 shows that for linking cost smaller

than k1, the unique pairwise Nash equilibrium is the complete network, while for linking cost

larger than or equal to k1, there exists a pairwise Nash equilibrium such that the network is

empty. Proposition 3 shows that for linking cost larger than k2, the unique pairwise Nash

equilibrium is the empty network, while for linking cost smaller or equal to k2, there exists

a pairwise Nash equilibrium such that the network is empty.

De�nition 1: k1 = vi(x
∗
j(ḡ

e + ḡi,j))− vi(0) and k2 = v((n− 1)x∗(ḡc))− v(0)

Proposition 2: If k < k1, then the unique PNE is the complete network. If k ≥ k1,

then there exists a PNE such that the network is empty.

Proof. From Proposition 1 we know that there exists a unique equilibrium in a network

where the only link is between i and j, ḡ∗i,j = 1. Since i and j form a complete component,

x∗ = x∗i = x∗j (from Lemma 1) and the corresponding gross payo�s are given by v(x∗j(ḡ
e +

ḡi,j)) = π∗i (x
∗
i , x
∗
j). If k <vi(x∗j(ḡ

e + ḡi,j)) − vi(0) = k1, then a pair of agents i and j �nds

it pro�table to create the link ḡ∗i,j. Note that this is the least pro�table link in any network,

due to the convexity of the value function v and strict strategic complementarities in e�ort

levels. Therefore, every pair of agents must be connected for any k < k1 and the unique

PNE is the complete network. If, on the other hand k ≥vi(x∗j(ḡe + ḡi,j))− vi(0) = k1, then

no pair of agents can pro�tably deviate in the empty network. Therefore, for k ≥ k1 a PNE

exists such that the network is empty. Q.E.D.

Proposition 3: If k > k2, then the unique PNE is the empty network. If k ≤ k2, then

there exists a PNE such that the network is complete.

Proof. The relevant deviation to consider in a complete network is an agent deleting

all his links. To see this, note that due to the convexity of v, v(hxc∗) − v((h − 1)xc∗) <

v((n− 1)xc∗)− v((n− 2)xc∗) for all 0 < h < n− 1. That is, marginal payo�s are increasing

and an agent will want to delete all of his links, if any. Therefore, the maximum linking cost

that can be sustained in the complete network are given by v((n− 1)xc∗)− v(0) = k2. Next

we show that if k = k2, then there exists no PNE other than the complete network or the

empty network. Assume that the most pro�table deviation of an agent i in network ḡ 6= ḡc

consists of deleting h of his ηi(ḡ) =| Ni(ḡ) | links. Note that n − 1 ≥ ηi(ḡ) ≥ h. Denote

the network after proposed deviation with ḡ′ and the set of agents whose links are deleted

by the deviating agent i with H = {j : ḡi,j = 1 ∧ ḡ′i,j = 0}. We can then compare average

payo�s per link in the complete network ḡc∗ with payo�s in ḡ 6= ḡc and write
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v((n−1)xc∗)−v(0)
n−1

≥ v(ηi(ḡ)xc∗)−v(ηi(ḡ)xc∗−hxc∗)
ηi(ḡ)−h >

v(
∑

j∈Ni(ḡ) x
∗
j )−v(

∑
j∈Ni(ḡ) x

∗
j−

∑
j∈H x∗j )

ηi(ḡ)−h .

The �rst inequality follows from the convexity of v, n− 1 ≥ ηi(ḡ) and h ≥ 0. The second

inequality follows from the convexity of v and ηi(ḡ)xc∗ − hxc∗ >
∑

j∈Ni(g) x
∗
j −

∑
j∈H x

∗
j

and hxc∗ >
∑

j∈H x
∗
j (for the last two inequalities, recall that e�ort levels are maximal in

the complete network). Therefore, for linking cost k > k2, no links can be sustained and

the unique PNE is the empty network. For k ≤ k2 a PNE exists such that the network

is complete, since no agent �nds it pro�table to delete his links from v((n−1)xc∗)−v(0)
n−1

= k2.

Q.E.D.

Lemma 3 shows that k1 < k2. We have therefore shown that, for linking cost smaller

than k1, the unique PNE is the complete network, while for linking cost larger than k2 the

unique PNE network is the empty network. For linking cost k ∈ [k1, k2] the complete and

the empty network are a PNE.

Lemma 3: k1 < k2.

Proof. k2 − k1 = v((n − 1)x∗(ḡc)) − vi(x
∗
j(ḡ

e + ḡi,j)). From Lemma 2 we know that

x∗(gc) > x∗j(g
e + ḡi,j) and since v is increasing, k2 − k1 > 0. Q.E.D.

Next, we formally de�ne a core− periphery network as a network, such that the set of

agents can be partitioned into two sets, where all pairs of agents within the �rst set (the

core) are connected and no pair of agents within the second set (the periphery) is connected.

Note that this de�nition does not state anything about links between pairs of agents where

one agent is in the core and the other is in the periphery. A complete core − periphery

network is de�ned as a core-periphery network, in which all agents in the core are linked

to all agents in the periphery. Note that the star network is a special case of a complete

core-periphery network.

De�nition 2: A network g is a core− periphery network if the set of agents N can be

partitioned into two sets C(ḡ) (the core) and P (ḡ) (the periphery), such that ḡi,j = 1 ∀i, j ∈
C(ḡ) and ḡi,j = 0 ∀i, j ∈ P (ḡ). A complete core− periphery network is a core− periphery
network such that ḡi,j = 1 ∀i ∈ C(ḡ) and ∀j ∈ P (ḡ). A star is a a complete core−periphery
network such that | C(ḡ) |= 1.

In the following we provide three Lemmas which are useful for establishing our �rst main

result in Proposition 4. Proposition 4 shows that any network that is not complete, empty,

or core-periphery is not a PNE. In Lemma 4 we prove that in any PNE, if an agent i

is linked to agent l, then agent i must also be linked to any agent k with higher or equal

e�ort level than agent l. This is a direct consequence of the convexity of the value function.

Lemma 5 then shows that in any PNE, agents with same e�ort levels must be connected to
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the same set of agents, while in Lemma 6 we prove that the neighborhoods of agents with

lower e�ort levels are contained in the neighborhoods of agents with higher e�ort levels.

Lemma 4: If ḡ∗i,l = 1, then ḡ∗i,k = 1 for all agents k with x∗k ≥ x∗l .

Proof. For ḡ∗i,l = 1 to be part of a PNE, it must be that agent i and agent j can not

pro�tably deviate by deleting the link. For agent i this condition reads v(
∑

j∈Ni(ḡ∗)
x∗j) −

v(
∑

j∈Ni(ḡ∗)
x∗j − x∗l ) ≥ k. From the convexity of the value function it then follows that

linking to any agent k with x∗k ≥ x∗l is also pro�table for agent i. To see this, note that

v(
∑

j∈Ni(ḡ∗)
x∗j + x∗k) − v(

∑
j∈Ni(ḡ∗)

x∗j) > v(
∑

j∈Ni(ḡ∗)
x∗j) − v(

∑
j∈Ni(ḡ∗)

x∗j − x∗l ) ≥ k. For

agent l to not be able to pro�tably deviate by deleting his link with agent i, we need that

v(
∑

j∈Nl(ḡ∗)
x∗j)− v(

∑
j∈Nl(ḡ∗)

x∗j −x∗i ) ≥ k. Note next that, for x∗k ≥ x∗l to hold we must have∑
j∈Nk(ḡ∗) x

∗
j ≥

∑
j∈Nl(ḡ∗)

x∗j , which follows directly from strict strategic complementarities.

Therefore, v(
∑

j∈Nk(ḡ∗) x
∗
j+x

∗
i )−v(

∑
j∈Nl(ḡ∗)

x∗j) > v(
∑

j∈Nl(ḡ∗)
x∗j)−v(

∑
j∈Nl(ḡ∗)

x∗j−xi) ≥ k.

We have therefore shown that if ḡ∗i,l = 1, then agent i �nds it pro�table to link to any agent

k with x∗k ≥ x∗l , while any agent k �nds it pro�table to link to agent i and therefore ḡ∗i,k = 1

for all agents k with x∗k ≥ x∗l . Q.E.D.

Lemma 5: In any PNE, x∗i = x∗k ⇔ Ni(ḡ
∗) \ {k} = Nk(ḡ

∗) \ {i}.

Proof. First, Ni(ḡ
∗) \ {k} = Nk(ḡ

∗) \ {i} ⇒ x∗i = x∗k. If ḡ
∗
i,k = 0, then i and k

access the same e�ort level, i.e. yi =
∑

j∈Ni(ḡ∗)
x∗j = yk =

∑
j∈Nk(ḡ∗) x

∗
j and therefore

x∗i = x∗k. Assume next that ḡ∗i,k = 1 and, without loss of generality, that x∗i > x∗k. But

then k accesses a higher e�ort level than i, yi =
∑

j∈Ni(ḡ∗)
x∗j < yk =

∑
j∈Nk(ḡ∗) x

∗
j , and we

have reached a contradiction. Second, x∗i = x∗k ⇒ Ni(ḡ
∗) \ {k} = Nk(ḡ

∗) \ {i}. Assume

to the contrary that x∗i = x∗k and Ni(ḡ
∗) \ {k} 6= Nk(ḡ

∗) \ {i}. Note that for x∗i = x∗k,

e�ort levels accessed must be equal by strict strategic complementarities, so that yi = yk.

There must therefore exist an agent l, such that l ∈ Nk(ḡ
∗) and l /∈ Ni(ḡ

∗). For the link

ḡ∗k,l = 1 to be in place in ḡ∗ we must have that v(
∑

j∈Nk(ḡ∗) x
∗
j)− v(

∑
j∈Nk(ḡ∗) x

∗
j − x∗l ) ≥ k.

From yi = yk and the convexity of the value function we then reach a contradiction since

v(
∑

j∈Ni(ḡ∗)
x∗j +xl)−v(

∑
j∈Nk(ḡ∗) x

∗
j) > v(

∑
j∈Nk(ḡ∗) x

∗
j)−v(

∑
j∈Nk(ḡ∗) x

∗
j −x∗l ) ≥ k. Q.E.D.

Lemma 6: In any PNE, x∗i ≤ x∗k ⇔ Ni(ḡ
∗) \ {k} ⊆ Nk(ḡ

∗) \ {i}.

Proof. First, Ni(ḡ
∗)\{k} ⊆ Nk(ḡ

∗)\{i} ⇒ x∗i ≤ x∗k. If ḡ
∗
i,k = 0, then k accesses a weakly

higher e�ort level, i.e. yi =
∑

j∈Ni(ḡ∗)
x∗j ≤ yk =

∑
j∈Nk(ḡ∗) x

∗
j and therefore x∗i ≤ x∗k. Assume

next that ḡ∗i,k = 1 and, without loss of generality that x∗i > x∗k. But then k accesses a strictly

higher e�ort level than i, yi =
∑

j∈Ni(ḡ∗)
x∗j < yk =

∑
j∈Nk(ḡ∗) x

∗
j , and we have reached a

contradiction. Second, x∗i ≤ x∗k ⇒ Ni(g
∗) \ {k} ⊆ Nk(g

∗) \ {i}. Assume to the contrary

that x∗i ≤ x∗k and there exists an agent l such that l ∈ Ni(ḡ
∗) and l /∈ Nk(ḡ

∗). For the link
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ḡ∗i,l = 1 to be in place in ḡ∗ we must have that v(
∑

j∈Ni(ḡ∗)
x∗j) − v(

∑
j∈Ni(ḡ∗)

x∗j − x∗l ) ≥ k.

But from yi ≤ yk and the convexity of the value function we reach a contradiction since

v(
∑

j∈Nk(ḡ∗) x
∗
j +xl)− v(

∑
j∈Nk(ḡ∗) x

∗
j) > v(

∑
j∈Ni(ḡ∗)

x∗j)− v(
∑

j∈Ni(ḡ∗)
x∗j −x∗l ) ≥ k. Q.E.D.

We are now in the position to prove Proposition 4, which states that in any PNE, such

that there exists a pair of agents with di�erent e�ort levels, the network must display a

core-periphery structure.

Proposition 4: In any PNE with a pair of agents i and j, such that x∗i 6= x∗j , the

network displays a core-periphery structure.

Proof. Rank agents by their e�ort levels in increasing order, such that x∗1 ≤ x∗2 ≤ ... ≤
x∗n−1 ≤ x∗n. We know from Lemma 1 that the network is not complete, since there exists a

pair of agents i and j such that x∗i 6= x∗j . The network is not empty, as agents have identical

payo� functions and singleton agents display equal e�ort levels, x̄(0). First, we show that the

two lowest ranked agents, agent 1 and agent 2, are not connected. Assume to the contrary

that ḡ∗1,2 = 1. From Lemma 4 we know that i must be connected to all agents, since x∗j ≥ x∗2

∀j ≥ 2. Lemma 6 then implies that the network is complete, since Ni(ḡ
∗)\{j} ⊆ Nj(ḡ

∗)\{i}
holds for agents j with x∗j ≥ x∗1 ∀j ≥ 1. But then x∗i = x∗j ∀i, j ∈ N by Lemma 1 and we have

reached a contradiction. Since the network is neither empty nor complete, at least one link

exists. Pick the agent i with the lowest subscript who has a link. If i has more than one link,

pick the link to the agent with the lowest subscript j.We discern two cases. First, agent i and

j are adjacent. As i is the agent with the lowest subscript to sustain a link, all agents with

lower subscripts have no links. All agents with a subscript higher or equal to i are connected

to each other. Again by Lemma 4 agent i is connected to all agents with subscripts higher or

equal than j and by Lemma 6, ḡ∗l,m = 1 ∀l,m ≥ i. The periphery, P (ḡ∗), consists of agents

with subscripts k < i, while the core, C(ḡ∗), consists of agents with subscripts k ≥ i. Second,

agent i and j are not adjacent. Note that since ḡ∗i,j = 1 and x∗i ≤ x∗j−1, we know by Lemma

6 that the link between j − 1 and j, ḡ∗j−1,j = 1, also exists. Next, check for the link ḡ∗j−2,j−1.

If ḡ∗j−2,j−1 = 0, then by Lemma 6 no agent with a subscript lower than j − 2 is connected

to j − 1. Furthermore, no pair of agents with subscripts of lower or equal than j − 2 is

connected. Assume to the contrary that there exists a pair of nodes l,m with l ≤ m < j− 2

and ḡ∗l,m = 1. By Lemma 4 we must then have that ḡ∗l,j−1 = 1. This, however, contradicts

Lemma 6, since ḡ∗j−2,j−1 = 0. The periphery, P (ḡ∗), consists of agents with subscripts k < j,

while the core, C(ḡ∗), consists of agents with subscripts k ≥ j. If ḡ∗j−2,j−1 = 1, check for the

link ḡ∗j−3,j−2. If ḡ
∗
j−3,j−2 = 0, then by above argument the periphery, P (ḡ∗), consists of agents

with subscripts k < j−1, while the core, C(ḡ∗), consists of agents with subscripts k ≥ j−1.

If ḡ∗j−3,j−2 = 1, proceed in descending order until a pair of adjacent agents is found that is

not connected and de�ne the core and periphery accordingly. Note that such a link exists,
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since i and j were assumed to be not adjacent and therefore ḡ∗i,i+1 = 0. This concludes the

proof. Q.E.D.

Proposition 5 provides an existence result for core-periphery networks. If δπ(x,y)
δxδy

is suf-

�ciently small, i.e. if strategic complementarities are not too strong, then a core-periphery

network exists with at least three agents in the core for appropriately chosen k. Denote

the cardinality of the core with c(ḡ∗) =| C(ḡ∗) | and the cardinality of the periphery with

p(ḡ∗) =| P (ḡ∗) |. For ease of notation we will write c and p, respectively.

Proposition 5: For
δπ(x,y)
δxδy

su�ciently small, there exist a linking cost k, such that a

PNE displays a core− periphery network with | C(ḡ∗) |≥ 3.

Proof. Partition the set of agents into the core, C(g∗), with ḡ∗i,j = 1 ∀i, j ∈ C(g∗), and

the periphery, P (g∗), with ḡ∗i,j = 0 ∀i, j ∈ P (g∗). Further assume that ḡ∗i,j = 0 ∀i ∈ C(g∗)

and ∀j ∈ P (g∗). That is, we have a complete component, consisting of C(g∗), and a set

of singletons, P (g∗). Denote the PNE e�ort level of an agent in the core of size c with

x∗c . Recall from Lemma 1 that agents in the core display the equal e�ort levels. Note that

for δπ(x,y)
δxδy

su�ciently small, e�ort levels are arbitrarily close to x̄(0). The condition for

an agent in the core to not delete all his links (recall the argument from Proposition 3) is

given by v((c−1)x∗c)−v(0)
c−1

≥ k. Note that for δπ(x,y)
δxδy

su�ciently small this is arbitrarily close to
v((c−1)x̄(0))−v(0)

c−1
. Denote with x′p and x

′
c the e�ort level in a deviation where a pair of agents

p ∈ P (g∗) and c ∈ C(g∗) create a link. The condition for an agent in the periphery to not

�nd it pro�table to link to an agent in the core is given by v(x′c) − v(0) < k. Again, for
δπ(x,y)
δxδy

su�ciently small, this is arbitrarily close to v(x̄(0)) − v(0). The condition can then

be written as, for δπ(x,y)
δxδy

su�ciently small, v((c−1)x̄(0))−v(0)
c−1

> v(x̄(0)) − v(0). The inequality

follows from the convexity of v and c ≥ 3. We can therefore �nd a value of k such that
v((c−1)x∗cl)−v(0)

l−1
' v((c−1)x̄(0))−v(0)

l−1
> k > v(x̄(0))− v(0) ' v(x′c)− v(0). That is, p will not �nd

it pro�table to link to c. Q.E.D.

The following Lemma shows that for n = 3, the only PNE networks are the complete

and the empty network. Note that with n = 3, the core can consist of at most two agents.

Lemma 7: For n = 3 the only PNE networks are the complete and the empty network.

Proof. There are two con�gurations to consider. First, the star and second, two con-

nected agents. We start by showing that the star network is not a PNE for n = 3. Assume

to the contrary that ḡ∗is a star network and n = 3. Denote the equilibrium e�ort levels

with x∗c and x
∗
p for the center of the star and the two agents in the periphery, respectively.

Note �rst that in a star x∗c > x∗p. We will show this for general n. Assume to the con-

trary that x∗p ≥ x∗c . But then the agent in the center accesses an e�ort level of (n − 1)x∗p,
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while the periphery accesses x∗c . From x∗p ≥ x∗c it follows that (n − 1)x∗p > x∗c and therefore

x∗c((n− 1)x∗p) > x∗p(x
∗
c). We have reached a contradiction. Next, consider a deviation where

the two agents in the periphery create a link. Denote the e�ort level of the peripheral agents

after proposed deviation with x
′
p. From strategic complementarities we know that x

′
p > x∗p.

The e�ort level accessed by each agent after the deviation is then x
′
p + x∗c > x∗p + x∗c > 2x∗p.

The deviating agents access a higher e�ort level than the agent in the center, while each

incurring the cost of two links. That is, if it is pro�table for the center of the star to sus-

tain his links, then it is pro�table for the periphery to link to each other. More formally,

v(x
′
p+x

∗
c)−v(x∗c) > v(x∗p+x

∗
c)−v(x∗c) > v(2x∗p)−v(x∗p) > k. The inequalities then follow from

x∗c > x∗p and the convexity of the value function. Assume next, that n = 3 and ḡ∗consists of

two connected agents and the third agent is a singleton. Denote by x∗c the e�ort level of the

two connected agents and consider a deviation where a new link is created. Note again that

x
′
p > x∗c . By an analogous reasoning as above, v(x

′
p + x∗c) − v(x∗c) > v(x∗c) − v(0) > k and

v(x
′
p)− v(0) > v(x∗c)− v(0) > k. This exhausts all possibilities and we can conclude that the

only possible PNE networks for n = 3 are the complete and the empty network. Q.E.D.

The results obtained so far were obtained for the general class of payo� functions de�ned

in the model description. For Proposition 6 we assume special case of the linear-quadratic

speci�cation of Calvó-Armengol, Pattacchini and Zenou (2005 and 2009). Recall that this

payo� function is given by π(xi, yi) = xi− β
2
x2
i + λxi

∑
j∈Ni(ḡ) xj. In the following we obtain

a necessary and su�cient condition for the existence of a PNE with a star network. The

conditions are then restated as su�cient conditions in Corollary 1: If n ≥ 6 and either β,

the own concavity parameter is su�ciently large, or λ, the parameter determining strategic

complementarities, is su�ciently small, then there exists a linking cost k, such that star

network is a PNE. Note further that the convexity of the value function in the linear-

quadratic case is given by λ2

β
, so that one can also state Corollary 1 in terms of the convexity

of the value function.

Proposition 6: If best response functions are linear, there exists a linking cost k, such

that a PNE with a star network exists if and only if β > (2 +
√

2)λ and one of the following

conditions holds:

• 1 + β2(5β−3λ)
(β−λ)3 ≤ n < 1 + β2

λ2 or

• 1 + β2

λ2 < n ≤ 1 + β2

λ2 +
√

β2(β+λ)2(β2−4βλ+2λ2)
(β−λ)2λ4 .

Proof. See the Appendix.

Corollary 1: If best response functions are linear and λ su�ciently small, or β su�-

ciently large, then there exists a linking cost k, such that the star network is a PNE for

n ≥ 6.
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Proof. See the Appendix.

3 The One-Sided Model

3.1 Model Description

The one-sided speci�cation di�ers from the two-sided model in that only one agent needs to

extend a link and bear the cost, in order for a pair of agents to bene�t from each others e�ort

level. This allows us to use Nash equilibrium. Note that under Pairwise Nash equilibrium

pairs of agents can create only one link at a time and both agents may adjust their e�ort

levels. Under Nash equilibrium we consider deviations where an agent may extend multiple

links (and simultaneously delete any subset of existing ones), but only the deviating agent

may adjust e�ort levels. In the following we describe the model for the one-sided case. The

proofs are mostly similar to the ones in the two-sided speci�cation and therefore relegated

to the Appendix.

Let again N = {1, 2, ..., n} be the set of players, with n ≥ 3 . As before, each player

i chooses a personal e�ort level xi ∈ X and a set of links, which are represented as a row

vector gi = (gi,1,..., gii−1,gii+1,..., gin), where gij ∈ {0, 1} for each j ∈ N\{i}. Again assume

X = [0,+∞) and gi ∈ Gi = {0, 1}n−1. The set of strategies of i is denoted by Si = X×Gi and

the set of strategies of all players by S = S1×S2× ...×Sn. A strategy pro�le s = (x,g) ∈ S
again speci�es the individual e�ort level of each player, x = (x1,x2,..., xn), and a set of links

g = (g1,g2, ...,gn). Agent i is said to sustain or extend a link to j, if gi,j = 1 and to receive a

link from j, if gj,i = 1. The network of relations g is a directed graph, i.e. it is possible that

gi,j 6= gj,i. Let Ni(g) = {j ∈ N : gi,j = 1} be the set of agents i has extended a link to and

de�ne ηi(g) = |Ni(g)|. Call the closure of g an undirected network, denoted by ḡ =cl(g),

where ḡi,j = max{gi,j, gj,i} for each i and j in N. Denote with Ni(ḡ) ={j ∈ N : ḡi,j = 1}
the set of players that are directly connected to i. The e�ort level of i′s direct neighbors

can then be written as yi =
∑

j∈Ni(ḡ) xj. We will drop the subscript of yi when it is clear

from the context. Given a network g, g + gi,j and g− gi,j have the following interpretation.

When gi,j = 0 in g, g + gi,j adds the link gi,j = 1, while if gi,j = 1 in g, then g + gi,j = g.

Similarly, if gi,j = 1 in g, g− gi,j deletes the link gi,j, while if gi,j = 0 in g, then g− gi,j = g.

The network is said to be empty and denoted by ḡe if ḡi,j = 0 ∀i, j ∈ N and complete and

denoted by ḡc if ḡi,j = 1 ∀i, j ∈ N.
Payo�s are of player i under strategy pro�le s = (x,g) are given by

Πi(s) = π(xi, yi)− ηi(g)k,

where k denotes the cost of extending a link. The assumptions on the payo� function are

as in the one-sided speci�cation. A Nash equilibrium is a strategy pro�le s∗=(x∗,g∗) such

that
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Πi(s
∗
i , s
∗
−i) ≥ Πi(si, s

∗
−i), ∀si ∈ Si, ∀i ∈ N,

Denote the directed equilibrium network by g∗ and the undirected equilibrium network

by ḡ∗.

3.2 Analysis

Note that in Proposition 1, Lemma 1 and Lemma 2 we assume the network to be �xed and

therefore these results carry over to the one-sided speci�cation. We start by showing that,

in any NE, there can be at most one link between any pair of players.

Lemma 8: In any NE s∗=(x∗,g∗), there is at most one directed link between any pair

of agents i, j ∈ N.

Proof. See the Appendix.

In Lemma 9 we show, again due to the convexity of the value function, that in any Nash

equilibrium, if i extends a link to l, then i must also be connected to agent k, for any k such

that x∗k ≥ x∗l . Note that we do not require that i extends a link to k, but only that i and k

are connected. That is, k may be extending the link to agent i.

Lemma 9: In any NE s∗=(x∗,g∗), if g∗i,l = 1 then ḡ∗i,k = 1 ∀k : x∗k ≥ x∗l .

Proof. See the Appendix.

The following Lemma shows that if i extends a link to l, then any agent k with a higher

or equal e�ort level than i must also be connected to l. Again this follows from the convexity

of the value function.

Lemma 10: In any NE s∗=(x∗,g∗), if g∗i,l = 1 then ḡ∗k,l = 1 ∀k : x∗k ≥ x∗i .

Proof. See the Appendix.

Similar to the two-sided speci�cation, we again de�ne two bounds, k1and k2. In Propo-

sition 7 we show that for k smaller than k1, the unique Nash equilibrium is such that the

network is complete, while for k larger or equal than k1, there exists a Nash equilibrium

such that the network is empty. Proposition 8 shows that for linking cost larger than k2, the

unique Nash equilibrium is such that the network is empty, while for k smaller or equal to k2,

there exists a Nash equilibrium such that the network is complete. Note that the thresholds

k1 and k2 are de�ned di�erently from the two-sided speci�cation. Due to the convexity of

the value function, the most pro�table deviation in the empty network is to extend a link to
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all remaining agents (where no agent other than the deviating agent adjust his e�ort level).

The second threshold, k2, is the maximal linking cost that can be sustained in the complete

network. Note that the network is directed in the one-sided speci�cation and, due to the

convexity of the value function, the agent with the fewest incoming links has the greatest

incentives to deviate. That is, the network that may sustain the maximum linking cost is

the one where incoming and outgoing links are evenly distributed. With n agents there are
n(n−1)

2
pairs of agents. For n odd this implies that when incoming and outgoing links are

evenly distributed, each agent has n−1
2

incoming and n−1
2

outgoing links. For n even, n
2
agents

have n
2
incoming and n−2

2
outgoing links and n

2
agents have n−2

2
incoming and n

2
outgoing

links. For simplicity we assume in the following that n is odd. Analogous results are easily

derived for n even.

De�nition 2: k1 = v((n−1)x̄(0))−v(0)
n−1

and k2 = 1
n−1

2

(v((n− 1)x∗(gc))− v(n−1
2
x∗(gc)).

Proposition 7: If k < k1, then the unique NE network is the complete network. If

k ≥ k1, then there exists a NE such that the network is empty.

Proof. See the Appendix.

Before proceeding to Proposition 8, we show that in any Nash equilibrium network that

is neither empty or complete, there exists and agent that extends at least one link and has

less than n−1
2

incoming links. This result is useful when proving that the network that can

be sustained at the highest linking cost is the complete network with evenly distributed

incoming links.

Lemma 11: In any NE network that is neither empty nor complete, there exists an

agent with ηi(g) ≥ 1 and ηi(ḡ)− ηi(g) < n−1
2
.

Proof. See the Appendix.

Proposition 8: If k > k2, then the unique NE is the empty network. If k ≤ k2, then

there exists a NE such that the network is complete.

Proof. See the Appendix.

Lemma 12 shows that k1 < k2. We have therefore shown that, for linking cost smaller

than k1, the unique NE is the complete network, while, for linking cost larger than k2, the

unique NE network is the empty network. For linking cost k ∈ [k1, k2] the complete and

the empty network are Nash equilibria.

Lemma 12: 0 < k1 < k2.
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Proof. See the Appendix.

The following Lemma shows that in any Nash equilibrium, if a pair of agents exert same

e�ort levels, then they must share the same neighborhoods. The proof is a direct consequence

of the convexity of the value function.

Lemma 13: In any NE s∗=(x∗,g∗), x∗i = x∗k ⇔ Ni(ḡ
∗) \ {k} = Nk(ḡ

∗) \ {i}.

Proof. See the Appendix.

Lemma 14 shows that in any Nash equilibrium, if an agent i exerts a weakly lower e�ort

level than another agent k, then agent i′s neighborhood is contained in k′s neighborhood.

Lemma 14: In any NE s∗=(x∗,g∗), x∗i ≤ x∗k ⇔ Ni(ḡ
∗) \ {k} ⊆ Nk(ḡ

∗) \ {i}.

Proof. See the Appendix.

In Proposition 9 we show that in any Nash equilibrium, such that there exists a pair of

agents with di�erent e�ort levels, the network displays a core-periphery structure.

Proposition 9: In any NE with a pair of agents i and j, such that x∗i 6= x∗j , the network

is a core-periphery network.

Proof. See the Appendix.

Next, we de�ne a periphery-sponsored core-periphery network as a core-periphery network

where all agents in the periphery extend links to all agents in the core. A core-sponsored

core-periphery network is a core-periphery network where all agents in the core extend links

to all agents in the periphery.

De�nition 3: A network g is a periphery− sponsored core− periphery network if the

set of agents N can be partitioned into two sets C(g) (the core) and P (g) (the periphery),

such that ḡi,j = 1 ∀i, j ∈ C(g), ḡi,j = 0 ∀i, j ∈ P (g) and gi,j = 1∀i ∈ C(g) and ∀i ∈ P (g).

A network g is a core − sponsored core − periphery network if the set of agents N can

be partitioned into two sets C(g) (the core) and P (g) (the periphery), such that ḡi,j = 1

∀i, j ∈ C(g), ḡi,j = 0 ∀i, j ∈ P (g) and gi,j = 1∀i ∈ C(g) and ∀i ∈ P (g).

Lemma 15: There does not exist a NE such that the network is a core sponsored

complete core-periphery network.

Proof. See the Appendix.

The results obtained so far were obtained for the general class of payo� functions de�ned

in the model description. For Proposition 10 we assume special case of the linear-quadratic
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speci�cation of Calvó-Armengol, Pattacchini and Zenou (2005 and 2009). In the following we

obtain a necessary and su�cient condition for the existence of a PNE with a star network.

The conditions are then restated as su�cient conditions in Corollary 2: If n ≥ 6 and either β,

the own concavity parameter is su�ciently large, or λ, the parameter determining strategic

complementarities, is su�ciently small, then there exists a linking cost k, such that star

network is a NE. Note further that the convexity of the value function in the linear-

quadratic case is given by λ2

β
, so that one can also state Corollary 1 in terms of the convexity

of the value function.

Proposition 10: If best response functions are linear, there exists a linking cost k, such

that a NE with a periphery-sponsored core-periphery network exists if and only if the number

of agents in the core, c, is smaller than n−1
2

and λ ≤ c(n−c)β
n−1+c((c−n)2−1)

+
√

(n−c−1)2(c(n+1)−c2+1)β2

(n−c−1+(n−c)2)
.

Proof. See the Appendix.

Corollary 3: If best response functions are linear andλ su�ciently small, or β su�-

ciently large, then for any periphery sponsored core-periphery network with c < n−1
2
, there

exists a linking cost k, such that g∗ is a Nash equilibrium.

Proof. See the Appendix.

4 Conclusion

This paper provides a model of endogenous network formation with peer e�ects for a general

class of payo� functions, where peer e�ects are assumed to induce positive local externalities

and strategic complementarities in e�ort levels. These features are descriptive of a wide

range of social and economic and phenomena, such as educational attainment, crime, labour

market participation and R&D expenditures of �rms. We solve the model for a two-sided

speci�cation, where both agents need to agree to form a link, and a one-sided speci�cation,

where links can be created unilaterally. In both cases the only Pairwise Nash equilibrium

and Nash equilibrium network structures are of three types: the empty, complete, and core-

periphery networks. For the case of linear-quadratic payo� functions, we provide necessary

and su�cient conditions for the existence of a star (in the two-sided speci�cation) and a

periphery-sponsored core-periphery network (in the one sided-speci�cation).
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6 APPENDIX A - The Two-Sided Model

Proposition 6: If best response functions are linear, there exists a linking cost k, such that

a PNE with a star network exists if and only if β > (2 +
√

2)λ and one of the following

conditions holds:

• 1 + β2(5β−3λ)
(β−λ)3 ≤ n < 1 + β2

λ2 or

• 1 + β2

λ2 < n ≤ 1 + β2

λ2 +
√

β2(β+λ)2(β2−4βλ+2λ2)
(β−λ)2λ4 .

Proof. First, note that in a star network, all agents in the periphery access the same

e�ort level, x∗c , and therefore all agents in the periphery display the same e�ort level, x∗p. The

agent in the center, c, therefore maximizes xc ∈ argmaxxc∈Xxc− β
2
x2
c+λxc(n−1)xp, while for

an agent in the periphery we have xp ∈argmaxxp∈Xxp− β
2
x2
p +λxpxc. The reaction functions
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are given by xc(xp) = 1+λxp(n−1)

β
and xp(xc) = 1+λxc

β
. Equilibrium e�ort levels are given by

x∗c=
β+λ(n−1)
β2−λ2(n−1)

and x∗p = β+λ
β2−λ2(n−1)

. Plugging equilibrium e�ort levels back into the payo�

function, yields equilibrium gross payo�s of π∗c = β(β+λ(n−1))2

2(β2−λ2(n−1))2 and π∗p = β(β+λ)2

2(β2−λ2(n−1))2 . Next,

we calculate deviation payo�s of when two agents in the periphery create a link. Denote

with x1′
p and x2′

p the e�ort levels of the two agents involved in the new link. A deviating

agent maximizes x1′
p ∈argmaxx1′

p ∈Xx
1′
p −

β
2
(x1′

p ) + λx1′
p (xc + x2′

p ), which yields the following

reaction function x1′
p (x∗c , x

2′
p ) =

1+λ(x∗c+x2′
p )

β
. Due to symmetry, deviation e�ort levels are

given by x1′
p (x∗c , x

2′
p ) = x2′

p (x∗c , x
1′
p ) = x′p = β2+λβ

(β−λ)(β2−λ2(n−1))
and corresponding deviation

gross payo�s by π′p = β3(β+λ)2

2(β−λ)2(β2−λ2(n−1))2 . For the existence of a star network we now need

two conditions to hold. First, we want to �nd a linking cost k, such that an agent in the

periphery �nds it pro�table to link to the center of the star, but, given the link with the

center, does not �nd it pro�table to link to another agent in the periphery. This condition

can be written as β(β+λ)2

2(β2−λ2(n−1))2 − 1
2β
≥ β3(β+λ)2

2(β−λ)2(β2−λ2(n−1))2 − β(β+λ)2

2(β2−λ2(n−1))2 , where 1
2β

are the

payo�s of a singleton, so that on the left hand side we have marginal payo�s of linking to

the center and on the right hand side marginal payo�s of linking to another agent in the

periphery, given the link with the center of the star. Second, we want to �nd a linking cost

k, such that the center of the star �nds it pro�table to link to the periphery, but that again

the periphery does not �nd it pro�table to link to another agent in the periphery. This

condition can be written as ( β(β+λ(n−1))2

2(β2−λ2(n−1))2 − 1
2β

)/(n−1) ≥ β3(β+λ)2

2(β−λ)2(β2−λ2(n−1))2 − β(β+λ)2

2(β2−λ2(n−1))2 .

Combining these two conditions one can show that they simultaneously hold if and only if

β > (2 +
√

2)λ and one of the following conditions holds: 1 + β2(5β−3λ)
(β−λ)3 ≤ n < 1 + β2

λ2 or

1 + β2

λ2 < n ≤ 1 + β2

λ2 +
√

β2(β+λ)2(β2−4βλ+2λ2)
(β−λ)2λ4 .9 Q.E.D.

Corollary 1: If best response functions are linear and λ su�ciently small, or β su�-

ciently large, then there exists a linking cost k, such that the star network is a PNE for

n ≥ 6.

Proof. First the case where λ is su�ciently small. Note that then β > (2 +
√

2)λ holds.

Furthermore, for given β an λ su�ciently small, 1 + β2

λ2 is arbitrary large so that n < 1 + β2

λ2 .

For 1 + β2(5β−3λ)
(β−λ)3 ≤ n to hold note that limλ→0 (1 + β2(5β−3λ)

(β−λ)3 ) = 6. Next, β su�ciently large.

Again, β > (2 +
√

2)λ holds. Furthermore, for given λ and β su�ciently large, n < 1 + β2

λ2

holds. For 1 + β2(5β−3λ)
(β−λ)3 ≤ n to hold note that limβ→∞ (1 + β2(5β−3λ)

(β−λ)3 ) = 6.10 Q.E.D.

9These calculations were executed in Mathematica and the codes are available upon request.
10This calculations was executed in Mathematica.
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7 APPENDIX B - The One-Sided Model

Lemma 8: In any NE s∗=(x∗,g∗) there is at most one directed link between any pair of

agents i, j ∈ N.

Proof. Assume that s∗=(x∗,g∗) is a Nash equilibrium and that gi,j = gj,i = 1. But then

i can pro�tably deviate by cutting the link to j, such that gi,j = 0. Gross payo�s remain

unchanged, while i's linking total cost decrease by k. Q.E.D.

Lemma 9: In any NE s∗=(x∗,g∗), if g∗i,l = 1 then ḡ∗i,k = 1 ∀k : x∗k ≥ x∗l .

Proof. For g∗i,j = 1 to be part of a NE, it must be that v(
∑

j∈Ni(ḡ) x
∗
j)− v(

∑
j∈Ni(ḡ) x

∗
j −

x∗l ) ≥ k . Assume, contrary to the above statement, that ḡ∗i,k = 0 for some k with x∗k ≥ x∗l .

This, however, can not be a NE, since i �nds it pro�table to then extend a link to agent k.

To see this, note that v(
∑

j∈Ni(g) x
∗
j +xk)−v(

∑
j∈Ni(g) x

∗
j) > v(

∑
j∈Ni(g) x

∗
j)−v(

∑
j∈Ni(g) x

∗
j−

x∗l ) ≥ k, where the inequalities follow from the convexity of the value function. We have

reached a contradiction and therefore ḡ∗i,k = 1 for all agents k with x∗k ≥ x∗l . Q.E.D.

Lemma 10: In any NE s∗=(x∗,g∗), if g∗i,l = 1 then ḡ∗k,l = 1 ∀k : x∗k ≥ x∗i .

Proof. For g∗i,j = 1 to be part of a NE, it must be that v(
∑

j∈Ni(ḡ) x
∗
j)− v(

∑
j∈Ni(ḡ) x

∗
j −

x∗l ) ≥ k . Assume, contrary to the above statement, that ḡ∗k,l = 0 for some k with x∗k ≥
x∗i . Note next that, for x∗k ≥ x∗i to hold we must have

∑
j∈Nk(ḡ) x

∗
j ≥

∑
j∈Ni(ḡ) x

∗
j , which

follows directly from strict strategic complementarities. Therefore, v(
∑

j∈Nk(g) x
∗
j + x∗l ) −

v(
∑

j∈Nk(g) x
∗
j) > v(

∑
j∈Ni(g) x

∗
j) − v(

∑
j∈Ni(g) x

∗
j − xl) ≥ k, where the inequalities again

follow from the convexity of the value function and we have reached a contradiction. Q.E.D.

De�nition 2: k1 = v((n−1)x̄(0))−v(0)
n−1

and k2 = 1
n−1

2

(v((n− 1)x∗(gc))− v(n−1
2
x∗(gc)).

Proposition 7: If k < k1, then the unique NE network is the complete network. If

k ≥ k1, then there exists a NE such that the network is empty.

Proof. If k < k1 then an agent �nds it pro�table to create a link to all remaining n− 1

agents in an empty network, since average payo�s per link are given by v((n−1)x̄(0))−v(0)
n−1

with
v((n−1)x̄(0))−v(0)

n−1
> k. This is the most pro�table deviation in an empty network, due to the

convexity of the value function. Assume there exists a g∗ /∈ {ge,gc} with k < k1. Consider

the deviation of an agent i, with ηi(ḡ∗) < n−1, who links to all agents he is not connected to

in g∗, i.e. k /∈ Ni(ḡ
∗). To simplify notation, we write ηi forηi(ḡ∗) in the following. Average

marginal payo�s per link of proposed deviation are given by

v(
∑

j∈Ni\{i}
x∗j )−v(

∑
j∈Ni(ḡ

∗) x
∗
j )

n−ηi−1
.
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We can now write

v(
∑

j∈Ni\{i}
x∗j )−v(

∑
j∈Ni(ḡ

∗) x
∗
j )

n−1−ηi ≥ v((n−1)x̄(0))−v(ηix̄(0))
n−1−ηi .

To see that the inequality holds, note �rst that
∑

j∈Ni(ḡ∗)
x∗j ≥ ηix̄(0), since ηi(ḡ∗) =|

Ni(ḡ
∗) |and x̄(0) are the lowest possible e�ort levels in any NE. Second, that

∑
j∈Ni\{i} x

∗
j −∑

j∈Ni(ḡ∗)
x∗j ≥ (n− 1− ηi)x̄(0). That is, when linking to the remaining n− 1− ηi agents in

proposed deviation, the minimum additional e�ort level accessed is given by (n−1−ηi)x̄(0).

The condition above then follows from the convexity of the value function. Note next that

v((n−1)x̄(0))−v((ηix̄(0))
n−1−ηi > v((n−1)x̄(0))−v(0)

n−1

also holds, again from the convexity of the value function, and we therefore have

v(
∑

j∈Ni\{i}
x∗j )−v(

∑
j∈Ni(ḡ

∗) x
∗
j )

n−1−ηi ≥ v((n−1)x̄(0))−v(0)
n−1

> k.

Therefore, if k < k1 a pro�table deviation exists in any g∗ 6= gc. It is easy to see that

there then exists a NE with g∗ = gc for k < k1. If, on the other hand k ≥ k1, then no agent

can pro�tably deviate in the empty network, and a NE exists such that g∗ = ge. Q.E.D.

Lemma 11: In any NE network that is neither empty nor complete, there exists an

agent with ηi(g) ≥ 1 and ηi(ḡ)− ηi(g) < n−1
2
.

Proof. We discern two cases. First, everyone agent extends at least one link and receives

at least n−1
2

links. That is, ηi(g) ≥ 1 and ηi(ḡ)− ηi(g) ≥ n−1
2
∀i ∈ N. But then there are at

least n(n−1)
2

links in the network and the network is complete. Second, not everyone extends

a link. Assume there are k < n agents who extend a link. Since there are no incoming links

from the remaining n−k agents, the maximum number of incoming links among the k agents

extending a link is given by k(k−1)
2

. That is, on average an agent has k−1
2

incoming links.

The maximum of the minimum number of incoming links is given by k−1
2
. Since k < n, there

must be one agent with at most k−1
2
< n−1

2
incoming links. Q.E.D.

Proposition 8: If k > k2, then the unique NE is the empty network. If k ≤ k2, then

there exists a NE such that the network is complete.

Proof. We will �rst show that the highest cost that can be sustained under the complete

network is given by k2. Denote the NE e�ort level in a complete network with xc∗. In the

complete network the agent extending the highest number of links (and therefore receiving

the fewest number of links) is the one with the highest incentives to delete his links. To see

this, write

v((n−1)xc∗)−v((n−1−h)xc∗)
n−1−h > v((n−1)xc∗)−v((n−1−h′)xc∗)

n−1−h′ ,
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where h′ > h > 0. The inequality holds by the convexity of the value function. The

network that minimizes the maximum number of links extended by agents in a network

is such that each agent extends n−1
2

links (and receives n−1
2

links). Therefore, the highest

linking cost that can be sustained in a complete network are given by k = k2. It is easy to

see that for k < k2 there exists a NE such that ḡ∗ = ḡc. Assume next, and contrary to

the above statement, that for k > k2 there exists a NE such that ḡ∗ 6= ḡe. k2 was derived

as the maximal payo�s sustainable in a complete network, and therefore for k > k2 there

is does not exist a NE such that ḡ∗ = ḡc. Next, we show that for k > k2 there also does

not exist a NE with ḡ∗ /∈ {ḡe, ḡc}. Assume the contrary. Pick an agent with less than n−1
2

incoming links, ηi(ḡ∗)− ηi(g∗) < n−1
2
, and at least one outgoing link, ηi(g∗) ≥ 1. We know

from Lemma 8 that such an agent exists in ḡ∗ /∈ {ḡe, ḡc}. We consider a deviation where this

agent deletes all his links. To see that this is pro�table, note that in the complete network,

the average marginal payo� from extending links to all remaining agents is larger for an

agent with n−1
2

incoming links, than for an agent with fewer incoming links, i.e. for an agent

withηi(ḡ∗)−ηi(g∗) < n−1
2
. From ηi(ḡ

∗)−ηi(g∗) < n−1
2

we have n−1−(ηi(ḡ
∗)−ηi(g∗)) > n−1

2
.

The following inequality then holds again by the convexity of v.

v((n−1)xc∗)−v(n−1
2
xc∗)

n−1
2

> v((n−1)xc∗)−v((ηi(ḡ
∗)−ηi(g∗))xc∗)

n−1−(ηi(ḡ∗)−ηi(g∗)) .

Note that, given ηi(ḡ
∗) − ηi(g

∗) < n−1
2

incoming links, average marginal payo�s are

highest when linking to all remaining agents with e�ort level xc∗. Asηi(ḡ∗) is at most n− 1,

we can write

v((n−1)xc∗)−v((ηi(ḡ
∗)−ηi(g∗))xc∗)

n−1−(ηi(ḡ∗)−ηi(g∗)) ≥ v(ηi(ḡ
∗)xc∗)−v((ηi(ḡ

∗)−ηi(g∗))xc∗)
ηi(g∗)

.

Last, note that e�ort levels are maximal by Lemma 2 and by the convexity of v we

therefore have

v(ηi(ḡ
∗)xc∗)−v((ηi(ḡ

∗)−ηi(g∗))xc∗)
ηi(g∗)

>
v(
∑

j∈Ni(ḡ
∗) x
∗
j )−v(

∑
j∈Ni(g

∗) x
∗
j )

ηi(g∗)
.

Average marginal payo�s are highest in the complete network where each agent extends
n−1

2
links and therefore for k > k2 the empty network is the unique NE.

Q.E.D.

Lemma 12: 0 < k1 < k2.

Proof. Recall the de�nitions of k1 = v((n−1)x̄(0))−v(0)
n−1

and k2 =
2(v((n−1)xc∗)−v((n−1

2
)xc∗))

n−1
.

The inequalities then follow from x̄(0) > 0, xc∗ > x̄(0) and the convexity of the value

function. Q.E.D.

Lemma 13: In any NE s∗=(x∗,g∗), x∗i = x∗k ⇔ Ni(ḡ
∗) \ {k} = Nk(ḡ

∗) \ {i}.
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Proof. First, Ni(ḡ
∗) \ {k} = Nk(ḡ

∗) \ {i} ⇒ x∗i = x∗k. If ḡ
∗
i,k = 0, then i and k access

the same e�ort level, i.e. yi =
∑

j∈Ni(ḡ∗)
x∗j = yk =

∑
j∈Nk(ḡ∗) x

∗
j and therefore x∗i = x∗k.

Assume next that ḡ∗i,k = 1 and, without loss of generality that x∗i > x∗k. But then k accesses

a higher e�ort level than i, yi =
∑

j∈Ni(ḡ∗)
x∗j < yk =

∑
j∈Nk(ḡ∗) x

∗
j , and we have reached a

contradiction. Second, x∗i = x∗k ⇒ Ni(ḡ
∗) \ {k} = Nk(ḡ

∗) \ {i}. Assume to the contrary that

x∗i = x∗k and Ni(ḡ
∗)\{k} 6= Nk(ḡ

∗)\{i}. Note that for x∗i = x∗k, e�ort levels accessed must be

equal by strict strategic complementarities, so that yi = yk. For Ni(ḡ
∗) \ {k} 6= Nk(ḡ

∗) \ {i}
to hold, there must exist an agent l, such that l ∈ Nk(ḡ

∗) and l /∈ Ni(ḡ
∗). For the link ḡ∗k,l = 1

to be in place in ḡ∗ we must have that v(
∑

j∈Nk(ḡ∗) x
∗
j)− v(

∑
j∈Nk(ḡ∗) x

∗
j −x∗l ) ≥ k. But from

yi = yk and the convexity of the value function v(
∑

j∈Ni(ḡ∗)
x∗j + xl) − v(

∑
j∈Nk(ḡ∗) x

∗
j) >

v(
∑

j∈Nk(ḡ∗) x
∗
j)− v(

∑
j∈Nk(ḡ∗) x

∗
j − x∗l ) ≥ k holds and we reach a contradiction. Q.E.D.

Lemma 14: In any NE s∗=(x∗,g∗), x∗i ≤ x∗k ⇔ Ni(ḡ
∗) \ {k} ⊆ Nk(ḡ

∗) \ {i}.

Proof. First, Ni(ḡ
∗) \ {k} ⊆ Nk(ḡ

∗) \ {i} ⇒ x∗i ≤ x∗k. If ḡ
∗
i,k = 0, then k accesses

a weakly higher e�ort level, i.e. yi =
∑

j∈Ni(ḡ∗)
x∗j ≤ yk =

∑
j∈Nk(ḡ∗) x

∗
j and therefore

x∗i ≤ x∗k. Assume next that ḡ∗i,k = 1 and, without loss of generality, that x∗i > x∗k. But

then k accesses a strictly higher e�ort level than i, yi =
∑

j∈Ni(ḡ∗)
x∗j < yk =

∑
j∈Nk(ḡ∗) x

∗
j ,

and we have reached a contradiction. Second, x∗i ≤ x∗k ⇒ Ni(ḡ
∗) \ {k} ⊆ Nk(ḡ

∗) \ {i}.
Assume to the contrary that x∗i ≤ x∗k and there exists an agent l such that l ∈ Ni(ḡ

∗)

and l /∈ Nk(ḡ
∗). For the link ḡ∗i,l = 1 to be in place in ḡ∗, either g∗i,l = 1 or g∗l,i = 1. If

g∗i,l = 1, then v(
∑

j∈Ni(ḡ∗)
x∗j) − v(

∑
j∈Ni(ḡ∗)

x∗j − x∗l ) ≥ k must hold. But from yi ≤ yk

and the convexity of the value function can write v(
∑

j∈Nk(ḡ∗) x
∗
j + xl) − v(

∑
j∈Nk(ḡ∗) x

∗
j) >

v(
∑

j∈Ni(ḡ∗)
x∗j) − v(

∑
j∈Ni(ḡ∗)

x∗j − x∗l ) ≥ k and we have reached a contradiction. We can

apply an analogous argument for g∗l,i = 1. Q.E.D.

Proposition 9: In any NE with a pair of agents i and j, such that x∗i 6= x∗j , the network

is a core-periphery network.

Proof. Rank agents by their e�ort levels in increasing order, such that x∗1 ≤ x∗2 ≤ ... ≤
x∗n−1 ≤ x∗n. We know from Lemma 1 that the network is not complete, since there exists a

pair of agents i and j such that x∗i 6= x∗j . The network is not empty, as agents have identical

payo� functions and singleton agents display same e�ort levels, x̄(0). We start by showing

that the two lowest ranked agents, agent 1 and agent 2, are not connected. Two cases are

to be discerned. First, g∗1,2 = 1. From Lemma 9 we know that agent 1 must be connected

to all agents remaining agents, since x∗j ≥ x∗2 ∀j ≥ 2. Lemma 14 implies that the network

is complete since Ni(g
∗) \ {j} ⊆ Nj(g

∗) \ {i} holds for agents j with x∗j ≥ x∗1 ∀j ≥ 1. But

then x∗i = x∗j ∀i, j ∈ N by Lemma 1 and we have reached a contradiction. Second, g∗2,1 = 1.

From Lemma 10 we know that agent 1 is connected to all agents, since x∗j ≥ x∗2 ∀j ≥ 2 and

the above argument applies. Since the network is neither empty, nor complete, at least one
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link exists. Pick the agent i with the lowest subscript that is involved in a link and, if i is

involved in more than one link, consider the link to the agent with the lowest subscript j.

We discern two cases, g∗i,j = 1 and g∗j,i = 1. First, g∗i,j = 1. We can discern two subcases.

First, agent i and j are adjacent. As i is the agent with the lowest subscript involved in

a link, all agents with lower subscripts have no links. All agents with a subscript higher

or equal to i are connected to each other. To see this, note that by Lemma 9, agent i is

connected to all agents with a subscript higher or equal than j. But then by Lemma 14,

ḡ∗l,m = 1 ∀l,m ≥ i. The periphery, P (g∗), consists of agents with subscripts k < i, while

the core, C(g∗), consists of agents with subscripts k ≥ i. The argument for the case where

g∗j,i = 1 is analogous. Assume next that i and j are not adjacent. Note that since g∗i,j = 1

and from x∗i ≤ x∗j−1, we know by Lemma 10 that the link between j − 1 and j, ḡ∗j−1,j = 1,

also exists. Next, check for the link ḡ∗j−2,j−1. If ḡ
∗
j−2,j−1 = 0, then by Lemma 10 no agent

with a subscript lower than j − 2 is connected to j − 1. Furthermore, no pair of agents with

subscripts of lower or equal than j−2 is connected. Assume to the contrary that there exists

a pair of nodes l,m with l ≤ m < j − 2 and ḡ∗l,m = 1. By Lemma 9 we must then have

that ḡ∗l,j−1 = 1. This, however, contradicts Lemma 14, since ḡ∗j−2,j−1 = 0. The periphery,

P (g∗), consists of agents with subscripts k < j, while the core, C(g∗), consists of agents with

subscripts k ≥ j. If ḡ∗j−2,j−1 = 1, check for the link ḡ∗j−3,j−2. If ḡ
∗
j−3,j−2 = 0, then by above

argument the periphery, P (g∗), consists of agents with subscripts k < j − 1, while the core,

C(g∗), consists of agents with subscripts k ≥ j − 1. If ḡ∗j−3,j−2 = 1, proceed in descending

order until a pair of adjacent agents is found that is not connected and de�ne the core and

periphery accordingly. Note that such a pair of agents exists, since i and j were assumed to

not be adjacent and therefore ḡ∗i,i+1 = 0. This concludes the proof. Q.E.D.

Lemma 15: There does not exist a NE such that the network is a core sponsored

complete core-periphery network.

Proof. Assume to the contrary that such a network is a Nash equilibrium. But then an

agent in the periphery receives links from all agents in the core, while an agent in the core

receives at most c − 1 links. Therefore, by the convexity of the value function, if an agent

�nds it pro�table to link to all agents in the periphery, then agents in the periphery �nd it

pro�table to link to all remaining agents in the periphery. Q.E.D.

Proposition 10: If best response functions are linear, there exists a linking cost k, such

that a NE with a periphery-sponsored core-periphery network exists if and only if the number

of agents in the core, c, is smaller than n−1
2

and λ ≤ c(n−c)β
n−1+c((c−n)2−1)

+
√

(n−c−1)2(c(n+1)−c2+1)β2

(n−c−1+(n−c)2)
.

Proof. Denote with c =| C(g∗) | . First, note that in a complete core-periphery network,

all agents in the periphery access the same e�ort level, cx∗c , and therefore all agents in

the periphery display the same e�ort level, x∗p. Agents in the core display identical e�ort

25



levels by an argument analogous to the one in Lemma 1. The agents in the core maximize

xc ∈ argmaxxc∈Xxc − β
2
x2
c + λxc((n − 1)xp + (c − 1)x̂c), where xp is the e�ort level of

agents in the periphery and x̂c and are e�ort levels of (other) agents in the core. For an

agent in the periphery we have xp ∈argmaxxp∈Xxp− β
2
x2
p +λxp(cxc). The reaction functions

are given by xc(xp, x̂c) = 1+λx′c(c−1)+λxp(n−c)
β

and xp(xc) = 1+λcxc
β

, respectively. Equilibrium

e�ort levels are given by x∗c=
β+λ(n−c)

β2−λ2c(n−c)−βλ(c−1)
and x∗p = β+λ

β2−λ2c(n−c)−βλ(c−1)
. Plugging

equilibrium e�ort levels back into the payo� function, yields equilibrium gross payo�s of

π∗c = β(β+λ(n−c))2

2(β2−λ2c(n−c)−βλ(c−1))2 and π∗p = β(β+λ)2

2(β2−λ2c(n−c)−βλ(c−1))2 . Next, we calculate deviation

payo�s of of an agent in the periphery linking to all remaining agents in the periphery. A

deviating agent maximizes xdp ∈argmaxxdp∈Xx
d
p −

β
2
(x2

p)
2 + λxdp(cxc + (n − c − 1)xp), which

yields the following reaction function xdp(x
∗
c , x
∗
p) =

1+λcx∗c+λx∗p(n−c−1)

β
. The deviation e�ort

level is given by xdp(x
∗
c , x
∗
p) = (β+λ)(β+λ(n−k−1))

β(β2−λ2c(n−c)−λβ(c−1))
and corresponding deviation gross payo�s

by πdp = (β+λ)2(β+λ(n−k−1))2

2β(β2−λ2c(n−c)−βλ(c−1))2 . For the existence of a periphery-sponsored core-periphery

network we need two conditions to hold. First, we want to �nd a linking cost k, such that

an agent in the core �nds it pro�table to link to agents in the core and, second, that agents

in the periphery �nd it pro�table to link to the core, but not to the periphery. Note that if

agents in the periphery �nd it pro�table to extend links to the core, agents in the core �nd it

pro�table to extend the if agents in the periphery. To see this, note that an agent in the core

has n−c−1 incoming links and extends c−1 links to the core, while an agent in the periphery

has zero incoming links and extends c links to the core. The relevant condition then reads

( β(β+λ)2

2(β2−λ2c(n−c)−βλ(c−1))2 − 1
2β

)/c ≥ ( (β+λ)(β+λ(n−k−1))
β(β2−λ2c(n−c)−λβ(c−1))

− β(β+λ)2

2(β2−λ2c(n−c)−βλ(c−1))2 )/(n − c − 1).

One can then show that this condition holds if and only if the number of agents in the core,

c, is smaller than n−1
2

and λ ≤ c(n−c)β
n−1+c((c−n)2−1)

+
√

(n−c−1)2(c(n+1)−c2+1)β2

(n−c−1+(n−c)2)
. 11 Q.E.D.

Corollary 3: If best response functions are linear andλ su�ciently small, or β su�-

ciently large, then for any periphery sponsored core-periphery network with c < n−1
2
, there

exists a linking cost k, such that g∗ is a Nash equilibrium.

Proof. Note �rst that λ ≤ c(n−c)β
n−1+c((c−n)2−1)

+
√

(n−c−1)2(c(n+1)−c2+1)β2

(n−c−1+(n−c)2)
is increasing in β and

therefore, for β su�ciently large, λ ≤ c(n−c)β
n−1+c((c−n)2−1)

+
√

(n−c−1)2(c(n+1)−c2+1)β2

(n−c−1+(n−c)2)
holds. Next,

note that c(n−c)β
n−1+c((c−n)2−1)

+
√

(n−c−1)2(c(n+1)−c2+1)β2

(n−c−1+(n−c)2)
> 0 for c < n−1

2
and β > 0. Therefore, for

λ su�ciently small, the inequality again holds. Q.E.D.

11This calculation was executed in Mathematica and the codes are available upon request.
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