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Abstract

This paper investigates the identification and estimation of the least square linear predictor

for the conditional expectation of an outcome variable Y given covariates (X,Z ′) from data

consisting of two independent random samples; the first sample contains replications of the

variables (Y, Z ′) but not X, while the second sample contains replications of (X,Z ′) but not Y .

The contribution is to characterize the identified set of the least square linear predictor when

no assumption on the joint distribution of (Y,X,Z ′), except for the existence of second order

moments, is imposed. We show that the identified set is not a singleton, so the least square

linear predictor of interest is set identified. The characterization is used to construct a sample

analog estimator of the identified set. The asymptotic properties of the estimator are established

and its implementation is illustrated via Monte Carlo exercises.
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1. Introduction

Least square linear predictors are employed to approximate conditional expectations while

guarding against misspecification and the curse of dimensionality (see Goldberger, 1991 or Wooldridge,

2002 for a textbook exposition). Economists who use survey data for inferences about least square

linear predictors often face the situation where variables of interest are observed in different sam-

ples (c.f., Meghir and Palme, 1999; Bover, 2005; Fang, Keane and Silverman, 2008; Flavin and

Nakagawa, 2008; Bostic, Stuart and Painter, 2009; Brzozowski, Gervais, Klein, and Suzuki, 2010).

Consumption and wealth, for example, are seldom measured together for a single sample of house-

holds. Separate measurements however are more often available. In the US, for instance, the

Consumer Expenditure Survey measures consumption and other household socioeconomic charac-

teristics but wealth for a sample of households. The Survey of Consumer Finances measures wealth

and socioeconomic characteristics but consumption for a different sample of households. In this con-

text, complications arise because the least square linear predictor depends on moments of variables

observed in different samples. The prominent method adopted to overcome these complications

is to impose additional assumptions on the distribution of the variables of interest. Assumptions

include restricting the dependence between the variables observed in different samples (c.f., Rassler,

2002) or requiring the presence of an instrumental variable observed in all samples (c.f., Angrist and

Krueger, 1992; Arellano and Meghir, 1992). In general, these assumptions are not testable. Then,

it is worthy of consideration to analyze the sensitivity of inference to a failure of them. Little is

known however about what can be ascertained about least square linear predictors in such a case,

except that the underlying conditional expectation is unidentified (Cross and Manski, 2002; Ridder

and Moffit, 2007).

Motivated by the previous situation, we investigate what can be learned about the least square

linear predictor for the conditional expectation of an outcome variable Y given covariates (X,Z ′)

from data consisting of two independent samples; the first sample gives information on variables

(Y, Z ′) but not X, while the second sample gives information on variables (X,Z ′) but not Y . Here

Y is a scalar outcome variable (such as household expenditures), X is a scalar covariate (such as

household wealth) and Z is a vector of other covariates possibly including a constant. Complications

arise because the unknown least square linear predictor depends on the joint distribution of the
2



variables (Y,X,Z ′) but none of the samples has joint information on these variables. The main

contribution of this paper is to characterize the identified set of the least square linear predictor,

that is, the set of least square linear predictors compatible with knowledge of the distribution of

(Y, Z ′) and of (X,Z ′). This characterization is useful to evaluate the sensitivity of inferences to

a failure of the assumptions commonly invoked to achive point identification of the least square

linear predictor of interest. It is based on the insight by Ridder and Moffit (2007) that Hoeffding-

Frechet distributions bound the joint distribution of (Y,X,Z ′) from knowledge of their marginals.

We employ these bounds to show that the identified set of the least square linear predictor is a line.

We derive an analytical expression for the endpoints of this line, and employ the sample analog

method to estimate them. We establish the asymptotic properties of the resulting sample analog

estimator following existing results on estimation of convex identified sets (c.f., Beresteanu and

Molinari, 2008; Bontemps, Magnac and Maurin, 2012). We illustrate the implementation of the

estimator via Monte Carlo experiments.

The problem of learning about the least square linear predictor when data are available from

two independent samples has been studied in several strands of literature under different concerns

and methodologies.1 The first strand of related literature focuses on matching-based estimation of

linear regression coefficients (see the survey by Ridder and Moffit, 2007). In this strand of literature,

complications arising from the lack of observations on (Y,X) are overcome by imputing the values

of Y in the second sample (or the values of X in the first sample). The imputation procedures

employed are valid under the assumption that Y and X are independent conditional on Z. This

assumption however often finds very little justification in practice. We do not assume either that Y

and X are independent conditional on Z or that the conditional expectation of Y given (X,Z ′) is

linear. Our results are thus useful to see what is lost when the conditional independence assumption

and/or the linearity assumption not valid. It turns out that what is lost is point identification. The

second strand of related literature studies estimation when instrumental variables are available (e.g.,

Angrist and Krueger, 1992: Arellano and Meghir, 1992). In this strand of literature, complications

arising from the lack of observations on (Y,X) are overcome by assuming that one component

in the list of common variables Z is an instrument. Although this assumption does guarantee

1The fact that the two samples are independent distinguishes our problem from the problem with samples with
common units (e.g., Devereux and Triphati, 2009; Komarova, Nekipelov, Yakovlev, 2012, and references therein).
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point identification, it is often the case that instrumental variables are not available. Our results

are useful to estimate the least square linear predictor when there are no instruments common to

both samples. The last strand of related literature focuses on nonparametric identification of the

conditional expectation of Y given (X,Z ′) when the common variables Z are discrete (e.g., Vitale,

1979; Cross and Manski, 2002; Molinari and Peski, 2006). In this strand of literature, identification

analysis is carried out without imposing additional assumption delivering point identification of the

conditional expectation of Y given (X,Z ′). Our work is in the same spirit, but applies to a different

setting. First, we do not restrict the common variables Z to be discrete. Second, our focus is on

the least square linear predictor rather than the conditional expectation itself.

The outline of the paper is as follows. In the next section, we define the least square linear

predictor, describe the data, and discuss an example fitting our setup. In Section 3, we present the

main result of the paper, namely the characterization of the identified set. We also discuss the force

of additional assumptions to shrink the identified set to a singleton. In Section 4, we describe the

sample analog estimator of the identified set and establish its asymptotic properties. In Section 4,

we illustrate via Monte Carlo exercises the finite-sample performance of the estimator. In Section 5,

we discuss how our identification results can be extended to the problem of measuring the variance

of treatment effect and to the ecological correlation problem. Section 6 concludes.

2. The Setup

In this Section, we first set out the assumptions defining the least square linear predictor.

We then describe the available data consisting of two independent random samples with common

variables. Finally, we discuss an example fitting this setup.

The parameter of interest in this paper is a vector of coefficients representing the least square

linear predictor under square loss of a conditional expectation. To define this vector, we need

to introduce some notation. We consider a collection {1, .., i, .., N} of observational units (i.e.,

individuals, firms, etc.) to be studied at a given period in time. For each observational unit i, we

define the random vector (Yi, Xi, Z
′
i) on a probability space endowed with probability measure Po.

We suppress the subscript i in the notation whenever this can be done without causing confusion.

We use the expression E to denote the expectation associated to Po. We employ uppercase letters
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to denote random variables and lowercase letters to denote their realizations.

We define the vector of coefficients of interest by the following assumption:

Assumption 1 (Parameter of Interest) Knowledge is sought about the coefficients βo = (β1o, β
′
2o)
′

defined by:

(A1.i) βo := arg min
b1,b2

E[(Y −Xb1 − Z ′b2)2]

where the joint distribution of (Y,X,Z ′), say F oY,X,Z , is such that:

(A1.ii) The random vector (Y,X,Z ′) has finite variance;

(A1.iii) The variance of (X,Z ′) has rank 1 + dZ , where dZ is the dimension of Z.

An equivalent way of writing (A1.i) is βo := arg min
b1,b2

E[(E(Y |X,Z) − Xb1 − Z ′b2)2], which shows

that βo can be interpreted as the least square linear predictor of the conditional expectation of Y

given (X,Z ′) under quadratic loss. The moment restriction (A1.ii) and the rank restriction (A1.iii)

secure that βo is finite. The first order condition associated to the quadratic programming problem

(A1.i) is E[(Y − Xβ1o − Z ′β2o)(X,Z ′)] = 0. This uncorrelatedness restriction is weaker than the

mean-independence restriction E[(Y −Xβ1o − Z ′β2o)|X,Z ′] = 0, which defines βo as the vector of

partial derivatives of the conditional expectation of Y given (X,Z ′). Indeed, Assumption (A1) does

not restrict the conditional expectation of Y given (X,Z ′) to be a linear function. This distinction

is relevant in our context because uncorrelatedness and mean-independence shall deliver different

identification results for the conditional expectation Y given (X,Z ′).

We now describe the available data. If a common sample of (Y,X,Z ′) were available, iden-

tification of the coefficients βo would be straightforward. Here a common sample of (Y,X,Z ′) is

unavailable. Instead, we assume that data are available from two independent samples with common

variables Z:

Assumption 2 (Data) Let GoY,Z denote the (Y, Z ′)-marginal distribution of F oY,X,Z . A similar

notation is adopted for GoX,Z . Data are available from two independent samples. The first sam-

ple, say {Yi, Z ′i}
n1
i=1, contains independent and identically distributed (iid) replications of the vari-

ables (Y,Z ′) generated from GoY,Z for a group of n1 observational units. The second sample, say

{Xi, Z
′
i}ni=n1+1, contains iid replications of the variables (X,Z ′) generated from GoX,Z for a group

of different n2 = n− n1 observational units.
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To close this Section, we discuss a concrete example fitting our setup. This example comes from

the work by Bostic, Gabriel, and Painter (2009, BGP from now on). They employ two-sample data

to measure the dependence between household consumption and housing wealth after controlling

for households characteristics. We concentrate only on one of the specifications considered by

BGP. Let Yi denote the log consumption of household i living in the US in 2001. The standard

specification for Yi proposed by BGP is Yi = Xiβ1o +Z ′iβ2o + εi, where Xi is the log of household’s

house value, and Zi is a vector of household characteristics including income, number of members,

and like controls. As in BGP, we assume that the error term ε and the covariates (X,Z ′) are

uncorrelated, which is equivalent to say that the vector (β1o, β2o) is the least square linear predictor

of the conditional expectation of log consumption given the covariates (X,Z ′). Interest is on the

coefficient β1o, which measures the degree of linear association between log consumption Y and log

house value X after controlling for household’s characteristics Z. Learning about β1o would ideally

require measurements on (Y,X,Z) for a single sample of households. Since such data are not

available, BGP employ data from two samples; the Consumer Expenditure Survey (CEX) and the

Survey of Consumer Finances (SCF).2 The CEX provides information on households’ consumption

and characteristics, that is on (Y,Z), but not on households’ house value X. The SCF in turn

provides information on households’ house value and characteristics, that is on (X,Z ′), but not on

household consumption Y . The CEX and CSF do not survey the same households because they

are independent samples. To overcome the complications arising from the lack of joint realizations

on (Y,X), BGP employ an imputation procedure. This procedure is valid under the assumption

that log consumption Y and households’ house value X are independent conditional on household

characteristics Z, which in turns implies E(Y |X,Z) = E(Y |Z). We are concerned with the situation

where this conditional independence assumption might not hold. In the next section, we derive result

permitting to evaluate the sensitivity of inferences to a failure of the assumption that Y and X are

independent conditional on Z.

2One important caveat to this example should be kept in mind. A key presumption underlying our analysis is that
data are obtained by simple random sampling (see Assumption 2). The SCF does not use a simple random but a dual
frame sampling design. The identification results below however still applies.
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3. Identification

In this Section, we characterize the identified set of the vector of coefficients βo. This is the main

result of the paper. We also discuss the force of additional assumptions on the joint distribution of

(Y,X,Z) to shrink the identified set to a singleton.

For identification purposes, we assume that the distributions GoY,Z and GoX,Z characterizing

the two samples are known. We begin the identification analysis by describing the identification

problem. Let λo := E(Y X) denote the value of the expectation of the product of Y and X. Using

the the first order condition of the programming problem (A1.i) the coefficients of interest βo can

be written

 β1o

β2o

 :=

 [λo−E(XZ′)E(ZZ′)−1E(ZY )]
[E(X2)−E(XZ′)E(ZZ′)−1E(ZX)]

E(ZZ ′)−1 · [E(ZY )− E(ZX)β1o]


Since GoY,Z and GoX,Z are known, all the expectations in the latter display are known, except for λo.

Let m(λo) denote the right hand side in the latter display. The identification problem is to derive

an operational characterization of the set BS of vectors β in RdZ+1 such that β = m(λ) and λ is

compatible with knowledge of the marginal distributions GoY,Z and GoX,Z .

The next Theorem shows that knowledge of the distributions GoY,Z and GoX,Z restricts the ex-

pectation λo to lie in an interval, whose extreme points are moments of the available data.

Theorem 1 (Bounds on the Expectation of the Product of Y and X). Let Assumptions (A1) and

(A2) hold. Let QoX|Z denote the quantile function of X given Z, and define the quantities:

λL := E
[
Y QoX|Z

(
1−GoY |Z(Y |Z)

)
|Z
]

; λU := E[Y QoX|Z(GoY |Z(Y |Z)|Z]

where GoY |Z is the distribution of Y given Z. Then, the expectation λo := E (Y X) lies in the interval

[λL, λU ].

The interval [λL, λU ] contains values of the expectation of the product of Y and X compatible with

the marginal distributions GoY,Z and GoX,Z . A few remarks about this interval are in order:

7



Remark 1.1 Our intuition for the result in Theorem 1 is the following. When the distributions of

(Y, Z) and of (X,Z) are given, the maximal possible value λU of the expectation λo of the product

of Y and X occurs when Y is commonotic with X given Z, that is, when X = QoX|Z(GoY |Z(Y |Z)|Z)

or the joint distribution Y and X conditional on Z is the upper Hoeffing-Frechet bound. The

upper bound λU is then the expectation E(Y X) evaluated at X = QoX|Z(GoY |Z(Y |Z)|Z). Similarly,

the minimal possible λL of the expectation λo of the product of Y and X occurs when Y is anti-

commonotic with X given Z , that is, when X = QoX|Z(1−GoY |Z(Y |Z)|Z) or the joint distribution

Y and X conditional on Z is the lower Hoeffing-Frechet bound.

Remark 1.2 The bounds λL ≤ E (Y X) ≤ λU are sharp. Note that the lower bound λL does not

coincide with upper bound λU because 1 − GoY |Z(Y |Z)|Z) is different from GoY |Z(Y |Z). There is

therefore more than one value of the expectation of the product of Y and X compatible with the

available data free of sample variation. We could also bound the expectation E (Y X) from the

fact that the variance matrix of (Y,X,Z) is positive semidefinite (c.f., Ridder and Moffit, 2007).

The resulting bounds however are not sharp. We appeal to the following intuition to illustrate this

point. Positive semidefinitiveness of the variance matrix of (Y,X,Z) implies that the conditional

correlation between Y and X given Z is in the interval [−1, 1]. From these bounds, we can derive

bounds on the expectation of the product of Y and X. The latter bounds are not sensitive to

the functional form of the marginal distributions GoY |Z and GoX|Z . By contrast, for some forms of

GoY |Z and GoX|Z (i.e, for GoY |Z and GoX|Z both lognormal), the bounds in Theorem 1 restrict the

correlation between Y and X conditional on Z to lie in the interior of the interval [−1, 1]. Hence,

bounds based on the restriction that the variance matrix of (Y,X,Z) is positive semidefinite are

generally wider than those in Theorem 1.

Remark 1.3 Theorem 1 is new in the form stated, but its intuition was anticipated by numerous

previous authors (Heckman, Smith and Clements, 1997; Fan and Zhu, 2010). For our purposes, it

serves as a backdrop to the next result in the paper, namely a sharp and operational characterization

of the identified set of βo.

With Theorem 1 in hand, it is now straightforward to establish that the identified set BS is

a bounded convex set. From the definition of the the coefficients of interest, notice that these

parameters equal the value of a linear mapping λ 7→ m(λ) evaluated at λo. The identified set BS

8



is therefore nonempty (set e.g., λ = E (Y X)), bounded (since it is a bounded transformation of the

bounded interval [λL, λU ]), and convex (since it is a linear transformation of the interval [λL, λU ]).

From the mapping m(λ) defining the coefficients of interest notice that the identified set BS can be

further characterized as the line in RdZ+1 joining the points (β1L, β
′
2l) and (β1U , β

′
2u) with

β1L :=
[λL − E(XZ ′)ΣE(ZY )]

[E(X2)− E(XZ ′)ΣE(ZX)]
β1U :=

[λU − E(XZ ′)ΣE(ZY )]

[E(X2)− E(XZ ′)ΣE(ZX)]

β2l := E(ΣZY )− E(ΣZX)β1L β2u := E(ΣZY )− E(ΣZX)β1U

These points can be estimated from data using the sample analog principle.

In a given application, such as the one discussed in Section 2, one may be interested only ine

one component of the vector βo. In such a case, the one-dimensional projections of the identified

set would be of interest. The one-dimensional projection of the identified set in the β1-axis is the

segment [β1L, β1U ]. If Z has one component, the one-dimensional projection of the identified set on

the β2-axis is the segment [β2L, β2U ] := [infλ(0, 1)′m(λ), supλ(0, 1)′m(λ)], so

β2L = E(ΣZY )− E(ΣZX)
[
β1L1(E(ZX) < 0) + β1U1(E(ZX) ≥ 0)

]
β2U = E(ΣZY )− E(ΣZX)

[
β1U1(E(ZX) < 0) + β1L1(E(ZX) ≥ 0)

]
,

where 1() is the indicator function, and Σ is the inverse of the variance of Z. To extend this idea

to the case that Z is a vector and relate our results with the literature on identification of convex

sets, we next employ the concept of support function. For some dZ + 1-vector belonging to the unit

sphere S1+dZ in R1+dZ , the support function q 7→ s(q) of the identified set BS is:

s(q) := sup
λ∈[λL,λU ]

q′ ·m(λ)

where the bounds λL and λU were introduced in Theorem 1. To each direction q, the support

function s(q) equals the signed distance between zero and the orthogonal hyperplane that is tangent

to the identified set. Put differently, the support function characterizes the boundary of the identified

set. The fact that the identified set is convex does guarantee that its support function q 7→ s(q)

fully characterizes it (see Hiriart-Urruty and Lemarechal, 2004). By evaluating the support function
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in a given direction, we can calculate the lower-dimensional projections of the identified set. To

complete the operational characterization of the identified set, in the next theorem we write the

support function in terms of the distributions GoY,Z and GoX,Z .

Theorem 2 (Operational Characterization of the Identified Set). Let Assumptions (A1)-(A2) hold.

Define the scalars λL and λU as in Theorem 1, and

β1L :=
[λL − E(XZ ′)ΣE(ZY )]

[E(X2)− E(XZ ′)ΣE(ZX)]
β1U :=

[λU − E(XZ ′)ΣE(ZY )]

[E(X2)− E(XZ ′)ΣE(ZX)]

where Σ is the inverse of the variance matrix of Z. Let q denote a vector belonging to the unit

sphere in R1+dZ . Split the vector q into q = (q1, q
′
2), where q1 is a scalar and q2 is a vector with

the remaining dZ components. Let 1() denote the indicator function. Then, the identified set of the

coefficients βo is characterized by

BS =
{
β ∈ RdZ+1 : q′β ≤ s(q) ; for all q ∈ SdZ

}

where the support function s(q) equals:

s(q) = 1(q1 6= 0)× [1(q1 < 0)β1L + 1(q1 > 0)β1U ] + E(q′2ΣZY )

− E(q′2ΣZX)
[
β1L1(E(q′2ΣZX) ≥ 0) + β1U1(E(q′2ΣZX) < 0)

]
Some comments to Theorem 2 follow:

Remark 2.1 The expression for the support function in the Theorem characterizes the boundary

of the identified set. As already said, this expression can be employed to calculate the lower-

dimensional projections of the identified set. The projections of the identified set can also be

calculated by first evaluating the identifying mapping λ 7→ m(λ) at λL and λU , and then arranging

the resulting values into segments. The endpoints of each segment will depend on the sign of the

elements of the vector E(XZ). The support function does the latter arrangement for us. In more

general settings, Beresteanu and Molinari (2008), Bontemps, Magnac and Maurin (2012) and Kaido

and Santos (2012) also employ the concept of support function to characterize convex identified sets.

Remark 2.2 The characterization of the identified set of βo in Theorem 2 is sharp, that is, it contains
10



the values of the coefficients of interest compatible with Assumptions (A1)-(A2) and no others. This

means that all the elements in BS are observationally equivalent to βo. No amount of data generated

according to Assumption (A2) can distinguish the elements in BS from βo.

Remark 2.3 According to Theorem 2, the identified set BS has more than one element because the

bounds β1L and β1U on β1o do not coincide. Therefore, the vector of coefficients βo is set identified

when data are available from independent samples on (Y,Z) and (X,Z). This result contrast

with the existing literature on two-sample combination with instrumental variables or statistical

matching techniques (see the survey by Ridder and Moffit, 2007), where additional assumptions on

the joint distribution of (Y,X,Z) deliver point identification of the coefficients of interest. In the

next subsection, we discuss these additional assumptions.

Remark 2.4 The characterization in Theorem 2 is operational in the sense that it can be employed, by

the way of the analog principle, to construct a sample analog estimator of the identified set. This

estimator is obtained after replacing in the sample analog of the support function the unknown

functions GoY |Z and QoX|Z by nonparametric estimates. We discuss the asymptotic properties of

such an estimator in the next section.

3.1 Obtaining Point Identification

We have emphasized the fact that Assumptions (A1)-(A2) deliver set identification of the vector

of coefficients βo. We now discuss the force of additional assumptions on the joint distribution of

the variables (Y,X,Z) to achieve point identification.

If the covariates Z and X are uncorrelated, i.e. E(ZX) = 0, the vector of coefficients β2o are

point identified and β1o is not. This result corresponds to the equality between the ”short regression”

and the ”long regression” as discussed by Goldberger (1991) or the absence of omitted variables bias.

This suggests that the two samples may be informative about β2o when the correlation between the

covariates is small.

If at least one of the elements in the vector β2o is zero, then the vector of coefficients βo is point

identified. This is equivalent to assume that one of the common variables Z is an instrument (c.f.,

Angrist and Krueger, 1992). To see why, fix Z to be a scalar. This is without loss of generality.

Then, when β2o = 0 it follows from the identifying mapping m(λ) that the coefficient β1o is equal
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to β1o = E(Y Z)/E(XZ). In such a case, the coefficient β1o is point identified because E(ZY ) and

E(XZ) so are (and the denominator E(XZ) is different from zero because the rank condition A1.iii).

If the uncorrelatedness condition implied by (A1.i) is replaced by the mean-independence con-

dition E[(Y − Xβ1o − Z ′β2o)|X,Z ′] = 0, then the vector of coefficients βo is point identified. To

see why, notice that mean-independence implies that any measurable function of Z, such as Z2
k ,

is uncorrelated with ε. In such a case, any of these functions can be used as an instrument to

point identify the coefficients of interest. This situation corresponds to the linear regression model

studied by Ichimura and Martinez-Sanchis (2010). After restricting Z to be discrete, it also fits in

the setting studied by Cross and Manski (2002) and Molinari and Peski (2006).

Finally, if Y is independent of X conditional on Z, then the vector of coefficients βo is also point

identified. To see why, note that under this conditional independence assumption the expectation

E(Y X) is equal to E[E(Y |Z)E(X|Z)]. Point identification follows after evaluating the identifying

mapping λ 7→ m(λ) at E[E(Y |Z)E(X|Z)]. This conditional independence restriction is behind the

validity of the matching procedures reviewed by Ridder and Moffit (2007). When Z is a discrete

variable, this assumption also justifies the procedure of interpreting the least square linear predictor

of the conditional expectation of E(Y |Z) given E(X|Z) as the coefficient β1o.

4. Estimation and Inference

The need to reflect sampling variability makes it desirable to extend the previous identification

results to develop estimation and inference procedures for the coefficients of interest. In the previous

Section, we have assumed that the distributions of the two samples were known. In this Section, we

drop this assumption. We estimate these distributions from data and employ the characterization

derived in Theorem 2 to construct a consistent sample analog estimator for the identified set. We

also approximate the sampling distribution of such an estimator, whereby confidence intervals for

the coefficients of interest follow.

We begin by describing the estimator of the identified set. Recall that the identified set is a

line with support function described in Theorem 2. We estimate this support function in three

steps. In the first step, we estimate the functions y, z 7→ GoY |Z(y, z) and x, z 7→ QoX|Z(x|z) by a

nonparametric method. In a second step we estimate the bounds λL and λU on the expectation of
12



the product of Y and X by:

λ̂L := n−11

n1∑
i=1

YiQ̂X|Z(1− ĜY |Z(Yi|Zi) ; λ̂U := n−11

n1∑
i=1

YiQ̂X|Z(ĜY |Z(Yi|Zi),

where ĜY |Z and Q̂X|Z are the first-step nonparametric estimators. We then, estimate the bounds

β1L and β1U on the coefficient β1o by their sample analogs, once λ has been replaced by λ̂L and

λ̂U , respectively. In the last step, we estimate the support function by its sample analog, once the

bounds β1L and β1U have been replaced by its estimators:

ŝ(q) := 1(q1 6= 0)
[
β̂1L × 1(q1 ≤ 0) + β̂1U × 1(q1 > 0)

]
+ q′2Σ̂n

−1
1

n1∑
i=1

ZiYi

− q′2Σ̂n
−1
2

n∑
i=n1+1

ZiXi

[
β1U1(q′2Σ̂n

−1
2

n∑
i=n1+1

ZiXi < 0) + β1L1(q′2Σ̂n
−1
2

n∑
i=n1+1

ZiXi ≥ 0)
]

where Σ̂ is an estimate of the inverse variance matrix of Z.

To establish uniform consistency of the estimator ŝ(q), we employ standard results on empirical

processes (see van der Vaart, 1998, Chapter 19).

Proposition 1 (Uniform Consistency) Let Assumptions A1-A2 hold. Let G denote the space of

functions from the support of (Y,Z) into the unit interval [0, 1] which are cadlag in the first argument.

Let Q denote the space of functions from the Cartesian product of [0, 1] and the support of Z into

the support of X which are non decreasing in the first argument. Define the functions:

fL,G,Q(Y,Z) := Y QX|Z(1−GY |Z(Y |Z)|Z)

fU,G,Q(Y,Z) := Y QX|Z(GY |Z(Y |Z)|Z)

for any (G,Q) in the product space G ×Q. Assume further that:

A3.i) There exist positive constants M and η such that |||Σ|||1+η ≤ M , E(||ZY ||1+η) ≤ M and

E(||ZX||1+η), where |||Σ||| denotes the trace of Σ := E(ZZ ′)−1.

A3.ii) The classes FL := {fL,G,Q, (G,Q) ∈ G×Q} and FU := {fU,G,Q, (G,Q) ∈ G×Q} are Glivenko-

Cantelli.

A3.iii) The functions (GoY |Z , Q
o
X|Z) and their estimates (ĜY |Z , Q̂X|Z) belong to the space G ×Q.

13



Then, the estimator of the support function ŝ(q) converges in probability to the support function

s(q) uniformly over q in the unit sphere in RdZ+1.

In the proof, we use restriction (A3.i) to apply the Law of Large Numbers to different averages of

interest. Restrictions (A3.ii) and (A3.iii) are employed to make the Law of Large Numbers to hold

uniformly over different sets.

We use similar tools to derive sufficient conditions securing the weak convergence of the scaled

difference Sn(q) := n1/2
[
ŝ(q)− s(q)

]
.

Proposition 2 (Uniform Asymptotic Normality) Let Assumptions A1-A3 hold. Assume further

that:

A4.i) There exist positive constants M and η such that |||Σ|||2+η ≤ M , E(||ZY ||2+η) ≤ M and

E(||ZX||2+η).

A4.ii) The classes FL := {fL,G,Q, (G,Q) ∈ G×Q} and FU := {fU,G,Q, (G,Q) ∈ G×Q} are Donsker.

A4.iii) The support of the covariates (X,Z) is a convex compact set. The estimator |||Σ̂||| for the

trace of the matrix Σ is unbiased, i.e., E(|||Σ̂|||) = |||Σ|||.

Then, the stochastic process Sn(q) := n1/2
[
ŝ(q)− s(q)

]
weakly converges to a Gaussian process over

q in the unit sphere in RdZ+1.

Some comments follows. To verify the high level assumptions (A4.ii) and (A3.ii), we can combine

existing results on empirical processes (see van der Vaart, 1998) and on sieve estimation (see Chen,

2007). From a result in van der Vaart (1998, Example 19.9), we know that the class FL is Donsker

(and Glivenko-Cantelli) if the function y, z 7→ fL,G,Q(y, z) has bounded continuous second partial

derivatives for any (G,Q) in the product space G × Q. Under the compact support restriction

(A4.iii), this latter happens whenever the functions y, z 7→ G(y, z) and τ, z 7→ Q(τ, z) have bounded

continuous second partial derivatives. A similar reasoning follows for the class FL. Then, in order

to meet restriction (A3.iii), we need to employ estimators y, z 7→ ĜY |Z(y, z) and τ, z 7→ Q̂X|Z(τ, z)

with continuous second order partial derivatives. This in turn can be achieved by employing a

cubic spline estimator (see Chen, 2007). There is a kind of tension between assumptions (A4.ii)

and (A3.iii): imposing restrictions on the space G × Q, such as differentiability of its elements,

facilitates the verification of the Donsker condition (A4.ii) but at the same time it requires to
14



verify extra conditions about the estimators y, z 7→ ĜY |Z(y, z) and τ, z 7→ Q̂X|Z(τ, z) in order to

meet restriction (A3.iii). We now turn to the discussion of Assumption (A4.iii). This assumption

restricts the variables X or Z to have both continuous bounded supports. When X or Z has mass

points (i.e., when A4.iii is violated), the normal asymptotic approximation in Proposition 2 is not

longer valid. This is because the scaled difference Sn(q) is not longer continuous in the estimator of

the inverse of variance of Z. A similar issue arises in more general settings employing the sample

analog of a support function to estimate a convex identified set (c.f., Bontemps, Magnac and Maurin,

2012). Approximating the sampling distribution of the proposed estimator for this latter case is left

for future research.

To use Proposition 2 to construct confidence regions requires consistent estimation of the asymp-

totic variance of the limiting process q 7→ Sn(q). A nonparametric bootstrap procedure can be shown

to give asymptotically valid approximation to this variance. Then, confidence regions on the true

value of the variance of interest can be constructed by employing the general results in Bontemps,

Magnac and Maurin (2012).

5. Monte Carlo Experiments

In this section, we employ simulated data to illustrate the implementation and performance of

the estimator of the support function described in the previous Section.

The data generation process is as follows. For computational simplicity, we let Zi to be a random

variable. For the true coefficients (β1o, β2o) = (.1, .5), we then generate:

Yi = Xiβ1o + Ziβ2o + εi i = 1, .., n

where εi is a standard normal random variable independent of (Xi, Zi). The joint distribution of

(Xi, Zi) is bivariate normal. In order to create two independent samples, we split the n draws of

the vector (Y,X,Z) into two samples of size n1 and n2, respectively. In the first sample, we drop

the realized values of X, while in the second sample we drop the realized values of Y . Notice that

the distribution F oX,Z,ε in the true structure (βo, F
o
X,Z,ε) is completely determined by the covariance

matrix of (X,Z, ε). For simplicity sake, we fix the variances of X and Z to one. The design variable

in this experiment is the correlation between X and Z, say ρXZ . We choose values for ρXZ in the
15



set {−.25, 0, .25} to evaluate the sensitivity of the identified set BS to changes in the correlation

between X and Z. Note that the coefficient γ is point identified when the covariates X and Z are

uncorrelated, i.e., when ρXZ = 0. Table 1 reports the values of the smallest and largest values of β1

and β2 compatible with the simulated data (i.e., the one-dimensional projections of the identified

set) for different values of the correlation between the covariates X and Z.

Table 1. One-dimensional Projections of the Identified Set

Bound Correlation Between X and Z (ρXZ)

-.9 -.75 -.5 -.25 -.01 0 .01 .25 .5 .75 .9

β1L -.1 -.1 -.1 -.1 -.1 -.1 -.1 -.1 -.1 -.1 -.1

β1U .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1

β2L .32 .35 4 .45 .49 .5 .5 .5 .5 .5 .5

β2U .5 .5 .5 .5 .5 .5 .51 .55 .60 .65 .68

The smallest and largest value of β1o do not change with the correlation between X and Z. As

expected, the difference between β2U and β2L decreases as the correlation ρXZ between the covariates

approaches to zero. The identified set is informative about the sign of the coefficient β2o whatever

the correlation between the covariates is. The true value of the coefficients of interest is an extreme

point of the identified set.

We estimate the smallest and largest value of each of the coefficients (β1o, β2o) compatible with

the available data. These values are equal to:

β1L − s((−1, 0)) = 0 ; β1U − s((1, 0)) = 0

β2L − s((0,−1)) = 0 ; β2U − s((0, 1)) = 0

The interval [β1L, β1U ] is the projection of the identified set onto the β1-axis. A similar interpre-

tation follows for the interval [β2L, β2U ]. Recall that the sample analog estimator of the points

(β1L, β1U , β2L, β2U ) is obtained after replacing the unknown functions GoY |Z and QoX|Z by nonpara-

metric estimates. We estimate the distribution function GoY |Z and the quantile function QoX|Z by

series of cubic splines. Implementing such estimators requires to choose the location and the num-

bers of knots. We place the knots at the quantiles of Z. We choose different numbers of knots and

evaluate the sensitivity of the results to these different choices. All the experiment were carried out
16



in the program R using the libraries ”mvtnorm” (to generate bivariate normal random numbers),

”splines” (to generate cubic spline basis) and ”quantreg” (to estimate the quantile function QoX|Z).

We choose a sample size of n1 = n2 = 250.3 The number of replications in each experiment is equal

to 100.

Table 2 below reports the mean squared error (MSE) of the estimated smallest and largest values

of the coefficients (β1o, β2o), together with their Monte Carlo average (labeled Mean), for different

values of the correlation between the covariates (ρXZ), and different choices of the number of knots.

The results suggest that the choice of the number of knots has an important effect on the mean

square error of the estimator of the lower and upper bounds on the coefficients of interest. In the

experiments, the mean square error is minimized for a choice of the number of knots between 90 and

110. There, the variance term is the main component of the mean square error. When the number

of knots is too small (i.e., 10) or too big (i.e., 130), the estimator exhibits a significant mean square

error. When the number of knots is small, the bias is negative for the estimated values of the lower

bounds and positive for the estimated values of the upper bounds, and the bias renders the estimator

more likely to be outside the identified set (see the column labeled Cove.). In such cases, we can

expect confidence intervals with coverage probabilities above the pre-specified nominal value. By

contrast, when the number of knots is too big, the bias renders the estimated values more likely to be

inside the identified set, so we can expect confidence intervals with coverage probabilities below the

nominal value. Since the choice of the number of knots has an important effect on the performance

of the estimator, it would be useful to have a way to choose them in practice. Obtaining such a

result is however beyond the scope of this paper, but remain an important topic for future research.

3Result for larger sample sizes are available upon request.
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Table 2. Monte Carlo Experiments: Sensitivity to First-Step Nonparametric Estimator

Sample Sizes = 250
ρXZ = −.25 ρXZ = 0 ρXZ = .25

Knots Bound Mean MSE Bias Cove. Mean MSE Bias Cove. Mean MSE Bias Cove.

10 β1L -.821 .525 98% 100% -.769 .452 99% 100% -.717 .385 99% 100%

β1U .724 .395 98% .772 .458 98% .815 .517 98%

β2L .254 .047 81% 96% .451 .008 30% 100% .323 .038 80% 99%

β2U .657 .031 81% .536 .006 18% .689 .026 73%

30 β1L -.612 .268 97% 100% -.572 .226 98% 100% -.510 .173 96% 100%

β1U .527 .187 97% .559 .215 97% .595 .250 97%

β2L .308 .027 73% 92% .461 .006 21% 34% .376 .021 71% 88%

β2U .605 .016 69% .524 .005 10% .641 .014 58%

50 β1L -.451 .131 94% 100% -.414 .104 95% 100% -.373 .081 91% 100%

β1U .375 .081 94% .411 .103 93% .458 .137 93%

β2L .351 .016 61% 92% .471 .005 14% 27% .408 .013 60% 84%

β2U .566 .009 48% .516 .005 5% .607 .008 36%

70 β1L -.336 .064 86% 99% -.301 .051 77% 96% -.281 .069 65% 100%

β1U .276 .041 74% .298 .051 76% .342 .084 69%

β2L .381 .011 44% 68% .476 .005 10% 22% .436 .009 42% 72%

β2U .541 .006 23% .509 .004 1% .584 .007 15%

90 β1L -.248 .031 70% 84% -.193 .037 23% 92% -.151 .061 4% 93%

β1U .192 .018 45% .226 .031 52% .257 .049 50%

β2L .404 .007 25% 55% .481 .005 6% 18% .455 .007 26% 54%

β2U .519 .004 7% .506 .004 1% .555 .006 1%

110 β1L -.188 .021 36% 52% -.153 .044 6% 59% -.024 .361 1% 67%

β1U .097 .017 1% .144 .025 7% .224 .414 3%

β2L .421 .006 14% 36% .485 .004 4% 13% .462 .027 4% 37%

β2U .495 .004 1% .501 .004 1% .524 .023 2%

130 β1L -.105 .084 1% 47% -.131 .195 1% 35% -.014 .086 8% 45%

β1U .066 .031 3% .073 .032 2% .147 .076 2%

β2L .444 .009 3% 55% .488 .004 3% 7% .484 .007 3% 29%

β2U .488 .007 1% .497 .004 1% .522 .008 9%

This table presents different measures describing the finite sample performance of the estimator of the support function
evaluated at the canonical directions. The label ”ρX,Z” indicates value of the correlation between the covariates in
the exercises. ”Knots” stands for the number of knots employed in the nonparametric estimation of the conditional
quantile function of X given Z and the conditional distribution function of Y given Z. ”Mean” is the Monte Carlo
average of the estimates. ”MSE” stands for the mean square error and ”Bias” the percentage of the mean square
error corresponding to the bias. ”Cove.” is the percentage of times that the true coefficient of interest, say βjo, lies in
the estimated interval [β̂jL, β̂jU ] for j ∈ {1, 2}. The number of Monte Carlo replications is 100.

6. Further Applications

In this section, we discuss two other applications of the identification results in Section 3. These

applications are the measurement of the variance of the treatment effect (e.g., Heckman, Smith and

Clements, 1997), and the measurement of the correlation coefficient from aggregate data (Robinson,

1950).
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6.1 Variance of the Treatment Effect

To discuss how our identification results apply to the measurement of the variance of the treat-

ment effect, we need to introduce some notation. Let Y, X and Z represent, respectively, the

potential outcome from receiving a treatment, the potential outcome from not receiving the treat-

ment, and some background variables not affected by the treatment. The variance of the treatment

effect is defined by:

σ2(λo) := V(Y ) + V(X)− 2λo + 2E(Y )E(X)

where λo := E(Y X) denotes the expectation of the product of Y and X, and V denotes the variance

operator.

In randomized experiments, data are available from independent samples on (Y,Z) and on

(X,Z). This implies that all the expectations in the definition of σ2o(λo) are point identified except

λo. Theorem 1 and the fact that the function λ 7→ σ2(λ) is decreasing imply that the identified set

of the variance of the treatment effect is:

ΣI =
{
σ2 ∈ R+ : σ2o(λU ) ≤ σ2 ≤ σ2o(λL)

}
where λU and λL are defined in Theorem 1. The identified set ΣI is a segment of the real line. The

end points of this set correspond to the value of the function λ 7→ σ2(λ) evaluated at the quantities

λU and λL, respectively. Unlike the case for the coefficients in a linear projection, calculating the

support function does not help in the construction of an estimator of the identified because the

identified set is just an interval.

The latter characterization of the identified set of the variance of the treatment effect is new.

Concurrent work by Fan and Zhu (2010) studies identification on superadditive integral functionals

of the distribution of (Y,X). Since Y,X 7→ σ2o(FY,X) is a superadditive functional, the variance

of the treatment effect fits their setting. Our characterization of the identified set ΣI is however

different from theirs. We express the bounds σ2o(λU ), σ2o(λL) in terms of moments in a different way

than they do. We shall show that this allows us to dispense with numerical integration procedures, a

step required by Fan and Zhu (2010). A plug-in estimator of the bounds σ2o(λU ) ≤ σ2(λo) ≤ σ2o(λL)

can be obtained after replacing in their sample analogs the unknown functions QoX|Z and GoY |Z19



by nonparametric estimates. To facilitate the description of this estimator, and without loss of

generality, suppose that Y and X have both zero (known) mean and unit (known) variance. Then,

the plug-in estimator of the lower bound σ2o(λU ) is:

σ̂L = 2− 2n−11

n1∑
i=1

YiQ̂X|Z(ĜY |Z(Yi, Zi)|Zi)

where Q̂X|Z and ĜY |Z are nonparametric estimator of QoX|Z and GoY |Z , respectively. A similar

expression follows for the estimator of the upper bound. We now compare the estimator σ̂L with

the one proposed by Fan and Zhu (2010). Their estimator for the lower bound σ2o(λU ) is:

σ̂FZL = 2− 2n−1
n∑
i=1

Iib

∫ 1

0
Q̂Y |Z(u|Zi)Q̂X|Z(u|Zi)du (1)

where Iib := 1 (|Zi| ≤ b) is a trimming sequence with 1(·) the indicator function, and Q̂Y |Z is a

nonparametric estimator of the quantile functions QoY |Z . Implementing the estimator σ̂FZL requires

to employ a numerical integration procedure to compute the integral in (1). By contrast, no

numerical integration procedure is required to implement σ̂L. To establish the connection between

these two estimators, it suffices to perform the change-of-variable u = GoY |Z(Y |Z) in (1) and replace

GoY |Z by its nonparametric estimate. We can say then that our estimator σ̂L thus replace the

numerical integration procedure by a sum.

6.2 Measuring the Correlation Coefficient from Aggregate Data

Measuring the correlation between two random variables from aggregate data is another appli-

cation where our identification results apply. To be more precise, suppose that knowledge is sought

about the correlation coefficient between two discrete random variables, say Y and X:

ρ(λo) =
λo − E(Y )E(X)

V(Y )1/2V(X)1/2

but data provide only estimates of the distribution of (Y,Z) and of (X,Z). Difficulties arise because

joint realizations of Y and X are not observed. This is the so-called ecological correlation problem

(c.f., Robinson, 1950). A leading example of this problem arises in the study of voting behavior in
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elections with secret ballot. Let Yi denote the vote of individual i, let Xi denote the educational

level of voter i, and let Zi denote the precinct where i votes. Suppose we are interested in the

correlation ρ(λo) between voting behavior Y and educational level X in a presidential election with

secret ballot. Since votes are secret, it is impossible to jointly observe voting behavior Yi and

educational level Xi. Election returns, however, allow us to estimate the distribution GoY |Z of the

voting behavior by electoral precinct. Moreover, from census data we can estimate the distribution

GoX|Z of educational level by electoral precinct. Hence the available data free of sample variation

consist of the distributions GoY |Z and GoX|Z .

Under hypothetical knowledge of the distributions GoY |Z and GoX|Z , all the expectations in ρ(λo)

are known except for λo. The ecological correlation problem consists in determining what we can

learn about ρ(λo). One approach to solve the ecological correlation problem is to aggregate the

discrete variables Y and X by Z into shares, and then calculate the correlation between these

shares. Robinson (1950) criticizes the tacit interpretation of the correlation between the shares,

the so-called ecological correlation, as the correlation between Y and X. He points out the fact

that there are many values of the correlation between Y and X compatible with knowledge of the

estimates of the distribution of (Y,Z) and of (X,Z). Nevertheless, he neither characterizes such

feasible values nor proposes inference procedures. Since λ 7→ ρ(λ) is linear and increasing, Theorem

1 can be employed to extend the insight by Robinson (1950) to provide a sharp characterization of

the identified set of ρ(λo).

7. Summary and Conclusions

Applied researchers interested in making inference about least square linear predictors are often

confronted to the case where the relevant variables are measured in two independent samples, neither

of which contains information on all the variables of interest. The existing literature suggests to

overcome the difficulties associated to such lack of data by imposing additional assumptions, which

may be difficult to justify in a given application. This paper shows that the least square linear

predictor is set identified when data are available from two samples and no additional assumptions

on the data generating process are invoked. We characterize the identified set of the least square

linear predictor and show that this set can be estimated by the sample analog principle. We evaluate
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then the force of additional assumptions to remove set identification. These results highlight the

trade-off between imposing restrictions and achieving point identification when data are incomplete.

As it stressed by the literature on set identification (c.f., Manski, 2003), analyzing this trade-off is

worthy of consideration in applications where the assumptions leading to point identification are

under suspicion.

There are at least two topics which deserve further research. The first topic relates to the

generalization of our identification results to the case where the covariate observed in only one

sample is a vector rather than an scalar. The second topic relates to the choice of the smoothing

parameters for the estimator of the identified set.
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Appendix: Proofs

Proof of Theorem 1 Let FY,X,Z denote the class of distribution functions with support on Y × X × Z for which

the (Y,Z)-marginal and the (X,Z)-marginal are given by GoY,Z and GoX,Z , respectively. By construction, λo belongs

to the range ΛI of the mapping FY,X,Z 7→
∫
yxdFY,X,Z(y, x, z) from FY,X,Z into the real line. We shall show that

ΛI = [λL, λU ].

To proceed, notice that the class FY,X,Z is non-empty, convex. To see why FY,X,Z is non-empty, it suffices to

note that the multivariate distribution which is such that Y and X are conditionally independent given Z - i.e., the

distribution F (y, x, z) =
∫
GoY |Z(y, s)GoX|Z(x, s)dGZ(s) is in FY,X,Z . To verify that FY,X,Z is convex, consider the
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elements F, F̃ both in FY,X,Z with associated densities f , f̃ . These two elements satisfy:∫ ∫ x

−∞

∫ z

−∞
f (y, a, b) dydadb = GoX,Z(x, z) ;

∫ ∫ x

−∞

∫ z

−∞
f̃ (y, a, b) dydadb = GoX,Z(x, z)

Let ψ be a number between zero and one. Multiply both sides of the first equality by ψ. Multiply both sides of the

second equality by (1− ψ). Summing the resulting expressions yields:

ψ

∫ y

−∞

∫ ∫ z

−∞
f (y, a, b) dydadb+ (1− ψ)

∫ y

−∞

∫ ∫ z

−∞
f̃ (y, a, b) dydadb = GoX,Z(x, z)

Then, the convex combination of F, F̃ has (X,Z)-marginal distribution GoX,Z . By a similar argument, it is possible

to show that the convex combination of F, F̃ has marginal (Y,Z)-marginal distribution GoY,Z . It follows then that

ψF (y, x, z)+(1−ψ)F̃ (y, x, z) belongs to the class FY,X,Z . Therefore, FY,X,Z is convex. Since the mapping FY,X,Z 7→∫
yxdFY,X,Z(y, x, z) is linear, and convexity is preserved under linear transformations (see Rockafellar, 1970), we have

that ΛI is an interval, say ΛI = [λL, λU ]. We now characterize the endpoints λL and λU . We can define

λL := minFY,X,Z

∫
yx dFY,X,Z(y, x, z)

s.t. GoY,Z(y, z) = limx→∞ FY,X,Z(y, x, z) ∀y ∈ Y, z ∈ Z

GoX,Z(x, z) = limy→∞ FY,X,Z(y, x, z) ∀x ∈ X , z ∈ Z

for the endpoint λL, and the corresponding maximization problem for the endpoint λU . These programming problems

have linear objective functions with linear constraints. Since the function y, x 7→ yx in the objective function is

a strictly superadditive function, it follows from a result in Ruschendorf (1991, Proposition 7) that the function

y, x, z 7→ GLY,X,Z(y, x, z) with

GLY,X,Z(y, x, z) =

∫ z

−∞
max{0, GoY |Z(y|s) +GoX|Z(x|s)− 1}dGoZ(s)

is the unique argument of the minimum in the minimization problem we have described above. In turn, the function

y, x, z 7→ GUY,X,Z(y, x, z) with

GUY,X,Z(y, x, z) =

∫ z

−∞
min{GoY |Z(y|s), GoX|Z(x|s)}dGoZ(s)

is the unique argument of the maximum in the corresponding maximization problem. The functions GLY,X,Z and

GUY,X,Z are referred to as the conditional Hoeffding-Frechet distributions. The claim in the Theorem follows after

evaluating the mapping FY,X,Z 7→
∫
yx dFY,X,Z(y, x, z) at the Hoeffding-Frechet distributions. In particular, replace

the lower Hoeffding-Frechet bound GLY,X,Z in the objective function of the programming problem defining the extreme

point λL:

λL =

∫
Z

∫
Y×X

y, xdGLY,X,Z(y, x, z)dGoZ(z)

Let QoY |Z(τ, z) and QoX|Z(υ, z) denote, respectively, the τ -quantile of Y given Z = z and the υ -quantile of X given

Z = z. By using the quantile substitution y = QoY |Z(τ, z) and x = QoX|Z(υ, z) we get,

λL =

∫
Z

∫
[0,1]×[0,1]

QoY |Z(τ, z)×QX|Z(υ, z)dmax{0, τ + υ − 1}dGoZ(z)

Since dmax{0, τ + υ − 1} is different from zero only at τ + υ − 1 = 0, we have the following analytical expression for

λL:

λL =

∫
Z

∫
[0,1]

QoY |Z(τ, z)×QoX|Z(1− τ, z)dτdGoZ(z)
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By the change-of-variable τ = GoY |Z(y|z) :

λL =

∫
Z

∫
Y
y ×QoX|Z(1−GoY |Z(y|z), z)dGoY,Z(y, z)

= E[Y ·QoX|Z(1−GoY |Z(Y |Z)|Z)]

where the expectation is with respect to the joint distribution of (Y,X), GoY,Z . The expression for the upper bound

λU = E[Y ·QoX|Z(GoY |Z(Y |Z)|Z)] follows from a similar reasoning. �

Proof of Theorem 2. Let β1(λ) and β2(λ) denote the components of m(λ). We can re-express the support function

as

s(q) = sup
λ∈[λL,λU ]

q1β1(λ) + sup
λ∈[λL,λU ]

q′2β2(λ)

Since the function λ 7→ β1(λ) is linear and increasing, the value function of the linear programming problem

supλ∈[λL,λU ] q1β1(λ) is:

1(q1 6= 0) [β1L × 1(q1 < 0) + β1U × 1(q1 > 0)]

Similarly, the value function of the linear programming problem supλ∈[λL,λU ] q
′
2β2(λ) is equal to:

E(q′2ΣZY )− E(q′2ΣZX)
[
β1U1(E(q′2ΣZX) < 0) + β1L1(E(q′2ΣZX) ≥ 0)

]]
where Σ is the inverse of the variance matrix of Z. �

Notation. To simplify the arguments in the proofs below and avoid clutter, we introduce the following notation.

Recall that the support function of the identified set is:

s(q) = 1(q1 6= 0)× [1(q1 < 0)β1L + 1(q1 > 0)β1U ]

+ E(q′2ΣoZY )− E(q′2ΣoZX)
[
β1U1(q′2Σoµo < 0) + β1L1(q′2Σoµo ≥ 0)

]]
where Σo := E(ZZ′)−1 and µo := E(ZX). The estimator we consider is

ŝ(q) := 1(q1 6= 0)
[
β̂1L × 1(q1 ≤ 0) + β̂1U × 1(q1 > 0)

]
+ n−1

1

n1∑
i=1

q′2Σ̂ZiYi − n−1
2

n∑
i=n1+1

q′2Σ̂ZiXi
[
β1U1(q′2Σ̂µ̂ < 0) + β1L1(q′2Σ̂µ̂ ≥ 0)

]
where Σ̂, β̂1L, β̂1U and µ̂ are estimates of Σo, β1L, β1U and µo, respectively. We denote by M a generic majorization

constant. Let Σ denote an estimate of the inverse of the variance of Z, and let µ denote an estimate of the expectation

of the product of Z and X. Let ||.|| denote a generic norm and define |||Σ||| := Tr(Σ). Let define the space:

Θ = SdZ × {Σ ∈ RdZ × RdZ : |||Σ||| < M} × {µ ∈ RdZ : ||µ|| < M} × {β1L : |β1L| < M} × {β1U : |β1U | < M}

Consider the functions f1,θ, f2,θ and f3,θ indexed by θ = (q,Σ, β1L, β1U , µ) ∈ Θ such that:

f1,θ(Y,Z) := q′2ΣZY

f2,θ(X,Z) := q′2ΣZXβ1U1(q′2Σµ < 0)

f3,θ(X,Z) := q′2ΣZXβ1L1(q′2Σµ ≥ 0),
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With this notation in hand, the difference ŝ(q)− s(q) can be expressed as:

ŝ(q)− s(q) = 1(q1 6= 0)1(q1 < 0)(β̂1L − β1L)

+ 1(q1 6= 0)1(q1 > 0)(β̂1U − β1U )

+ n−1
1

n1∑
i=1

f1,θ̂(Yi, Zi)− E
(
f1,θo(Y,Z)

)
+ n−1

2

n∑
i=n1+1

f2,θ̂(Xi, Zi)− E
(
f2,θo(X,Z)

)
+ n−1

2

n∑
i=n1+1

f3,θ̂(Xi, Zi)− E
(
f3,θo(X,Z)

)

Proof of Proposition 1 We want to prove supq
∣∣ŝ(q)−s(q)∣∣ = oP (1). The proof is similar to other results establishing

consistency of empirical analogs of support functions (c.f., Molinari and Beresteanu, 2008; Bontemps, Magnac and

Maurin, 2012, Proof of Proposition 9). The main difference is in the presence of the unknown functions QX|Z and

GY |Z . Our starting point is the difference ŝ(q) − s(q). Apply the triangle inequality, add-and-subtract E
(
fj,θ̂
)

for

j ∈ {1, 2, 3}, apply the triangle inequality again to obtain that supq
∣∣ŝ(q)− s(q)∣∣ is bounded by:

sup
q

∣∣ŝ(q)− s(q)∣∣ ≤ sup
q

∣∣∣∣∣1(q1 6= 0)1(q1 < 0)(β̂1L − β1L)

∣∣∣∣∣ (2)

+ sup
q

∣∣∣∣∣1(q1 6= 0)1(q1 > 0)(β̂1U − β1U )

∣∣∣∣∣ (3)

+ sup
q

∣∣∣∣∣n−1
1

n1∑
i=1

f1,θ̂(Yi, Zi)− E
(
f1,θ̂(Y,Z)

)∣∣∣∣∣ (4)

+ sup
q

2∑
j=1

∣∣∣∣∣n−1
2

n∑
i=n1+1

fj,θ̂(Xi, Zi)− E
(
fj,θ̂(X,Z)

)∣∣∣∣∣ (5)

+ sup
q

∣∣∣∣∣E(f1,θ̂(Y,Z)
)
− E

(
f1,θo(Y,Z)

)∣∣∣∣∣ (6)

+ sup
q

2∑
j=1

∣∣∣∣∣E(fj,θ̂(X,Z)
)
− E

(
fj,θo(X,Z)

)∣∣∣∣∣ (7)

We shall show that (2) to (7) in the latter display are oP (1).

To show that (2) is oP (1), start by noticing that (2) = |(β̂1L − β1L)
∣∣ because 1(q1 6= 0)1(q1 < 0) is nonnegative.

Then, estabilishing uniform convergence in probability of (2) boilds down into establishing pointwise convergence in

probability of (β̂1L − β1L). Recall that the estimator β̂1L of the lower bound β1L is:

β̂1L :=

[
λ̂L −

(
n−1
2

n∑
i=n1+1

XiZ
′
i

)
Σ̂
(
n−1
1

n1∑
i=1

ZiYi
)]
×

[
n−1
2

n∑
i=n1+1

X2
i −

(
n−1
2

n∑
i=n1+1

XiZ
′
i

)
Σ̂
(
n−1

n2∑
i=n1+1

XiZi
)]−1

We are working with iid samples (see Assumption 2) with finite second order moments (see Assumption A1.ii). Hence,

the Law of Large Numbers implies that n−1
2

∑n
i=n1+1XiZ

′
i,
∑n1
i=1 ZiYi, and n−1

2

∑n
i=n1+1X

2
i in the latter display

converges in probability to their population counterparts. We show below (see point v) that Σ̂ is also consistent

for Σo. To conclude that
(
β̂U − βU

)
is oP (1), we need to show that

(
λ̂U − λU

)
is oP (1). This later requirements

follows directly from conditions (A3.ii) and (A3.iii) in the Proposition. Verifying that (3) is oP (1) is similar and thus

ommited.

To show that (4) and (5) are oP (1), we exploit the following argument. We know from a result by van der Vaart

(1998, Theorem 19.4, p. 270) that if: (i) the true values (Σo, µo, β1L, β1U ) and their estimates (Σ̂, µ, β̂1L, β̂1U ) belong
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to the space Θ; and (ii) the classes Fj := {fj,θ : θ ∈ Θ} for j ∈ {1, 2, 3} are Glivenko-Cantelli; then (2) and (3)

are oP (1). To verify condition (i) above, we note that the true values (Σo, µo, β1L, β1U ) belong to Θ by the moment

restriction (A.ii) and the rank condition (A1.iii) for a sufficiently large M . We show below (see point v) that we can

force the estimates (µ̂, β̂L, β̂U , Σ̂) to belong to the space Θ, if necessary, by trimming. To verify the Glivenko-Cantelli

condition (ii), note that the classes Fj := {fj,θ : θ ∈ Θ} for j ∈ {1, 2, 3} are parametric. The index set Θ is bounded

by construction. Then, it follows from a result in van der Vaart (1998, Example 19.7, p. 271) that Fj for j ∈ {1, 2, 3}
are Glivenko-Cantelli whenever: (iii) there exist measurable functions mj for j ∈ {1, 2, 3} such that

|fj,θ1(y, x, z)− fj,θ2(y, x, z)| ≤ mj(y, x, z)||θ1 − θ2||

for every θ1, θ2; and (iv) E(|mj(Y,X,Z)|r) < ∞ for some r ≥ 1. We now verify the existence of the measurable

function m1 satisfying (iii) and (iv) above for the class F1. From the definition of f1,θ(Y,Z), notice that the function

q2Σ 7→ f1,θ(y, z) is linear and it is defined on a bounded set. Hence, a result about continuity of convex functions (see

e.g., Hiriart-Urruty and Lemarechal, 2004, Theorem 3.1.2, p. 103) implies that there exists M ≥ 0 such that such

that for any θ1, θ2:

|f1,θ1(y, z)− f1,θ2(y, z)| ≤ sup{||zy||,M}||q′2,1Σ1 − q′2,2Σ2||

≤ m1(y, z)× ||θ1 − θ2|| (8)

where m1(y, z) = sup{||zy||,M}, and the term sup{||zy||,M} controls for those points in Θ that are not in the relative

interior of the domain of f1,θ(X,Z). Under restriction (A3.i), we have E(sup{||ZY ||,M}) <∞. In condition (iv), set

r = 1 to conclude that F1 is Glivenko-Cantelli. We now verify the existence of a measurable function m2 satisfying

(iii) and (iv) above for the class F2. From the definition of f2,θ(X,Z), notice that q2Σ 7→ f2,θ(X,Z) is also a linear

function defined on a bounded set. Hence, for any θ1, θ2 there exists M ≥ 0 such that

|f2,θ1(y, z)− f1,θ2(y, z)| ≤M ||q′2,1Σ1 − q′2,2Σ2|| × ||µ1 − µ2|| sup{||zxβ1U,1||, ||zxβ1U,2||}

≤ m2(y, z)× ||θ1 − θ2|| (9)

where m2(y, z) = M sup{|β1U,1| × ||zx||, |β1U,2| × ||zx||}, and the term sup{|β1U,1| × ||zx||, |β1U,2| × ||zx||} controls for

the points in Θ that are not in the relative interior of the domain of f2,θ(X,Z). Under restrictions (A3.iii), we have

that the expectation of m2(Y,Z) is finite. In condition (iv), set now r = 1 to conclude that F2 is Glivenko-Cantelli.

Verifying that F3 is Glivenko-Cantelli is similar and thus ommited.

To show that (6) and (7) are oP (1), we combine inequalities (8) and (9) with the Dominated Convergence Theorem

(see Pollard, 2002, page 32). We begin with (6). In inequality (8), set θ1 = θ̂ and θ2 = θo. Since θ̂ converges in

probability to θo (see point v), it follows from inequality (6) that:

|f1,θ̂(y, z)− f1,θo(Y,Z)| ≤ m1(y, z)× oP (1) (10)

If the function θ 7→ f1,θ(y, z) is uniformly bounded, then (10) and the Dominated Convergence Theorem imply that

(6) is oP (1). We now verify that θ 7→ f1,θ(y, z) is uniformly bounded. By the Cauchy-Schwarz inequality:

f1,θ(y, z) := q′2Σzy ≤ ||q′2||1/2|||Σ|||1/2||zy||1/2

Since ||q′2||1/2 < 1 and |||Σ|||1/2 < M (see Assumption A3.i), we have:

sup
q2

|f1,θ(Y,Z)| ≤M × ||zy||1/2

Since the vector (Z, Y ) has finite variance matrix (see condition A1.ii), we further obtain:

E
(

sup
q2

|f1,θ(Y,Z)|
)
≤M
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Then, we can conclude from (10) and the Dominated Convergence Theorem that (6) is oP (1). Verifying that (7) is

oP (1) is similar thus omitted.

To conclude the proof, we need to show that: (v) Σ̂ is consistent for Σ and it belongs to {Σ : |||Σ||| < M}. To

establish (v), we follow Bontemps, Magnac and Maurin (2012, Proof of Proposition 9). Let Σ̄ := (n−1
n∑
i=1

ZiZ
′
i)
−1

denote the sample analog of Σ. We define the bounded sample analog estimator Σ̂ as:

Σ̂ :=

Σ̄ if |||Σ̄||| < M

(M/|||Σ̄|||)× Σ̄ otherwise

The estimator Σ̂ belongs to {Σ : |||Σ||| < M} by construction. Under (A3.i), the estimator Σ̂ is consistent for Σ. �

Proof of Proposition 2 To prove this proposition, we decompose the empirical process Sn(q) := n1/2
[
ŝ(q)− s(q)

]
into a sum of several pieces and show that each piece converges weakly to a Gaussian random process. The fact that a

sum of Gaussian processes is a Gaussian process will guarantee that the combination of the pieces delivers the desired

result.

The empirical process Sn is equal to:

Sn(q) = 1(q1 6= 0)1(q1 < 0)n1/2(β̂L − βL) (11)

+ 1(q1 6= 0)1(q1 > 0)n1/2(β̂U − βU) (12)

+ n1/2
[
n−1
1

n1∑
i=1

f1,θ̂(Yi, Zi)− E
(
f1,θ(Y,Z)

)]
(13)

+ n1/2
[
n−1
2

n∑
i=n1+1

f2,θ̂(Xi, Zi)− E
(
f2,θ(X,Z)

)]
(14)

+ n1/2
[
n−1
2

n∑
i=n1+1

f3,θ̂(Xi, Zi)− E
(
f3,θ(X,Z)

)]
(15)

As anticipated above, we shall show that each of the terms in the right hand side of the latter display weakly converges

to a Gaussian process. To prove that (11) converges to a Gaussian process, we combine the Slutzky Lemma, the Central

Limit Theorem and the Uniform Central Limit Theorem by van der Vaart (1998, Theorem 18.4). The proof for (12)

is similar and thus omitted. We begin by establishing convergence in distribution of the expression n1/2
(
β̂L − βL

)
in

(13). For convenience sake, define the quantities

Â :=
(
n−1
2

n∑
i=n1+1

XiZ
′
i

)
Σ̂
(
n−1
1

n1∑
i=1

ZiYi
)

B̂ :=

[
n−1
2

n∑
i=n1+1

X2
i −

(
n−1
2

n∑
i=n1+1

XiZ
′
i

)
Σ̂
(
n−1
2

n∑
i=n1+1

XiZi
)]−1

With this notation in hand, rewrite the scaled difference n1/2
(
β̂L − βL

)
as:

n1/2(β̂L − βL) = B̂n1/2(λ̂L − λL)− B̂n1/2(Â−A) + (λL −A)n1/2(B̂ −B)

where A and B are, respectively, the population analogs of Â and B̂. We now analyze convergence of each of the

terms in the right hand side of the latter display. Consider the first term. Under conditions (A1.ii), (A1.iii) and (A2),

we have that the average B̂ converges in probability to B by the law of large numbers. Under conditions (A4.ii) and

(A3.iii), we have that the scaled difference n1/2(λ̂L−λL) converges in distribution to random variable with zero mean

normal distribution by the Donsker Theorem in van der Vaart (1998, Theorem 19.5). The product B̂n1/2(λ̂L − λL)

converges then to random variable with zero mean normal distribution by Slutzky Lemma. Consider now the second

term. Under conditions (A1.ii)(A3.iii), (A2) and (A4.i), the scaled difference n1/2(Â−A) converges in distribution to
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a random variable with zero mean normal distribution by the Central Limit Theorem. The product B̂n1/2(Â−A) then

converges then to random variable with zero mean normal distribution by Slutzky Lemma. Asymptotic normality of

the last term follows from a similar reasoning. Hence, n1/2
(
β̂L − βL

)
converges in distribution to a random variable

with zero mean normal distribution because equals a sum of terms converging in probability to normal random

variables. Since 1(q1 6= 0)1(q1 < 0) is not random, Slutzky lemma does guarantee that (11) converges in distribution

to a normal distribution for a given q1. To extend the latter pointwise convergence in distribution result to uniform

convergence over q, we need to verify that q 7→ (11)(q) is asymptotically tight (see van der Vaart, 1998, Theorem

18.4). For any q1,1 and q1,2 in the unit interval, consider the difference:

(11)(q1,1)− (11)(q1,2) = 1(q1,1 6= 0)1(q1,1 < 0)
(
β̂L − βL

)
− 1(q1,2 6= 0)1(q1,2 < 0)

(
β̂L − βL

)
= (1(q1,1 6= 0)1(q1,1 < 0)− 1(q1,2 6= 0)1(q1,2 < 0))

(
β̂L − βL

)
For any q2,2, supq1,1(1(q1,1 6= 0)1(q1,1 < 0) − 1(q1,2 6= 0)1(q1,2 < 0)) ≤ 1. Hence, for every any partition of the unit

interval into finitely many intervals I1,..,Ik of size δ > 0 we have :

sup
k

sup
q1,1,q1,2∈Ik

n1/2(11)(q1,1)− (11)(q1,2) ≤ n1/2(β̂L − βL)

To conclude that q 7→ (11)(q) is asymptotically tight, note that n1/2(β̂L − βL) = OP (1) by our discussion above.

We now establish the weak convergence of (13). Add-and-subtract E(f1,θ̂(Y,Z)) within the sum in (13) to obtain:

n1/2
[
n−1
1

n1∑
i=1

f1,θ̂(Y,Z)− E
(
f1,θ(Y,Z)

)]
= n1/2

[
n−1
1

n1∑
i=1

f1,θ̂(Y,Z)− E
(
f1,θ̂(Y,Z)

)]
(16)

+ n1/2
[
E
(
f1,θ̂(Y,Z)

)
− E

(
f1,θ(Y,Z)

)]
(17)

We shall show that (16) is asymptotically equivalent to another random element which weakly converges to a Gaussian

process, and that (17) is asymptotically negligible. Consider first (16). Under assumption (A4.i), the expression (16)

is asymptotically equivalent to:

n1/2
[
n−1
1

n1∑
i=1

f1,θ(Y,Z)− E
(
f1,θ(Y,Z)

)]
(18)

To see why, recall from inequality (8) in the proof of Proposition 1 that:

|f1,θ̂(Y,Z)− f1,θ(Y,Z)| ≤ m1(Y,Z)× oP (1)

Under (A4.i), we have that the expectation of the square of m1(Y,Z) is finite so that E
(
|f1,θ̂(Y,Z)− f1,θ(Y,Z)|2

)
=

oP (1). It follows then from a result in van der Vaart (1998, Lemma 19.4) that (16) and (18) have the same asymptotic

distribution. To establish the weak convergence of (18), it suffices to verfiy that the class F1 is Donsker. This in turns

follows from inequality (8) and Assumption (A4.i) (see van der Vaart, 1998, p. 271). We now show that (17) is oP (1).

Use f1,θ(Y,Z) := q′2ΣZY to write:

(17) = n1/2
[
E
(
q′2Σ̂ZY

)
− E

(
q′2ΣZY

)]
≤ n1/2E

(
||q′2(Σ̂− Σ)||

)1/2E(||ZY ||)1/2
≤ n1/2(E(||q′2Σ̂||)− ||q′2Σ||

)1/2
M

≤ n1/201/2M ≤ o(1) ≤ oP (1)

where the first inequality follows from the Cauchy-Schwartz inequality, the second one from the triangle inequality

and assumption (A1.iii), and the third inequality from Assumption (A4.iii)

We now establish the weak convergence of (14). Add-and-substract E(f2,θ̂(X,Z)) within the sum in (14) to
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obtain:

n1/2
[
n−1
2

n2∑
i=n1+1

f2,θ̂(Xi, Zi)− E
(
f2,θ(X,Z)

)]
= n1/2

[
n−1
2

n2∑
i=n1+1

f2,θ̂(Xi, Zi)− E
(
f2,θ̂(X,Z)

)]
(19)

+ n1/2
[
E
(
f2,θ̂(X,Z)

)
− E

(
f2,θ(X,Z)

)]
(20)

As for (13), we shall show that (19) is asymptotically equivalent to another random element which weakly converges

to a Gaussian process, and that (20) is oP (1). Consider first (19). Under assumption (A4.i), the term (21) in the

latter display is asymptotically equivalent to:

n1/2
[
n−1
2

n2∑
i=n1+1

f2,θ(Xi, Zi)− E
(
f2,θ(X,Z)

)]
(21)

To see why, from inequality (9) in the proof of Proposition 1 notice that:

|f2,θ̂(X,Z)− f2,θ(X,Z)| ≤ oP (1)

so that E
(
|f2,θ̂(X,Z)−f2,θ(X,Z)|2

)
= oP (1). It follows then again from a result in van der Vaart (1998, Lemma 19.4)

that (19) and (21) have the same asymptotic distribution. To establish the the weak convergence of (21), from the

inequality (9) and assumption (A4.i) we note that the family F2 is Donsker. We now show that, under the support

restriction (A4.iii), the term (20) is oP (1). Use f2,θ(X,Z) := q′2ΣZX1(q′2Σµ < 0)βU to write:

(20) = n1/2[E(qβ̂1U ′2 Σ̂ZX1(q′2Σ̂µ̂ < 0))− E(β1Uq
′
2ΣoZX1(q′2Σoµo < 0))

]
= n1/2E

[
β̂1U1(q′2Σ̂µ̂ < 0)q′2(Σ̂− Σo)ZX

]
(22)

+ n1/2E
[
β1Uq

′
2ΣoZX

(
1(q′2Σ̂µ̂ < 0)− 1(q′2Σoµo < 0)

)]
(23)

+ n1/2E
[
(β̂1U − β1U )1(q′2Σ̂µ̂ < 0)q′2ΣoZX

]
(24)

Considering (22) first, use the Cauchy-Schwartz to write

(22) ≤ n1/2E(β̂2
1U )1/2E(1(q′2Σ̂ZX < 0))1/2E(||q′2(Σ̂− Σo)||)1/2E(||ZX||)1/2

≤ OP (n1/2)× 1× 01/2 ×M ≤ o(1) ≤ oP (1)

where the second inequality follows from assumption (A1.iii), assumption (A4.iii), and assumption (A3.i). Consider

now the term (23). Use again the Cauchy-Schwartz inequality to write:

(23) ≤ n1/2E(β̂2
1U )1/2E(||q′2ΣoZX||)1/2E

((
1(q′2Σ̂µ̂ < 0)− 1(q′2Σoµo < 0)

)2)1/2
≤ OP (n1/2)E

(∣∣1(q′2Σ̂µ̂ < 0)− 1(q′2Σoµo < 0)
∣∣)1/2

where the second inequality follows from assumption (A4.i) and because the square of the difference of two binary

variables is equal to the absolute value of the difference. Under assumption (A4.i) and (A4.iii), it follows from a

result in Bontemps, Magnac and Maurin (2012, proof of Lemma 13) that the expectation in the right hand side of

the latter display is oP (n−1/2), hence (23) = oP (1). By similar arguments we have (24) = oP (1). Verifying the weak

convergence of (15) is similar and thus ommited. �
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