

Small Area Estimation workshop Lecture 2 – Stat-JR, MCMC, eBooks and SAE modelling

Professor William Browne, Centre for Multilevel Modelling, University of Bristol (with Chris Charlton, Nikos Tzavidis and Timo Schmid)

What will we cover ?

- Stat-JR
- MCMC estimation
- eBooks
- Statistical Analysis Assistants
- MCMC algorithms for SAE.
- An SAA for Small Area Estimation.

Stat-JR

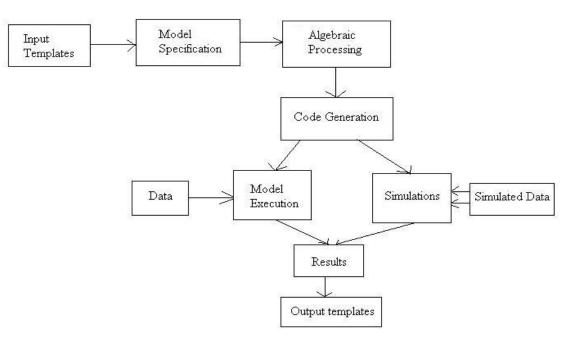
- A statistical package developed by the team at the centre for multilevel modelling with colleagues at Southampton.
- Contains it's own estimation engine.
- System based on the idea of a suite of templates where each template performs a specific operation.
- Also allows interoperability with other software packages, so for example might have a regression template that fits regressions using various software packages.
- The initial TREE interface runs in a web browser.
- There are also newer eBook and workflow interfaces.
- Several ESRC grants have enabled Stat-JR to be written.

Stat-JR - Jon Rasbash's big vision

- The multilevel modelling centre had developed MLwiN for many years and Jon the main programmer was thinking on where our software went next.
- The frequentist IGLS algorithm was hard to extend further.
- WinBUGS showed that MCMC as an algorithm could be extended easily but the difficulty in MLwiN was in extending the MCMC code I developed!
- The big vision was an all-singing all-dancing system where expert users could add functionality easily and which interoperates with other software..
- The ESRC LEMMA II, LEMMA III and eSTAT grants would enable this to be achieved

STAT-JR

Jon identified 3 groups of users:


- Novice practitioners who want to use statistical software that is user friendly and maybe tailored to their discipline
- Advanced practitioners who are the experts in their fields and also want to develop tools for the novice practitioners
- Algorithm Developers who want their algorithms used by practitioners.
- See <u>http://www.cmm.bristol.ac.uk/research/NCESS-</u> <u>EStat/news.shtml</u> for details of documentation for STAT-JR and several meeting presentations.

STAT-JR component based approach

Below is an early diagram of how we envisioned the system. Here you will see boxes representing components some of which are built into the STAT-JR system. The system is written in Python with a VB.net algebra processing system. A team of coders have worked together on the system.

niversity of

Templates

Backbone of Stat-JR.

Consist of a set of code sections for advanced users to write. A bit like R packages.

For a model template it consists of at least:

- an *inputs* method which specifies inputs and types
- A *model* method that creates (BUGS like) model code for the algebra system
- An (optional) *latex* method can be used for outputting LaTeX code for the model.

Other optional functions required for more complex templates

Bayesian Statistics

- MCMC is often used with Bayesian statistical modelling.
- In Bayesian statistics we add prior distributions to a model so that all unknown parameters have a prior distribution which suggests what we know about the parameter BEFORE to data collection (often we know nothing and thus priors are often flat).
- This prior is combined with the data as it appears in a likelihood to produce a posterior distribution i.e. what we know about the parameter AFTER collecting the data.
- Posterior distributions are the key element of Bayesian statistics but often we look for summary measures from the posterior distribution e.g. it's mean or median.

MCMC estimation

- MCMC estimation works by calculating the conditional posterior distributions for each parameter i.e. the distribution if all other parameter values are known.
- Random (i.e. *Monte Carlo*) draws are taken in turn from each conditional distribution and the conditional distributions adapted to the new values.
- These draws then form a sample (*chain*) of estimates for each parameter. The chain is *Markov* (memory-less) as it only depends on the last value of the other parameters
- From the sample summary measures e.g. the posterior mean and SD can be used to describe the parameter but in addition the full sample allows easy calculation of interval estimates (from the quantiles of the chain of values).

Regression 1 Example

from EStat.Templating import *
<pre>class Regression1(Template): 'A model template for fitting 1 level Normal multiple regression model in eStat only.' tags = ['Model', '1-Level', 'eStat', 'Normal'] engines = ['eStat'] inputs = '''</pre>
y = DataVector('Response: ')
x = DataMatrix('Explanatory variables: ', allow_cat=True, help= 'predictor variables')
beta = ParamVector(parents=[x], as_scalar=True)
tau = ParamScalar()
sigma = ParamScalar(modelled = False)
sigma2 = ParamScalar(modelled = False)
deviance = ParamScalar(modelled = False) '''

model = "" model{ for (i in 1:length(\${y})) { \${y}[i] ~ dnorm(mu[i], tau) mu[i] <- \${mmult(x, 'beta', 'i')} } }</pre>

```
# Priors
% for i in range(0, x.ncols()):
beta${i} ~ dflat()
% endfor
tau ~ dgamma(0.001000, 0.001000)
sigma2 <- 1 / tau
sigma <- 1 / sqrt(tau)</pre>
```

```
}
'''
```

}

```
latex = r'''
\begin{aligned}
\mbox{${y}}_i & \sim \mbox{N}(\mu_i, \sigma^2) \\
\mu_i & =
    ${mmulttex(x, r'\beta', 'i')} \\
%for i in range(0, len(x)):
\beta_${i} & \propto 1 \\
%endfor
\tau & \sim \Gamma (0.001,0.001) \\
\sigma^2 & = 1 / \tau
\end{aligned}
""
```


An example of STAT-JR – setting up a model

Stat-JR:TREE x + ← → C ① localhost:49691/run/			- 0 × \$ \$:
Stat-JR:TREE Start again Dataset * tutorial	〕Template ▼ (Regression1) eBook ▼		Idle Settings About Debug -
	Response:	normexam remove	
	Over the second	cons,standlrt remove	
	Number of chains:	3 remove	
	Random Seed:	1 remove	
	Length of burnin:	500 remove	
	ONumber of iterations:	2000 remove	
	Thinning:	1 remove	
	Use default algorithm settings:	Yes remove	
	Generate prediction dataset:	No remove	
	Use default starting values:	Yes remove	
	PName of output results:	out	
		Vext '3', 'defaultalg': 'Yes', 'iterations': '2000', 'y': 'normexam', 'x': 'cons.standirt', 'seed':	
	Command: RunStatJR(template='Regression1', dataset='tutorial', invars = {'y	': 'normexam', 'x': 'cons,standirt'}, estoptions = {'burnin': '500', 'defaultsv': 'Yes',	,

University of

An example of STAT-JR – setting up a model

3 ∏ ←	Stat-JR 1.0.3TREE Response: → C D loc	normexam remove	
Sta	(BExplanatory variables:	cons,standlrt remove	Ready (ta) Settings Debug -
	Number of chains:	3 remove	
	Random Seed:	1 remove	
	Length of burnin:	500 remove	
	Number of iterations:	2000 remove	
	Thinning:	1 remove	
	Use default algorithm settings:	Yes remove	:epred': 'No'}
	Generate prediction dataset:	Yes remove	•
	Use default starting values:	Yes remove	
ersity of	Name of output results:	out	
ISTOL	Centre for multicerer modeling		

Equations for model

About am', 'x': ultsv': 'Yes	
am', 'x':	
	S*,
ultsv': 'Yes	s',

All objects created available from one pull down and can be popped out to separate tabs in browser.

Equations for model

$$\begin{split} \operatorname{normexam}_{i} &\sim \operatorname{N}(\mu_{i}, \sigma^{2}) \\ \mu_{i} &= \beta_{0} \operatorname{cons}_{i} + \beta_{1} \operatorname{standlrt}_{i} \\ \beta_{0} &\propto 1 \\ \beta_{1} &\propto 1 \\ \tau &\sim \Gamma(0.001, 0.001) \\ \sigma^{2} &= 1/\tau \end{split}$$

 Note: Equations use MathJax and so underlying LaTeX can be copied and paste. The model code is based around the WinBUGS language with some variation.

Model code

K Stat-JR:TREE × +					×
- → C ③ localhost:49691/run/			☆		:
tat-JR:TREE Start again Dataset 🔻 tutorial Template 👻 Regression1) eBook 💌	Ready (3s)	Settings Al	bout De	ebug 🔻	
Current input string: {'burnin': '500', 'defaultsv': 'Yes', 'outdata': 'out', 'thinning': '1', 'nchains': '3', 'defaultalg': 'Yes', 'cons,standirt', 'seed': '1', 'makepred': 'No'}	'iterations': '2000',	'y': 'normexam', '	'x':		
Command: RunStatJR(template='Regression1', dataset='tutorial', invars = {'y': 'normexam', 'x': 'cons,standlrt'}, est 'thinning': '1', 'nchains': '3', 'defaultalg': 'Yes', 'iterations': '2000', 'outdata': 'out', 'seed': '1', 'makepred': 'No'})	options = {'burnin':	'500', <mark>'d</mark> efaultsv	': 'Yes',		
Edit model.txt Popout					
<pre>model{ for (i in 1:length(normexam)) { normexam[i] ~ dnorm(mu[i], tau) </pre>					
<pre>mu[i] <- cons[i] * beta_0 + standlrt[i] * beta_1 } # Priors</pre>					
<pre>beta_0 ~ dflat() beta_1 ~ dflat() tau ~ dgamma(0.001000, 0.001000) sigma2 <- 1 / tau </pre>					
<pre>sigma <- 1 / sqrt(tau) }</pre>					

All objects created available from one pull down and can be popped out to separate tabs in browser.

Model code in detail

```
model{
   for (i in 1:length(normexam)) {
      normexam[i] ~ dnorm(mu[i], tau)
      mu[i] <- cons[i] * beta0 + standlrt[i] * beta1
   }
# Priors
   beta0 ~ dflat()
   beta1 ~ dflat()
   tau ~ dgamma(0.001000, 0.001000)
   sigma2 <- 1 / tau
   sigma <- 1/sqrt(tau)
}</pre>
```

For this template the code is, aside from the length function, standard WinBUGS model code.

Algebra system steps to calculate conditional posterior

🔰 Stat-JR:TREE 🗙 👯 Stat	JR:TREE × +	4 <u>7.77</u> 1		×
\leftrightarrow \rightarrow C (i) localhost:49691/output/n	de_beta_0.xml	☆	6	:
Stat-JR:TREE				Î
Log posterior	$\tau \left(\sum\nolimits_{i=1}^{\text{length (normexam)}} \text{cons}_i(\text{normexam}_i - \text{beta}_1 \text{standlrt}_i) \right) \text{beta}_0 - \frac{\tau \left(\sum\nolimits_{i=1}^{\text{length (normexam)}} \text{cons}_i^2 \right) \text{beta}_0^2}{2}$			
Distribution	dnorm			
Match	$A = \tau \sum\nolimits_{i=1}^{length \ (normexam)} cons_i (normexam_i - beta_1 standlrt_i)$			
Match	$\mathrm{B} = -\left(\frac{\tau \sum_{i=1}^{\mathrm{length} \left(\mathrm{normexam} \right)} \mathrm{cons_i}^2}{2} \right)$			
Sampling parameter	$\mu = \frac{\tau \sum_{i=1}^{\text{length (normexam)}} \text{cons}_i (\text{normexam}_i - \text{beta}_i \text{standlrt}_i)}{\tau \sum_{i=1}^{\text{length (normexam)}} \text{cons}_i^2}$			
Sampling parameter	$ au= au\sum_{\mathrm{i}=1}^{\mathrm{length}\ (\mathrm{normexam})}\mathrm{cons_i}^2$			
Sampling distribution	$\mathrm{beta}_{-0} \sim \mathrm{dnorm}\left(\frac{\tau \sum_{i=1}^{\mathrm{length} \left(\mathrm{normexam} \right)} \mathrm{cons}_{i} \left(\mathrm{normexam}_{i} - \mathrm{beta}_{-1} \mathrm{standlrt}_{i} \right)}{\tau \sum_{i=1}^{\mathrm{length} \left(\mathrm{normexam} \right)} \mathrm{cons}_{i}^{\ 2}}, \tau \sum_{i=1}^{\mathrm{length} \left(\mathrm{normexam} \right)} \mathrm{cons}_{i}^{\ 2}}\right)$			

Algebra system steps for all parameters

Stat-JR:TREE × 57 Stat-JR:TREE	
← → C ③ localhost:49691/output/algorithm.	ttex 🔶 🗘
Stat-JR:TREE	
	LaTeX version of algorithm Conditional posterior for tau for Gibbs sampling
	$\tau \sim \Gamma \Biggl(0.001 + 0.5 \times \text{length}(\text{normexam}), 0.001000 + \frac{\sum_{i=1}^{\text{length}(\text{normexam})} \left(\text{normexam}_i - \text{beta_0} \times \text{cons}_i - \text{beta_1} \times \text{standlrt}_i \right)^2}{2} \Biggr)$
	Deviance Function
	$deviance = 2 \times \left(\frac{\tau \times \left(\sum_{i=1}^{length(normexam)} \left(normexam_i - beta_0 \times cons_i - beta_1 \times standlrt_i \right)^2 \right)}{2} + 0.5 \times (\ln(\pi) - \ln(\tau)) \times length(normexam) + 0.346573590279973 \times length(normexam) + 0.3465739973 \times length(normexam) + 0.3465739973 \times length(normexam) + 0.3465739973 \times length(normexam) + 0.3465739973 \times length(no$
	Conditional posterior for beta_0 for Gibbs sampling
	$beta_0 \sim N \left(\frac{\tau \times \left(\sum_{i=1}^{length(normexam)} \operatorname{cons}_i \times \left(\operatorname{normexam}_i - beta_1 \times standlrt_i \right) \right)}{\tau \times \left(\sum_{i=1}^{length(normexam)} \operatorname{cons}_i^2 \right)}, \tau \times \left(\frac{\sum_{i=1}^{length(normexam)} \operatorname{cons}_i^2}{\sum_{i=1}^{length(normexam)} \operatorname{cons}_i^2} \right) \right)$
	Conditional posterior for beta_1 for Gibbs sampling
	$\text{beta_1} \sim \text{N} \left(\frac{\tau \times \left(\sum_{i=1}^{\text{length}(normexam)} \text{standlrt}_i \times \left(\text{normexam}_i - \text{beta_0} \times \text{cons}_i \right) \right)}{\tau \times \left(\sum_{i=1}^{\text{length}(normexam)} \text{standlrt}_i^2 \right)}, \tau \times \left(\sum_{i=1}^{\text{length}(normexam)} \text{standlrt}_i^2 \right) \right)$
	Deterministic formula for parameter sigma
	$\sigma = rac{1}{\mathrm{sqrt}(au)}$
	Deterministic formula for parameter sigma2
	$\sigma_2 = \frac{1}{\tau}$
40	
University of BRISTOL Cer	ntre for Multilevel Modelling

Algebra system steps

Use Gibbs sampling from conditional posterior for beta1:

$$\beta_{1} \sim N \left(\frac{\tau \times \left(\sum_{i=1}^{length(normexam)} standlrt_{i} \times \left(normexam_{i}^{-\beta_{0} \times cons_{i}^{-}} \right) \right)}{\tau \times \left(\sum_{i=1}^{length(normexam)} standlrt_{i}^{-2} \right)}, \tau \times \left(\sum_{i=1}^{length(normexam)} standlrt_{i}^{-2} \right) \right)$$

 $\beta_1 \sim \mathrm{N}(0.000249799765395 \times (2382.12631198 + \beta_0 \times (-7.34783096611)), 4003.20632175 \times \tau)$

Here the first line is what is returned by the algebra system – which works solely on the model code. The second line is what can be calculated when values are added for constants and data etc. System then constructs C code and fits model

Output of generated C++ code

× 5 Stat-JR:TREE Stat-JR:TREE ← → C ③ localhost:49691/output/modelcode.cpp ☆ 😩 Stat-JR:TREE } // Update beta_0 // This code was generated by the Stat-JR package (copyright 2012 University of Bristol and University of Southampton). { double sum0=0; double csum0=0; double sum1=0; double csum1=0; for(int i=0; i<4059; i++) {</pre> double ysum0 = (cons[i]*(normexam[i]-(beta_1*standlrt[i]))) - csum0; double tsum0 = sum0 + ysum0; double ysum1 = pow(cons[i],2.0) - csum1; double tsum1 = sum1 + ysum1; csum0 = (tsum0 sum0) ysum0; sum0 = tsum0; csum1 = (tsum1 - sum1) - ysum1; sum1 = tsum1; 3 beta 0 = dnorm(((tau*sum0)/(tau*sum1)),(tau*sum1)); } // Update beta_1 // This code was generated by the Stat-JR package (copyright 2012 University of Bristol and University of Southampton). { double sum0=0; double csum0=0; double sum1=0; double csum1=0; for(int i=0; i<4059; i++) {</pre> double ysum0 = (standlrt[i]*(normexam[i]-(beta_0*cons[i]))) - csum0; double tsum0 = sum0 + ysum0; double ysum1 = pow(standlrt[i],2.0) - csum1;

The package can output C++ code that can then be taken away by software developers and modified.

University of

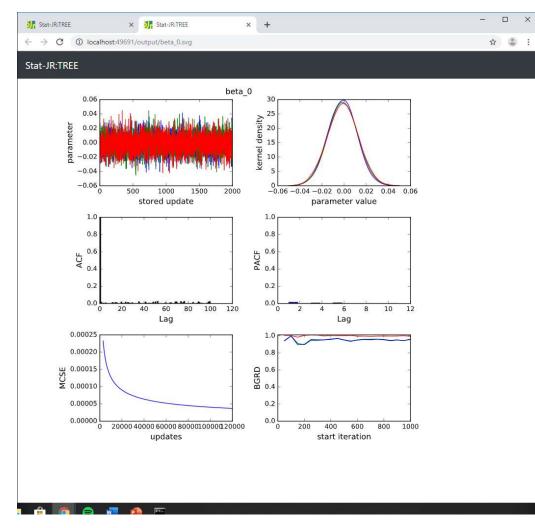
٥

Output of generated C++ code

```
// Update beta1
{
    beta1 = dnorm((0.000249799765395*(2382.12631198+(beta0*(-
            7.34783096611)))),(4003.20632175*tau));
}
// Update beta0
{
    beta0 = dnorm((((-0.462375992909)+((-
            7.34783096611)*beta1))*0.000246366100025),(tau*4059.0));
}
```

• Note now that the code includes the actual data in place of constants and so looks less like the familiar algebraic expressions

Output from the eStat engine


odelResults •	Popout			
Results Parameters:				
parameter	mean	sd	ESS	variable
tau	1.541609950744	0.0340065114631	5799	
beta_0	-0.00127835184871	0.0125770014327	5960	cons
beta_1	0.594959154333	0.012745358164	6129	standlrt
sigma2	0.648987956704	0.0143068971085	578 <mark>4</mark>	
sigma	0.805548947357	0.00887975878981	5789	
deviance	9763.488488309793	2.433023996012	6061	
Model:				
	Statistic	Value		
	Dbar	9763.488488	309793	
	D(thetabar)	9760.509788	962656	

Estimates and the DIC diagnostic can be viewed for the model fitted.

Output from the eStat engine

eStat offers multiple chains so that we can use multiple chain diagnostics to aid convergence checking.

Otherwise the graphs are borrowed from the 6-way plotting in the MLwiN package.

Graphics are in svg format so scale nicely.

INTEROPERABILITY

Centre for Multilevel Modelling

Interoperability with WinBUGS (Regression 2)

 Stat-JR 1.0.2:TREE × ← → C ☐ localhost:8080/run/# 		Th ch
Stat-JR:TREE Start again Dataset + (tutorial) Template + Regression	Ready (ts) Settings Debug -	SO
@ Response:	normexam remove	
Second Se	cons,standirt remove	fitt
Choose estimation engine:	WinBUGS remove	m
Number of chains:	3 remove	
Random Seed:	1 remove	S
Length of burnin:	500 remove	is
Number of iterations:	2000 remove	m
Thinning:	1 remove	of
Name of output results:	out remove	
Use default starting values:	Yes remove	ar
	un	He
		W

This template offers the choice of many software packages for fitting a regression model.

STAT-JR checks what is installed on the machine and only offers packages that are installed. Here we choose WinBUGS.

Interoperability in the user interface is obtained via a few extra inputs. In fact in the template code user written functions are required for all packages apart from WinBUGS, OpenBUGS and JAGS. The transfer of data between packages is however generic.

Interoperability with WinBUGS (Regression 2)

t-JR:TREE Start again Dataset • (tutorial) Template • (Regression2)	Ready (14s)	Settings Del
script.txt Popout		
display('log')		
<pre>check('c:/users/frwjb/appdata/local/temp/tmp0b7av5/model.txt')</pre>		
<pre>data('c:/users/frwjb/appdata/local/temp/tmp0b7av5/data.txt') compile(3)</pre>		
<pre>inits(1, 'c:/users/frwjb/appdata/local/temp/tmp0b7av5/inits1.txt')</pre>		
<pre>inits(2, 'c:/users/frwjb/appdata/local/temp/tmp0b7av5/inits2.txt')</pre>		
<pre>inits(3, 'c:/users/frwjb/appdata/local/temp/tmp0b7av5/inits3.txt') gen.inits()</pre>		
set.seed(1)		
update(500)		
set('tau')		
set('deviance')		
set('beta')		
<pre>set('beta_0') set('beta_1')</pre>		
set('sigma')		
<pre>set('sigma2')</pre>		
dic.set()		
thin.updater(1)		
update(2000) coda('*', 'c:/users/frwjb/appdata/local/temp/tmp0b7av5/results')		
<pre>coda(* , c:/users/trwjb/appdata/local/temp/tmp00/av5/results) stats('*')</pre>		
dic.stats()		
history('*', 'c:/users/frwjb/appdata/local/temp/tmp0b7av5')		
save('c:/users/frwjb/appdata/local/temp/tmp0b7av5/log.odc')		
<pre>save('c:/users/frwjb/appdata/local/temp/tmp0b7av5/log.txt') quit()</pre>		

Here we can view the files required to run WinBUGS in the pane (script file shown but model, inits and data also available)

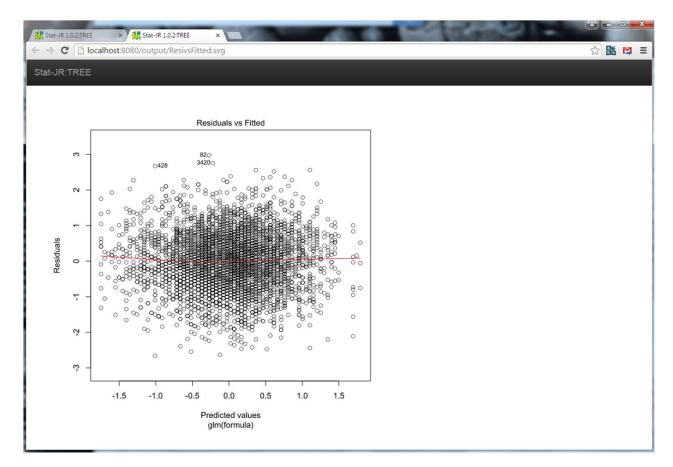
The model can be run by press of a button.

University of

Interoperability with R

J Stat-JR 1.0.2:TREE ×		x
← → C	☆ 👪 😫	≡
Stat-JR:TREE Start again Dataset - (tutorial Template - (Regression2)	Settings Debu	- gu
Response: normexam remove		
Explanatory variables: cons,standirt remove		
Choose estimation engine: R_glm remove		
Run		
Current input string: {'y': 'normexam', 'x': 'cons,standirt', 'Engine': 'R_glm'}		
Set		
• Command: RunStatJR(template='Regression2', dataset='tutorial', invars = {'y': 'normexam', 'x': 'cons,standirt'}, estoptions = {'Engine': 'R_glm'})		
Edit script R Popout		
<pre>local({r <- getOption("repos"); r["CRAN"] <- "http://cran.r-project.org"; options(repos = r)}) # # # # # # # # # # # # # # # # # # #</pre>		
# Note that when Stat-JR interoperates with R, it sets the working		
<pre># directory to wherever the user's temporary files are stored, i.e. # workdir = tempdir(). The data to be modelled, this script, and the</pre>		
# files exported from R, are all saved there.		
# test to see if foreign package is already installed, if not, then install it		
if (!require(foreign)) {		
install.packages("foreign") library(foreign)		
}		

R can be chosen as another alternative. In fact here we have 2 choices – glm or MCMCglmm.

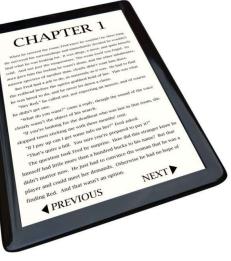

You will see in the pane the script file ready for input to R. There will also be the data file that R requires.

University of

Interoperability with R

If written in to the code in the template – graphics from other software can be extracted.

Here for example is a residual plot associated with the R fit of the model.



eBooks

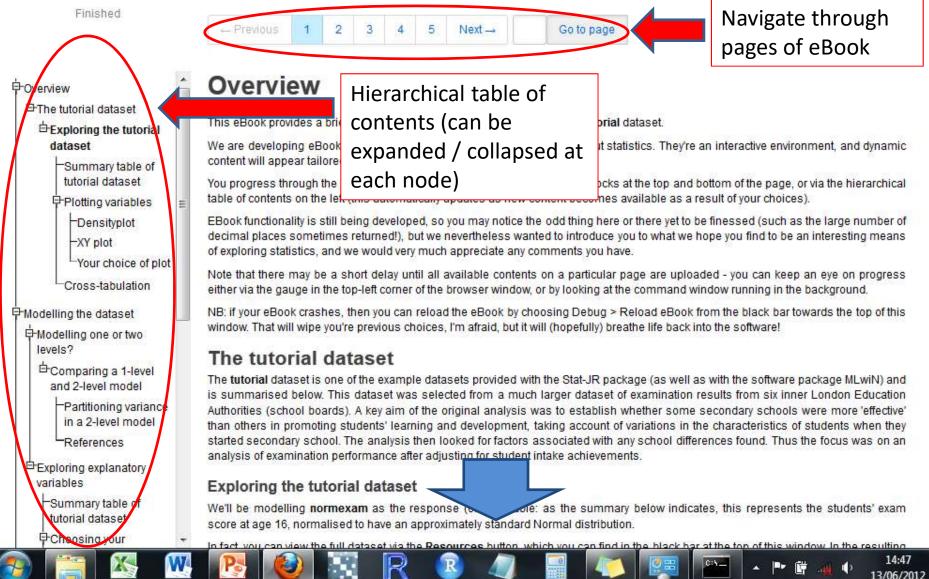
=

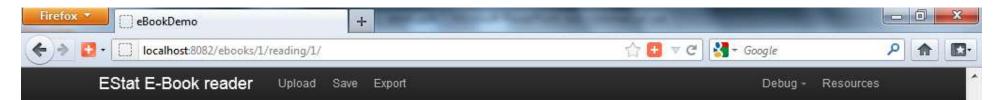
University of RR ISTOI

An electronic book is a bookpublication in digital form. In the US more books are published online than distributed in hard copy in book shops.

Centre for Multilevel Modelling

Statistical (and Mathematical) eBooks


- The idea is can we incorporate statistical content into an eBook? Of course a statistical textbook is no different on paper to any other document when it comes to creating a pdf file (aside from maybe more equations!)
- The difference is in what 'enhancements' we can add and so the idea here is combining the text book with the statistics package i.e. interactive examples, allowing the user to include their own dataset etc.



Multilevel modelling with the 'tutorial' dataset

Multilevel modelling with the 'tutorial' dataset

 $Next \rightarrow$

Go to page

Finished

1

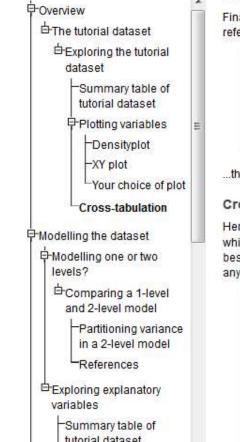
2

3

4

5

- Previous


FThe tutorial dataset	Column name	n	Missing	Min	Max	Description
由Exploring the tutorial dataset	school	4059	0	1	65	Numeric school identifier
Summary table of tutorial dataset	student	4059	0	1	198	Numeric student identifier
Plotting variables ≡ ├Densityplot	normexam	4059	0	-3.67	3.67	Students' exam score at age 16, normalised to have approximately a standard Normal distribution.
-XY plot Your choice of plot	cons	4059	0	1	1	A column of ones. If included as an explanatory variable in a regression model, its coefficient is the intercept.
Cross-tabulation	standirt	4059	0	-2.93	3.02	Students' score at age 11 on the London Reading Test (LRT), standardised using Z-scores.
odelling the dataset	girl	4059	0	0	1	Students' gender: 0=boy; 1=girl
Modelling one or two levels?	schgend	4059	0	1	3	School gender: 1=mixed; 2=boys' school; 3=girls' school
Comparing a 1-level	avsirt	4059	0	-0.76	0.64	Average LRT score in school
Partitioning variance in a 2-level model	schav	4059	0	1	3	Average LRT score in school, coded into 3 categories: 1=bottom 25%; 2=middle 50%; 3=top 25%
References	vrband	4059	0	1	3	Students' score in test of verbal reasoning at age 11, coded into 3 categories: 1=top 25%; 2=middle 50%; 3=bottom 25%
Exploring explanatory						
Summary table of tutorial dataset	Plotting vari		-explore the	tutorial	dataset	
中 中Choosing your +	1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 -	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				lensityplot and XY plot, respectively; here you can re-specify your choice of variables

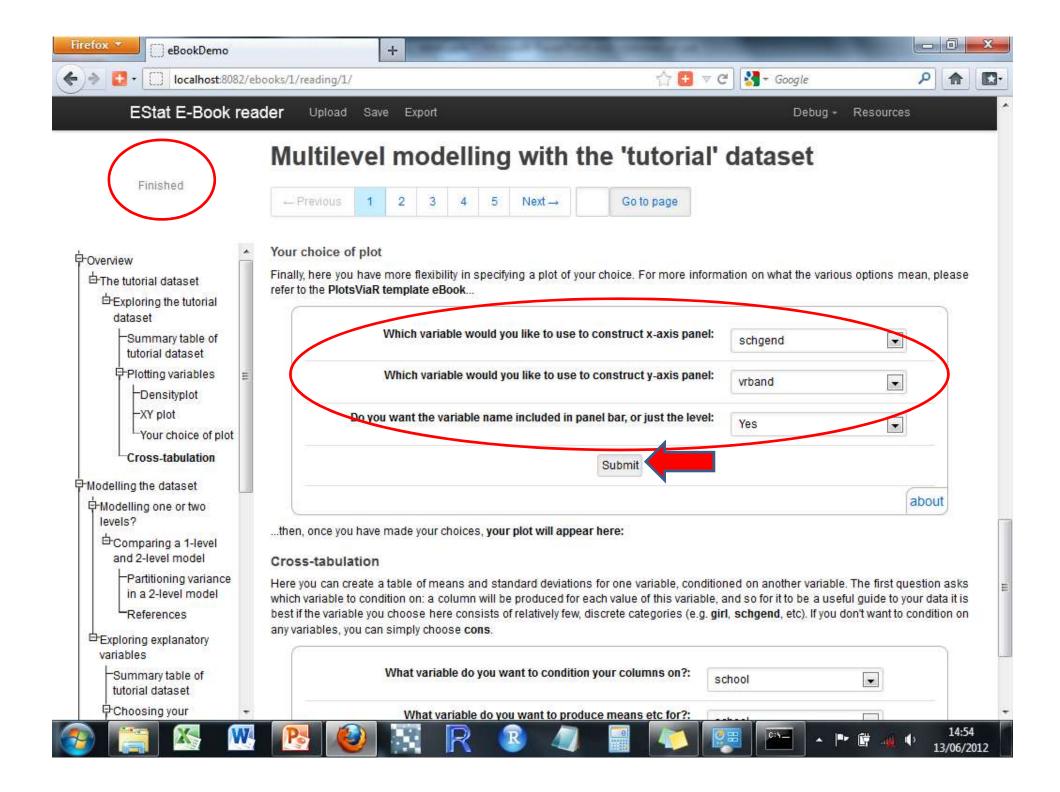
Multilevel modelling with the 'tutorial' dataset

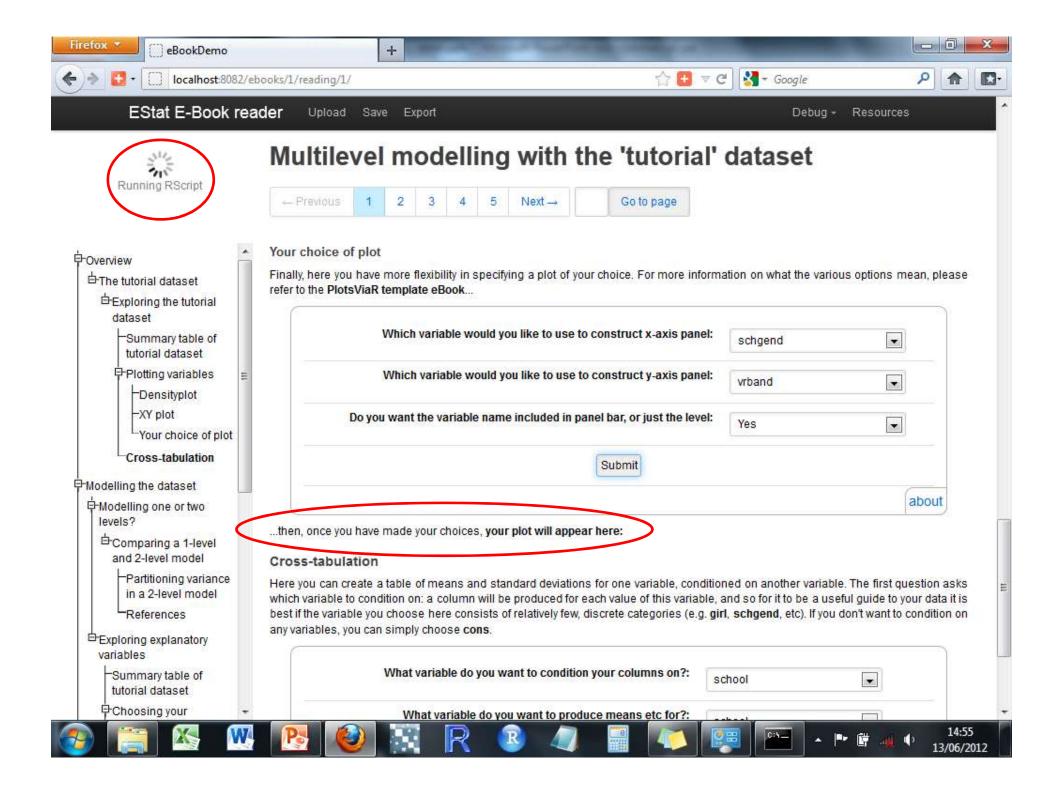
$\leftarrow Previous$	1	2	3	4	5	Next →	Go to page

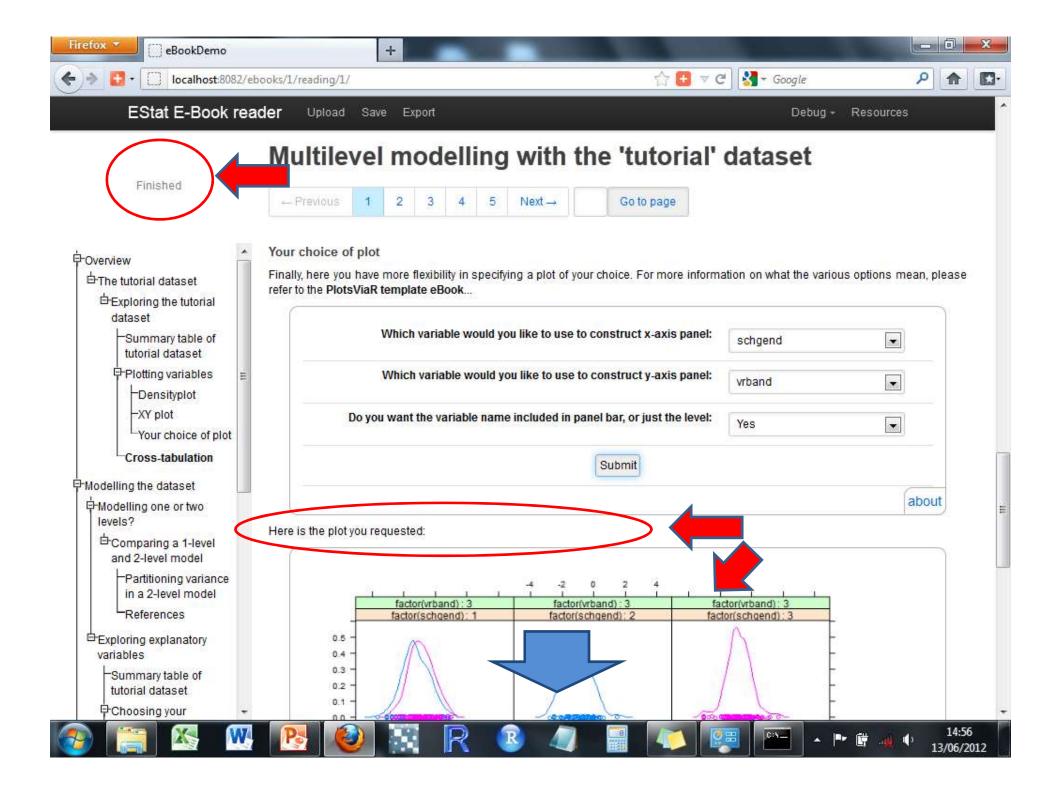
Your choice of plot

Finished

Finally, here you have more flexibility in specifying a plot of your choice. For more information on what the various options mean, please refer to the PlotsViaR template eBook...

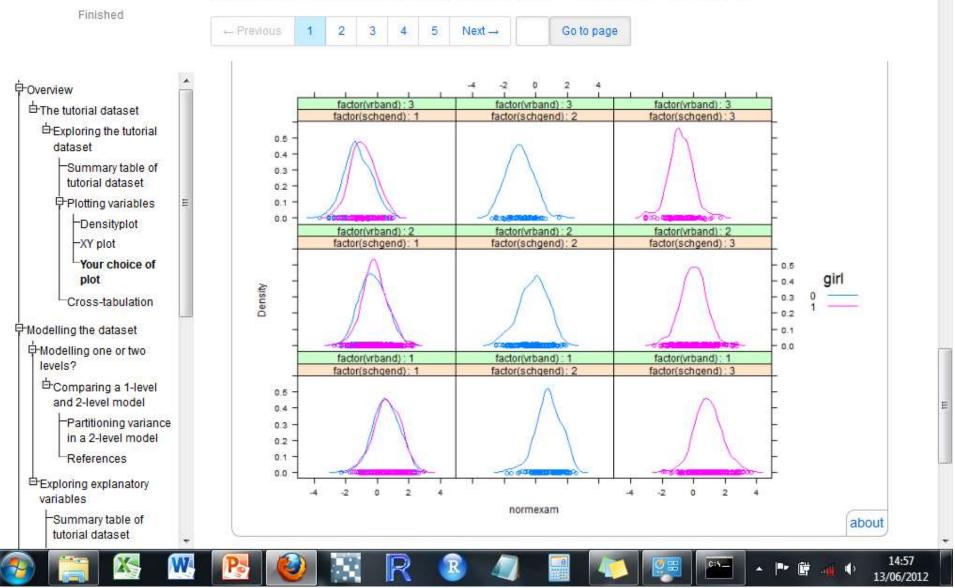



...then, once you have made your choices, your plot will appear here:

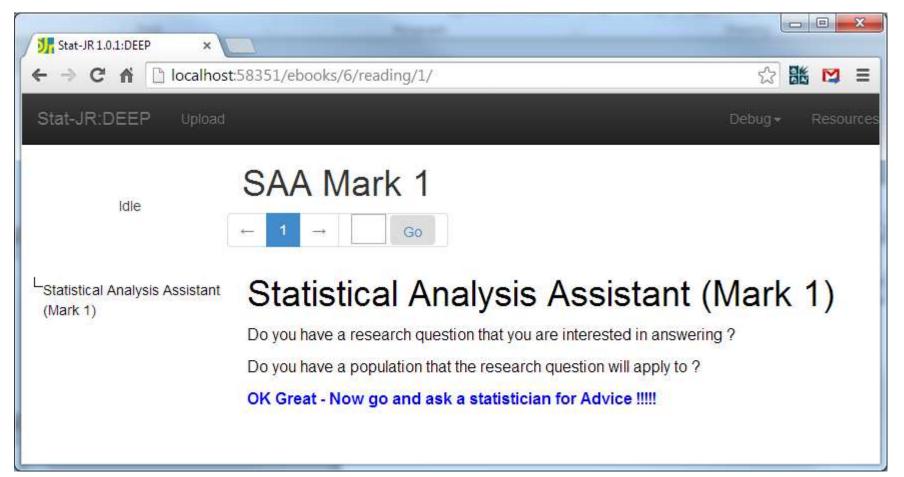

Cross-tabulation

Here you can create a table of means and standard deviations for one variable, conditioned on another variable. The first question asks which variable to condition on: a column will be produced for each value of this variable, and so for it to be a useful guide to your data it is best if the variable you choose here consists of relatively few, discrete categories (e.g. girl, schgend, etc). If you don't want to condition on any variables, you can simply choose cons.

Comparing a 1-level and 2-level model Partitioning variance	What variable do you want to condition your columns on?:
in a 2-level model References	What variable do you want to produce means etc for?:
ploring explanatory riables	Submit
Summary table of tutorial dataset	about
Choosing your 👻	
🚞 🚳 💘	🔁 🙆 🚟 🦳 🗷 🥥 📑 🏹 📴 🗠 🗠 🛱 📲 🚺

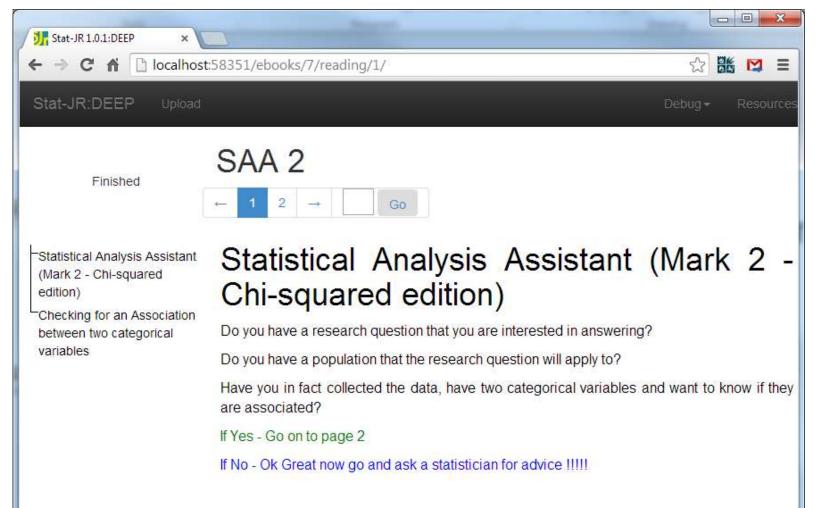


Multilevel modelling with the 'tutorial' dataset



Statistical Analysis Assistants

- We adapt our eBook system to allow workflows that will be constructed to describe how the steps in a statistical analysis fit together.
- There may be many SAAs adapted to different researcher's approaches e.g. one might want to answer a research question/analyse a dataset as a specific expert might do it.
- Opinion is divided on how far one can take the idea from nowhere to complete automation i.e. pour in the dataset at the top and let the computer sort it out.
- Probable end point will be somewhere in between or in fact a series of SAAs that lie on this continuum.
- Easiest to start with automating single operations.


A statistical analysis assistant we are all happy with!

One Step further

Chiversity of

Stat-JR 1.0.2:DEEP - Google Chrome		
← → C □ localhost:522	238/ebooks/1/reading/1/#ebookpage2	☆ 👪 🛤 =
Stat-JR:DEEP Upload	Debug -	- Resources
Finished	SAA 2	
Statistical Analysis Assistant (Mark 2 - Chi-squared edition) Checking for an Association between two categorical variables	Checking for an Association between two categoriables variables You will be presented below with the choice of categorical variables to choose. Having chosen them you will output to your analysis	
	First categorical variable:	•
	Submit	about
	Second categorical variable: nsucc	•
	Submit	about
	To do a chi-squared test we start by tabulated observed counts and totals: Observed cscat=0.0 cscat=1.0 cscat=2.0 Total nsucc=0.0 188 1559 303 2050 nsucc=1.0 139 1536 440 2115 Total 327 3095 743 4165	•

\rightarrow C \triangle (i) localhost:592	71/ebooks/4/reading/1/#ebookpage2	3
Apps 👫 MyBristol: Welcome 🚷 l	LibrariesWest 📓 The Bloggess 🕻 Common Cooking Mi 💜 {homemade} Healthy 📝 The Atlantic — News 💵 BBC News - Home	3
tat-JR:DEEP Upload	Resources About Del	bug
ç	SAA 2	
Finished		
÷	Previous 1 2 Next → Go to page	
	To do a shi several test we start by tabulated abase and example and tatalay	
Statistical Analysis Assistant (Mark 2 - Chi-squared	To do a chi-squared test we start by tabulated observed counts and totals:	
edition)	Observed cscat=0.0cscat=1.0cscat=2.0Total	
Checking for an	nsucc=0.0 188 1559 303 2050	
Association between two	nsucc=1.0 139 1536 440 2115	
categorical variables	Total 327 3095 743 4165	
	We can therefore work out the expected counts from the margins of the observed data	
	And so we expect	
	E(cscat=0.0,nsucc=0.0)= Total cscat=0.0* Total nsucc=0.0/grand total = 327*2050/4165=160.95 E(cscat=1.0,nsucc=0.0)= Total cscat=1.0* Total nsucc=0.0/grand total = 3095*2050/4165=1523.35	
	E(cscat=2.0,nsucc=0.0)= Total cscat=2.0* Total nsucc=0.0/grand total = 743*2050/4165=365.7	
	E(cscat=0.0,nsucc=1.0)= Total cscat=0.0* Total nsucc=1.0/grand total = 327*2115/4165=166.05	
	E(cscat=1.0, nsucc=1.0) = Total cscat=1.0* Total nsucc=1.0/grand total = 3095*2115/4165=1571.65	
	E(cscat=2.0,nsucc=1.0)= Total cscat=2.0* Total nsucc=1.0/grand total = 743*2115/4165=377.3	
	THE REPORT OF A DECEMBER OF A	
	So the table of expected counts is	
	Expected cscat=0.0cscat=1.0cscat=2.0 Total	
	nsucc=0.0 160.95 1523.35 365.7 2050.0	
	nsucc=1.0 166.05 1571.65 377.3 2115.0	
	Total 327.0 3095.0 743.0 4165.0	
	We next look at differences between what we observe and expect in each cell. We square these values so	
	that every difference is positive and scale by the expected counts so that more frequently expected cells	

	9271/ebooks/4/reading/1/#ebookpage2
Apps 👫 MyBristol: Welcome (🐉 LibrariesWest 📓 The Bloggess 🕻 Common Cooking M 💜 (homemade) Healthy 🚺 The Atlantic — News 🛙 💵 BBC News - Home
tat-JR:DEEP Upload	Resources About Debu
Tisting 4	SAA 2
Finished	← Previous 1 2 Next → Go to page
Statistical Analysis Assistant	Expected cscat=0.0 cscat=1.0 cscat=2.0 Total
(Mark 2 - Chi-squared edition)	nsucc=0.0 160.95 1523.35 365.7 2050.0 nsucc=1.0 166.05 1571.65 377.3 2115.0
Checking for an	Total 327.0 3095.0 743.0 4165.0
Association between two categorical variables	We next look at differences between what we observe and expect in each cell. We square these values so
	that every difference is positive and scale by the expected counts so that more frequently expected cells arent overly influential. So for example for cscat=0.0, nsucc=0.0 (O-E)^2/E = (188-160.95)^2/160.95=4.55.
	This statistic is shown in tabular form below
	(O-E)^2/Ecscat=0.0cscat=1.0cscat=2.0
	nsucc=0.0 4.55 0.83 10.75
	nsucc=1.0 4.41 0.81 10.42
	The test statistic for a chi-squared test is found by summing the values of this table so
	Chisq=4.55+0.83+10.75+4.41+0.81+10.42=31.77
	This is compared with a chi-squared table with degrees of freedom = (number of columns -1)x(number of rows - 1) =
	(2-1)x(3-1)=2
	Looking up the chi-squared table the value for P=0.05 is 5.99 and for P=0.01 = 9.21
	as 31.77 > 9.21 our P value is less than 0.01 and we have strong evidence to reject the null hypothesis (at the P=0.01) level

Adding contextual text to a single operation

- As we have seen with the Chi-squared example it is easy to enhance a single statistical operation like a statistical test.
- We can easily expose the steps required for the test in this case –
- 1. The tabulation of the observed counts
- 2. The calculation of the corresponding expected counts
- 3. The calculation of the test statistic and degree of freedom
- 4. The interpretation of the test, the P value and what it means in words.

What is harder is to then put what the result means into context.

Statistical tests and tables are fairly easy to enhance with intelligent textual information whilst graphs and figures are harder to enhance. Generally one has to calculate a statistic related to the figure and work with that e.g. skewness and histograms as shown later.

'The Warlock of Firetop Mountain' approach

- The first of a genre of interactive books published in 1982 and lapped up by 10 year old boys like myself!
- A combination of book and flowchart
- Worked something like:

'The goblin advances towards you, shouting words that you can't understand, do you try to make conversation (turn to page 231), run past the goblin (turn to page 176) or draw your sword and fight (turn to page 134)'

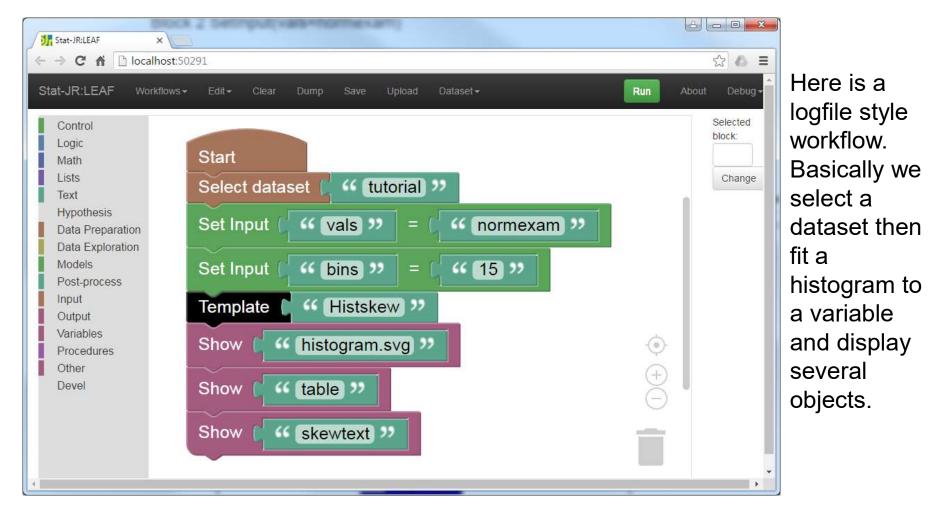
• Basically underpinning the book was effectively a flowchart disguised by random page movements with a variety of endings (99% of them involved you dying), possible loops etc.

The use of Flowcharts in Statistics

- The equivalent exists in (at least) basic statistical analysis and a variety of books have flowcharts to guide the uninitiated to the appropriate test.
- The branching rules are usually things like how many variables do you have?, what type are they?, is a normality assumption appropriate?
- The example flowcharts usually then say you need a t test / Mann Whitney test / ANOVA etc.
- One could expand this idea to include branches where we haven't written material i.e. the equivalent of ending up dead would be the default 'go and ask a statistician' end point possibly taking your answers to the flow chart with you.

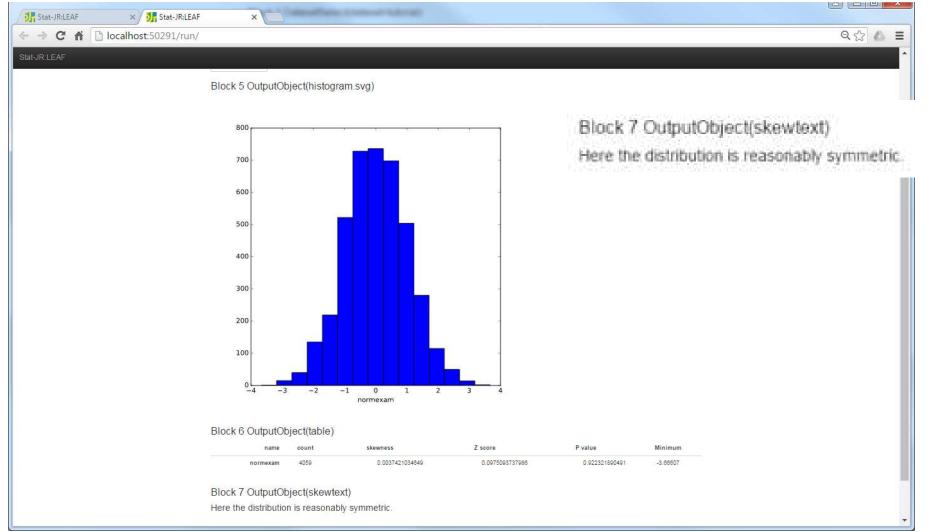
Where might this go?

- The flow chart idea is appealing as it may to some degree mimic a statistical consultation.
- If the system is flexible enough then each statistician can tune the SAA to their own approach to analysis and to how much they feel can be comfortably automated.
- Where there is uncertainty / options in what one should do this could be incorporated
- E-books can contain hyperlinks so that further background on proposed statistical methods or examples can be easily found

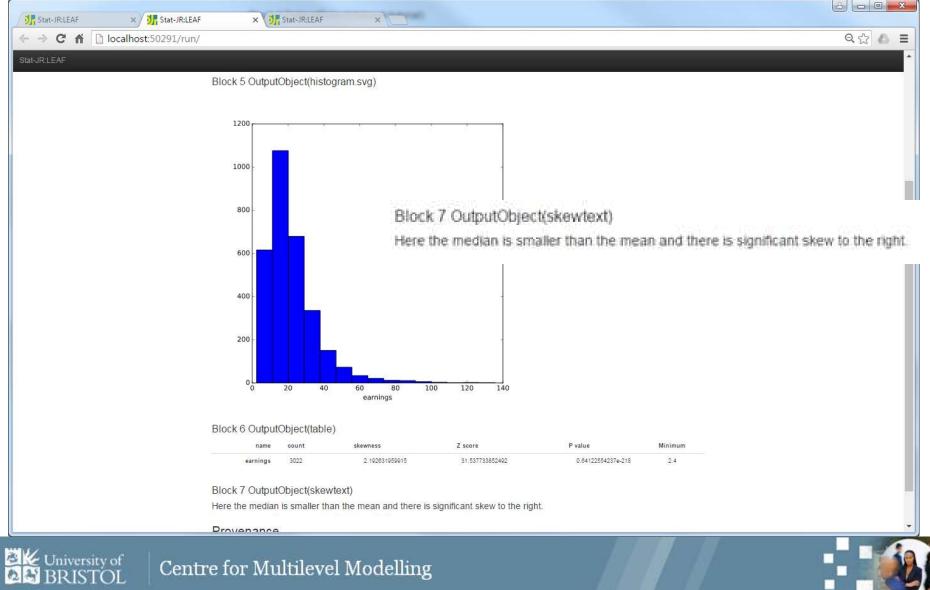


Workflows and StatJR LEAF

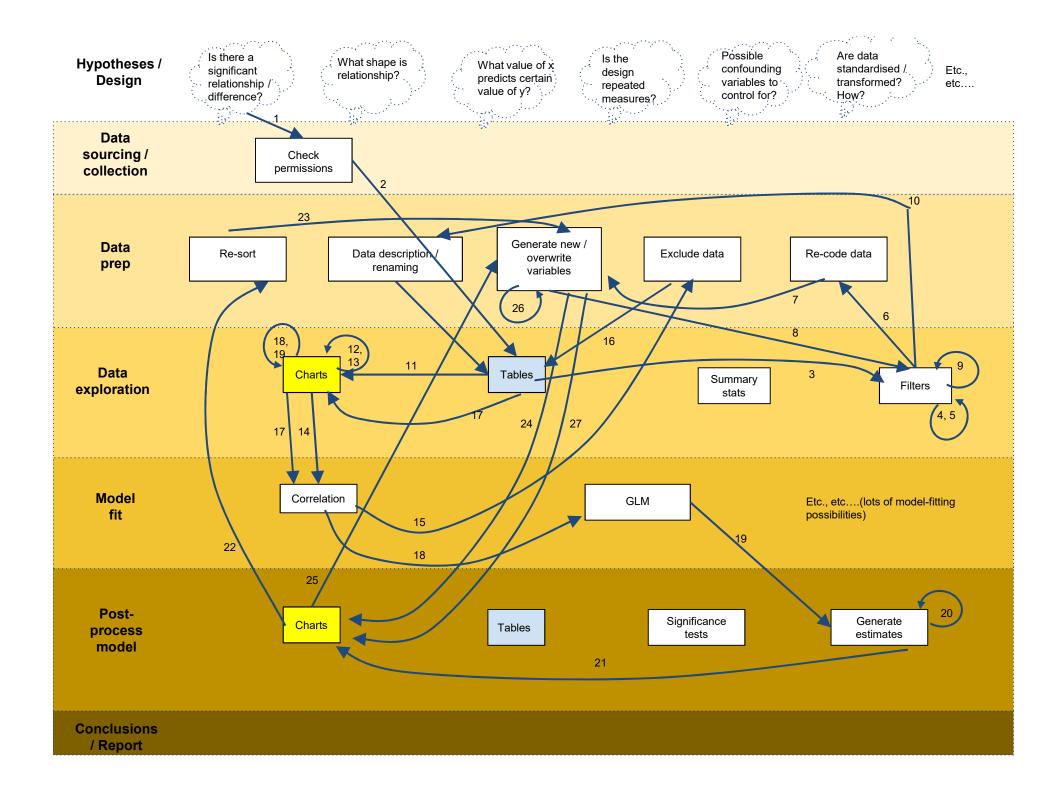
- Workflows allow the sequencing of a series of operations to perform an analysis.
- StatJR LEAF is based around a new front end written using the Blockly system.
- It allows the user to link up templates themselves in a user-friendly visual way.
- Work flows can then be included in eBooks.
- We will use this system in the SAAs.

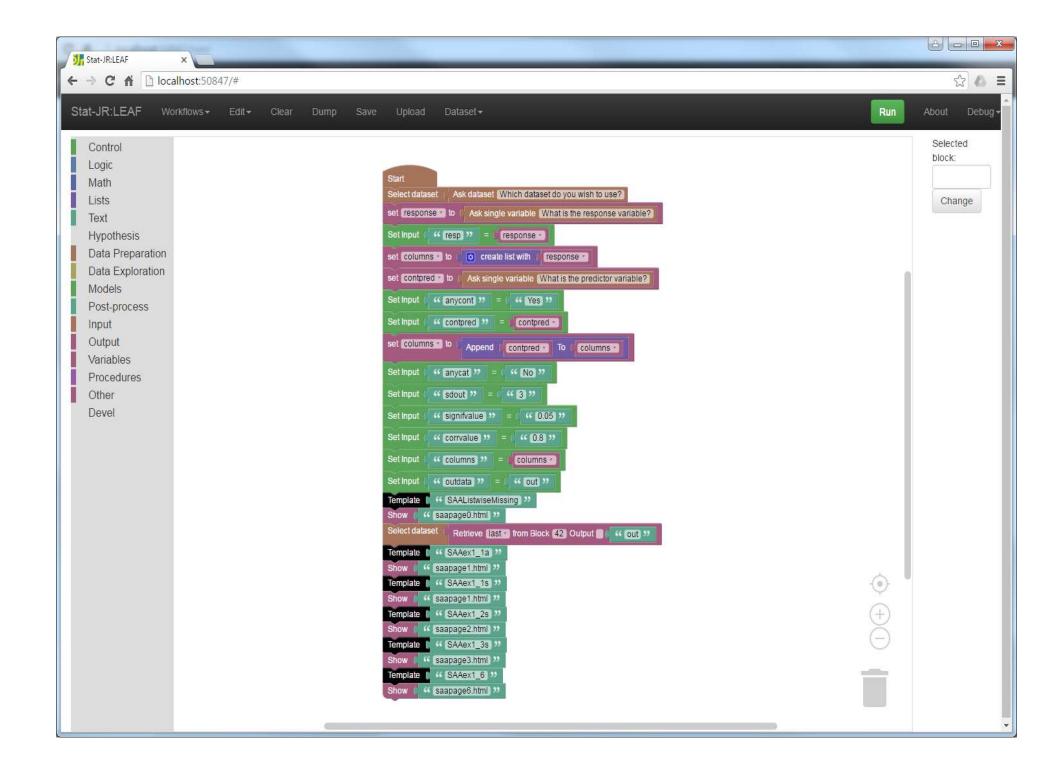

Skewness / Histogram workflow

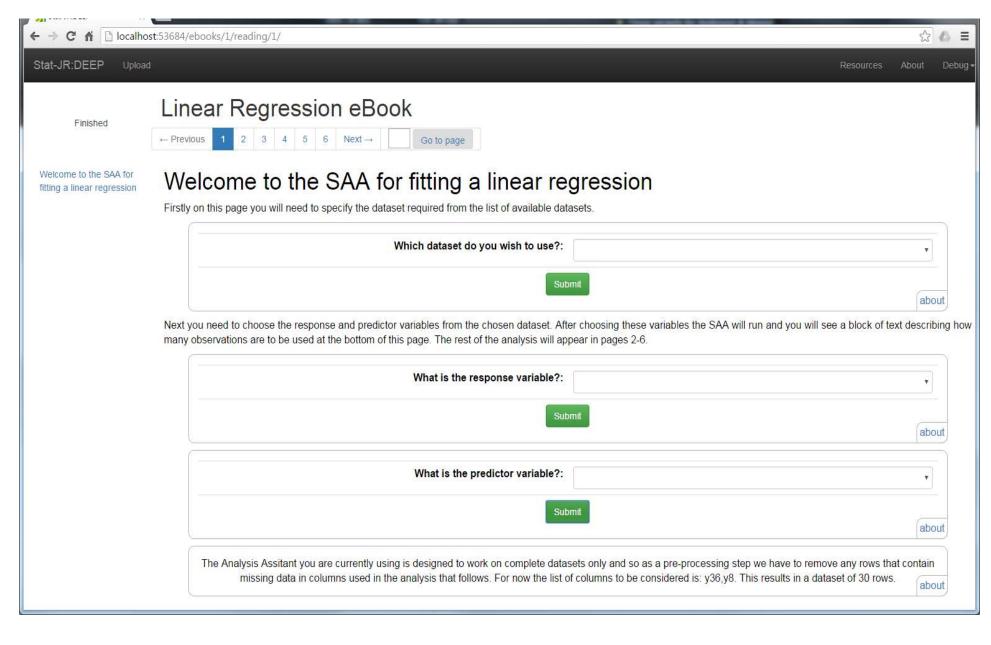
University of BRISTOL


Skewness / Histogram workflow

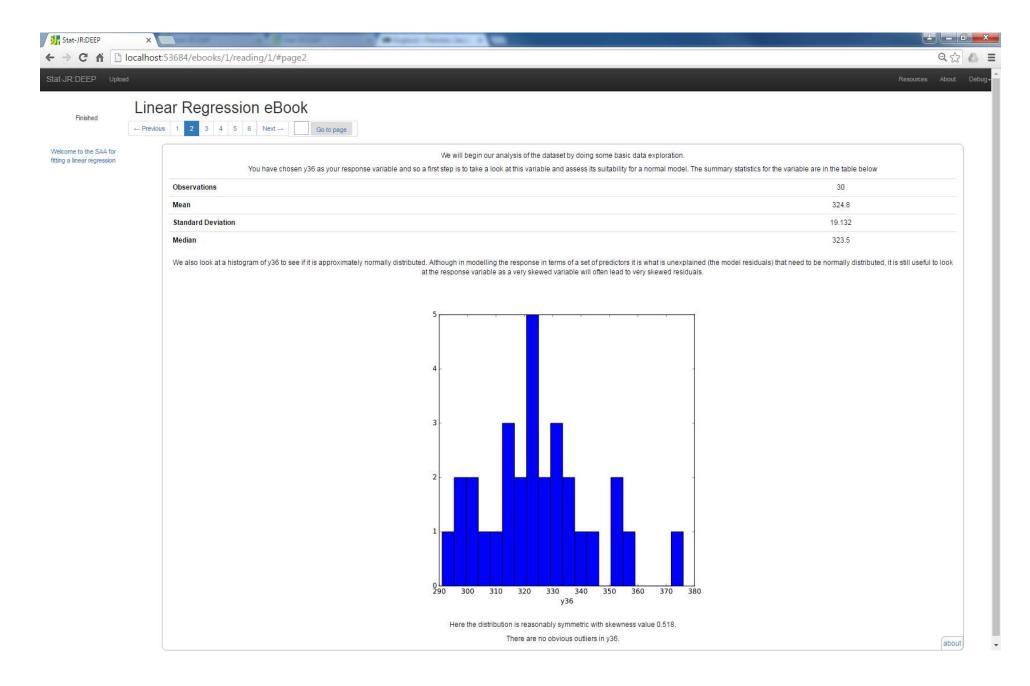
University of BD ISTOI

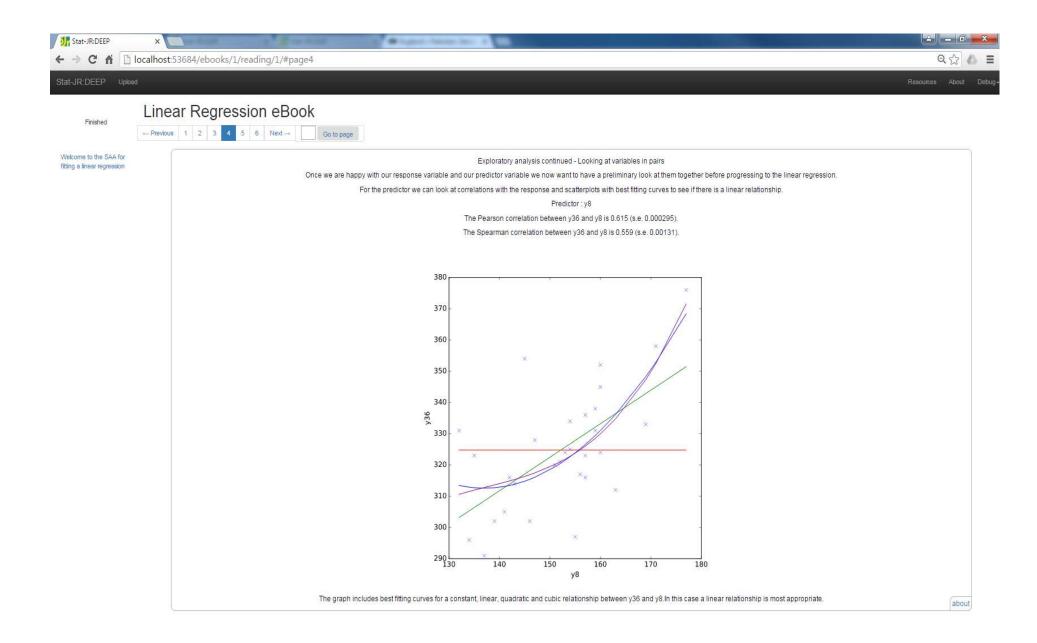

Skewness / Histogram workflow



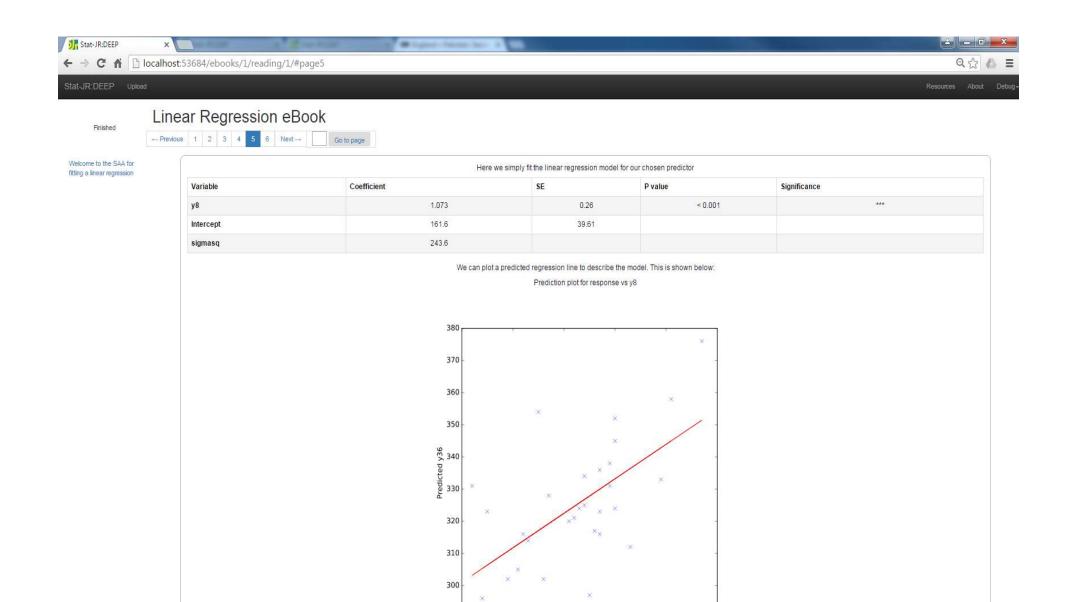

More complex operations – linear regression

- When we looked at the chi-squared test earlier we already broke the test down into a series of steps which formed the test.
- For a regression analysis we might have additional steps to translate from simply a test to an analysis.
- We might do some initial exploratory data analysis and possible transform variables.
- We will clearly do the model fit itself but we will probably then also do some post-processing steps – for example analysis of the residuals and plotting the model predictions
- We will demonstrate an SAA for a linear regression but first show an example of a flow-chart for a real analysis.





University of



Centre for Multilevel Modelling

290 L 130

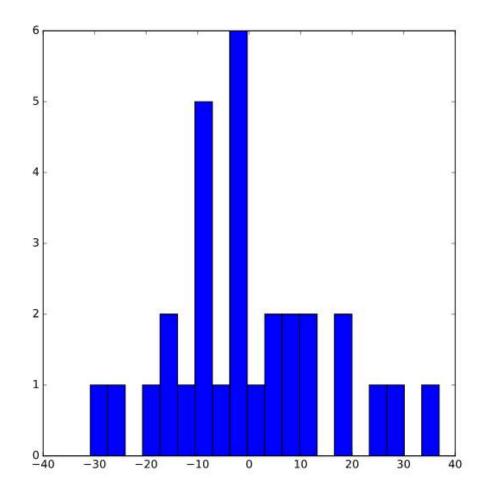
140

150

y8

160

170


180

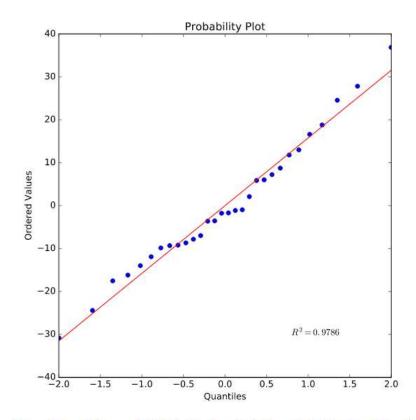
about

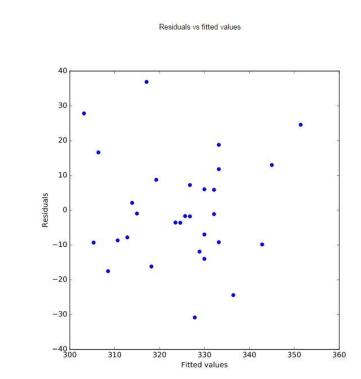
Here we look at the residuals from the model and plot them in various ways.

Histogram of residuals

Here the distribution is reasonably symmetric with skewness value 0.399.

There are no obvious outliers in the residuals.





See <u>http://www.bristol.ac.uk/cmm/media/software/statjr/downloads/manuals/1-</u>06/manual-saa.pdf for more details and multilevel SAAs

Quantile-Quantile Plot of residuals

Here you should consider whether there are any patterns in this plot. Ideally we would like to see similar variability of the residuals across the range of fit

If the residuals are fairly normally distributed then the points in this graph should be close to the red line.

Small Area Estimation (SAE) – Recap

- In SAE the focus on estimating quantities of interest for each of a series of 'small areas' – for example voting constituencies, administrative regions or schools.
- Each such 'small area' contains a large number of units voters, people, children on which we can measure a variable e.g. voting intention, annual pay, exam results and we then wish to construct summary estimates (mean, variability, maximum etc.) of this variable for each small area.
- There are two main approaches for SAE which depend on what data is available, area level models and unit level models and here we will concern ourselves with unit level models.

Unit Level Models

- Unit level models are so called because we have some information on the individual units.
- Unit level models require 2 datasets:

The first **census** (population) dataset contains a list of variables X for all units in the population.

The second **survey** (sample) dataset contains both Y, our variable of interest and the same X variables as in the **census** dataset.

- The basic idea is to fit a model to the **survey** dataset relating Y to X and typically this is a multilevel model.
- Then we use the estimates from this model to predict Y for all units in the **census** dataset.
- Finally we can construct summary small area estimates by constructing summary statistics from the predictions on the census dataset.

Classical approach using emdi

- The emdi package (Kreutzmann et al. 2017) in R will fit SAE models using a classical approach (Tzavidis project).
- It offers direct estimation and model-based estimation using the empirical Bayes prediction approach of Molina and Rao (2010).
- As well as calculating SAE estimates for the mean, standard deviation and quantiles it also calculates several poverty based indicators such as the Gini coefficient, poverty gap, headcount ratio and quintile share ratio.
- It only fits normal responses but allows transformations (log and Box-Cox)
- Other classical approaches include the World Bank method (e.g. Elbers et al., 2002)

MCMC approach in StatJR

- In StatJR we have implemented the World Bank method which essentially contains 3 steps.
- Firstly a 2-level (units within small areas) model is fitted to the sample dataset to produce chains of parameter estimates.
- Secondly these estimate chains and the data for each unit in the population are used to then produce chains of values for each unit.
- Finally the estimated values for the units in each small area at each iteration are then used to construct the aggregate small area estimates e.g. small area mean, sd, median etc.
- As there is a chain of values we can therefore measure the uncertainty in these estimates.

Parallel processing speedups

- Generally the sample dataset is significantly smaller than the population dataset and so the computations in stage 2 on the last slide are more computationally intensive than in stage 1.
- However calculating predictions for each unit in each small area can be done independently conditional on stage 1 and so thus we farm out the process to different processors.
- We have investigated several approaches including OpenMP along with the standard C++ library functions for parallel processing.
- In the end we found that the standard approach worked better and was a large speed up compared to the non-parallel approach and this is implemented in StatJR.

Example: EU-SILC data from Austria 2006

- This is the example data used with *emdi* and consists of a simulated dataset that mimics the European Union Statistics on Income and Living Conditions (EU-SILC) dataset for Austria in 2006.
- The response of interest is equivalized household income (income / household size) and there are several explanatory variables.
- The population (census) dataset is of size 25,000 individuals from 94 districts whilst the sample (survey) dataset is of size 1,945 individuals with some districts having no observations.
- As the response is income we can look at some of the interesting poverty related summary measures.

On page 1 of the eBook we simply input the datasets that contain the sample and population data.

Stat-JR:DEEP	× +	- 0 ×
\leftrightarrow \rightarrow C (i) localhost:6	t61083/ebooks/1/reading/1/	☆ \varTheta :
Stat-JR:DEEP Upload		Resources About Debug▼
Finished	Small Area Estimation « 1 2 3 4 5 » Go to page	
Exploring the response	Select the data Here we will choose the data to explore	
	Sample dataset: eusilcA_smp	•
with Lives	Population dataset: eusilcA_pop	•
	Submit	about

On page 2 we do some exploratory data analysis of the response variable including looking at possible transformations to allow normality.

Stat-JR:DEEP Upload

Resources About Debug 🖥

Small Area Estimation

Finished

« 1 2 3 4 5 »

Go to page

Select the data **Exploring the response** Exploring the predictors Estimating the model with MCMC Estimating the model with EMDI In this SAA we will particularly be concerning ourselves with unit level models. For a unit level model we require 2 datasets – a sample dataset and a population dataset. The sample dataset contains a sample of individual from some (but not necessarily all) of the groups in the population and for each individual the variable of interest which we will call Y (e.g. salary, voting intention) is collected along with a lot of other variables which we will call X that might be thought to predict the variable of interest (e.g. gender, benefits, family size).

The second population dataset contains records for the WHOLE population i.e. everybody in all groups. This dataset contains the same predictor variables X but here the variable of interest Y is absent. The rationale for the unit level model is therefore to fit a (multilevel) regression model to the Y in the sample dataset to investigate the relationship between Y and X. We then use this model to predict the values of Y for the WHOLE population using the population dataset and then use the estimated Y produced to estimate small area quantities (e.g. means, proportions and percentiles) for each small area.

We will first take a look at the response variable that we wish to estimate at our small areas. We will on this page look at some summary information about this variable and also consider whether the variable needs transforming. We often transform variables so that we can fit a Normal response model and assume normality for the residuals. So firstly we ask for the name of the response variable and a value for the parameter lambda used in the Box Cox transformation later.

Response variable:	eqIncome	
Common ID variable:	district	
Lambda parameter for response tranformation:	0.6	
Subr	nit	
		a

Here we see a summary of how big the sample is and then a table explaining the relative numbers in the sample from each small area

Stat-JR:DEEP Upload

Resources About Debug 🕶

Small Area Estimation

2 3 4 5 »

Finished

« 1

Go to page

Select the data Exploring the response

Exploring the predictors Estimating the model with MCMC Estimating the model with EMDI In your dataset the small areas are represented by the variable name district and there are 25000 individuals in the population that come from 94 areas in total. The sample dataset has 1945 individuals in total (7.78% of the population) with individuals in the sample coming from 70 areas.

In the table below we will look at how representative the sample is of the population in each small area. The larger percentage of the population that is in the sample the more confidence we will have in our small area estimates and the less we will have to use the response – predictor variable relationships across all areas to estimate those small area estimates.

Code	Name	Nsamp	Npop	%
1	Eisenstadt-Umgebung	0	115	0.00
2	Eisenstadt (Stadt)	0	37	0.00
3	Güssing	0	74	0.00
4	Jennersdorf	0	49	0.00
5	Mattersburg	0	109	0.00
6	Neusiedl am See	16	155	10.32
7	Oberpullendorf	0	105	0.00
8	Oberwart	15	150	10.00

Next we look at the VPC to see how important the small areas are in the modelling. This is followed by a histogram of the untransformed variable.

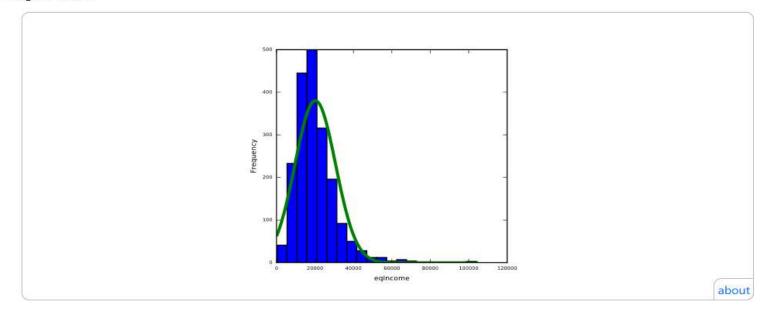
Small Area Estimation

4 5 »

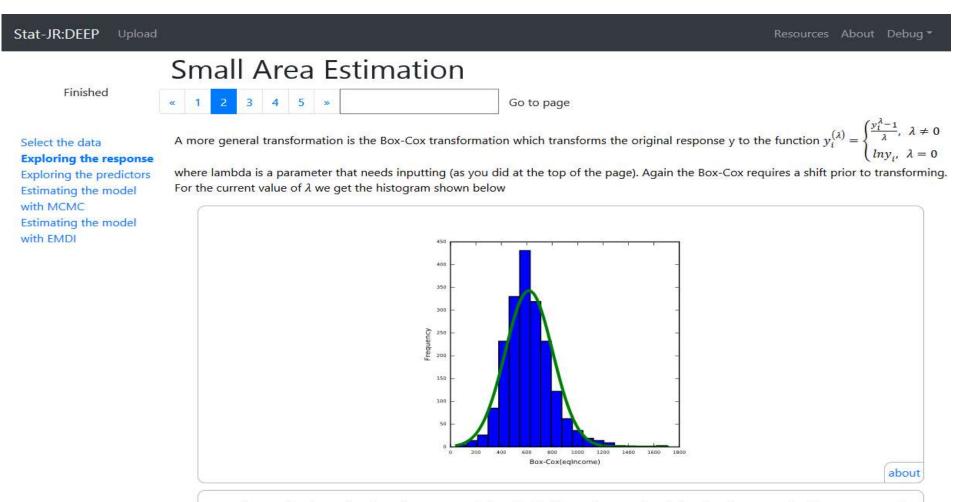
3

Stat-JR:DEEP Uploa

Resources About Debug *


Finished

Select the data


Exploring the response Exploring the predictors Estimating the model with MCMC Estimating the model with EMDI When we look at eqincome in the sample dataset there is variability in the average response across the small areas that we are estimating values for. It is important to estimate how much variation in the response is between small areas and how much is within small areas and this is done with a statistic called the VPC. Here the VPC is 0.4. This means that 40% of the variation in eqincome is between small areas and therefore due to differences across areas. These differences may be explained by the predictor variables in our later modelling.

Go to page

We next look at the shape of the response variable to see whether it needs transforming. First we look at the response itself as shown in the histogram below.

We can look at transformed variables, firstly log and finally the Box-Cox transform of the response and here for the value 0.6 for Lambda we still see a slight right hand skew

Here the median is smaller than the mean and there is significant skew to the right. The skewness value is 0.904. Here the statistical significance may be to some degree due to the large sample size as from a practical perspective values of skew less than 2 are not considered too big a skew.

Page 3 allows us to look at any of the predictor variables before we then fit them in the model. Here we have chosen eq-size and we can see that the distribution of the variable is similar in the sample as in the population

Stat-JR:DEEP

Resources About Debug *

Finished

Small Area Estimation 30

5

2

Go to page

We can start by looking at the distribution of eqsize in the sample dataset (as a whole) and the population. In the plots below we

can see to the left the population and to the right the sample data with superimposed a best fitting normal curve. Although the

normality assumption in our modelling is not related to the predictors we might still want to transform them if they are skewed

as in this case outlying data points might have significant influence on the relationship used in the SAE modelling. Note also that

if the predictor variable is categorical this plot may be less informative Here aside from some areas having no sample data we can

Select the data Exploring the response **Exploring the** predictors Estimating the model with MCMC Estimating the model with EMDI

look and see how representative the samples in other areas are of the population. about Population Sample 8000 600 7000 500 6000 5000 4000 300 3000 2000 100 25 2.0 2.5 4.0 2.0 4.0 1.5 3.0 35 4.5 1.6 1.5 3.0 3.5 4.5 easize eqsize about An alternative approach is to superimpose the two distributions for the population and sample on the same plot to look for differences. Here we also see the VPC calculated and the eqsize variable seems to exhibit very little variation across small areas

× +	- 0	>
1083/ebooks/1/reading/1/#ebookpage2	☆ €	Э
	Resources About Debug	
Small Area Estimation	1	
« 1 2 3 4 5 »	Go to page	
We can also superimpose the population and sample it	in the same plot to investigate the closeness of their distribution for this variable. This is shown below with the population in blue and sample in gree	-n
	Population Barbore Sample Barbore Sample Ba	

about

Here for the predictor variable eqsize the VPC is 0.01 in the population dataset and 0.02 in the sample dataset.

We can also look at differences for the sample and population for each small area

oks/1/reading/1/#ebookpag	e2				\$
					Resources About De
all Area F	stimation				
2 3 4 5 »	Go to page				
	e data in the individual small areas, and in p	particular the mean and standard o	deviation of the variable e	asize for both the sample and the	nonulation dataset. Here aside
	ig no sample data we can look and see how				about a solution dataset. There aside
Code	Name	Sample mean	Sample sd	Population mean	Population sd
1	Eisenstadt-Umgebung			1.75	0.52
2	Eisenstadt (Stadt)	2221	122	1.65	0.24
3	Güssing	-557-1	.5.0	1.59	0.59
4	Jennersdorf			1.58	0.61
5	Mattersburg			1.69	0.56
6	Neusiedl am See	1.62	0.41	1.64	0.55
7	Oberpullendorf			1.73	0.64
8	Oberwart	1.61	0.60	1.60	0.57
9	Rust (Stadt)			1.32	0.44
10	Amstetten	1.61	0.69	1.58	0.62
11	Baden	1.79	0.50	1.72	0.60
12	Bruck an der Leitha	1.83	0.73	1.72	0.58
13	Gänserndorf	1.91	0.64	1.71	0.60

This can also be done graphically via box plots as shown below:

× +	- 0	×
1083/ebooks/1/reading/1/#ebookpage2	☆ 0	:
	Resources About Debug 🔻	-
Small Area Estimation		
« 1 2 3 4 5 » Go to page		
We can also look at the distribution of the predictor eqsize for the sample and population in each district as shown in the following plot:	about	
Sample Population Feldkirch Feldkirch Dornbirn Feldkirch Bregenz Feldkirch Schwaz Feldkirch		
Reutte		
Kitzbühel		
Tamsweg + Sankt Johann im Pongau + Salzburg (Stadt) + Salzburg-Umgebung +		
Hallein Hallein Wels (Stadt) Hallein Wels-Land Hallein Vöcklabruck Hallein		
Urfahr-Umgebung Steyr (Stadt) Steyr-Land		•

On page 4 we finally get to fit small area estimation models and here we try a model with all the possible predictors

Stat-JR:DEEP Upload			Resources 4	About	Debug 👻
	Small Area Estimation				
Running Python_script	« 1 2 3 4 5 »	Go to page			
Select the data		CMC			

Exploring the response Exploring the predictors Estimating the model with MCMC Estimating the model with EMDI

Estimating the model with MCMC

Now that we have looked at the response and predictor variables we will next fit a small area estimation model. Here we fit a multilevel model to the sample dataset and then use the same model to predict the response in the population dataset and thus have predictions for all individuals in the population. From these predictions we can form small area statistics by using the predicted values for individuals in each small area.

In order to fit the model we here have to reinput the response variable and all of the predictors we wish to use in the estimation. We are also given the choice of whether to fit a model to the original response or to use a logged or Box-Cox transformation. To start the model running make these selections from the box below. Note that we are using MCMC estimation which will not only give us small area estimates but also Bayesian credible intervals. It is however a computationally intensive procedure and so this page will take some time to run.

Response variable:	eqIncome change
Specify distribution:	Normal change
Transformation:	Box-Cox change
Lambda:	Modelled change
Common ID variable:	district change
Common predictor variables	gender,eqsize,cash,self_empl,unempl_ben,age_ben,surv_ben,sick_ben,dis_ben,rent,fam_allow,house_allow,ca change
Do you want to calculate poverty related estimates, e.g. Head count ratio?:	Yes change
Threshold value:	Automatic change

The template gives equations for the model being fitted to the sample data and some estimates for the model fit as shown here. Note the MCMC algorithm treats lambda as a parameter to be estimated in the modelling.

2002-010 AS	mall Area E	stimation			
Finished	1 2 3 4 5 »		Go to page		
elect the data	beta_4	self_empl	0.4647642	0.0178588	8459.
ploring the response	beta_5	unempl_ben	0.3920562	0.05746135	44366.
ploring the predictors stimating the model	beta_6	age_ben	0.5503508	0.01642028	9745
ith MCMC timating the model	beta_7	surv_ben	0.584027	0.114855	50782
ith EMDI	beta_8	sick_ben	0.4924603	0.1503358	56522.
	beta_9	dis_ben	0.6082253	0.03702702	51163.
	beta_10	rent	0.3773787	0.02605691	285.
	beta_11	fam_allow	0.0305386	0.04151562	54229.
	beta_12	house_allow	0.8691035	0.3172981	55855.
	beta_13	cap_inv	0.4038095	0.03507246	12629.
	beta_14	tax_adj	-0.2604875	0.06284644	49197.
	sigma2	Level-1 variance	21707770.	855081.6	17257.
	sigma_u	Level-2 variance	5880221.	1244259.	26391.
	lamb	Box-Cox Lambda	0.5792535	0.07403507	47 at

Here we see that in the sample the predictors eqsize, cash, self_empl, unempl_ben, age_ben, surv_ben, sick_ben, dis_ben, rent, house_allow, cap_inv, and tax_adj have significant effects on the response variable.

Here we see that the model has been used to produce mean and SD estimates for each of the small areas. These are compared with the mean and SD of the data in the sample (where present).

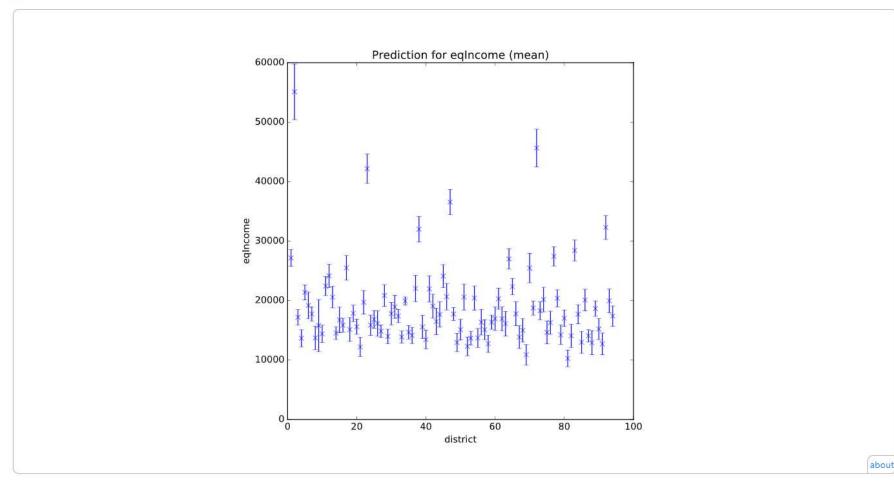
Small Area Estimation

5 »

« 1 2 3

Go to page

Although the estimates are interesting our primary interest is in the small area estimates that this model produces. The table below gives estimates for the mean and SD for each of the 94 small areas in the dataset. These estimates can be found in the columns headed population whilst for comparison in the columns headed sample are the means and SDS for equincome just using the sample data.


Code	Name	Sample mean	Sample sd	Population mean	Population sd
1	Eisenstadt-Umgebung	17	~	27160.54	11731.92
2	Eisenstadt (Stadt)	(B)		55112.39	31483.61
3	Güssing	22	222	17195.27	6272.34
4	Jennersdorf	-		13657.69	5370.03
5	Mattersburg	17		21375.96	8467.11
6	Neusiedl am See	19692.53	5462.45	19176.11	6354.53
7	Oberpullendorf	-		17739.70	6752.91
8	Oberwart	13833.36	6830.92	13715.97	5109.59
9	Rust (Stadt)	-		15788.02	5581.03
10	Amstetten	15201.15	6458.63	14409.22	5431.82
11	Baden	22921.69	6293.34	22436.13	7512.82
12	Bruck an der Leitha	23753.31	6160.26	24150.02	8215.10
13	Gänserndorf	20279.97	5833.86	20574.64	7022.35

•

We can also plot the means along with credible intervals for each district graphically as shown below. Here we see the wide variety of mean estimates.

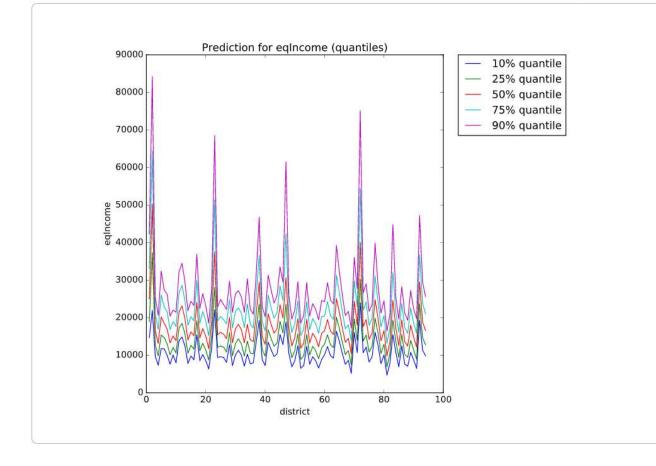
		Resources	About Debug
Small Area Estimation			
c 1 2 3 4 5 »	Go to page		
			about

We can also visualise these data graphically and so in the graph below you will see the means plotted with 95% credible intervals to illustrate differences across the small areas. The small areas are listed in the order they appear in the table.

We can construct quantiles for each district from the predicted values for each individual and plot them as shown below.

Small Area Estimation

« 1 2 3 4 5 »


rs

Go to page

The beauty of using MCMC for small area estimation and the fact that it predicts values for each observation in the population is that we can use these predicted datasets from each small area to look at other statistics for each small area. For example we can sort the predicted data and from this construct quantiles to get an idea of the shape of the distribution in each area.

about

These can be visualised in the plot below where we see different coloured lines for 5 different quantiles in the dataset. Here on the x axis the small areas are sorted in the order they appear in the earlier table.

These are also made available in tabular format so that the individual names of the districts can be established and also the precise estimates.

Small Area Estimation

**	1	2	3	4	5	>>	
					-		

Go to page

about

To see these values in detail the table below gives the values for the same 7 quantiles in tabular form

Code	Name	Q10	Q25	Q50	Q75	Q90
1	Eisenstadt-Umgebung	14683.67	18984.76	24979.34	33073.70	42278.99
2	Eisenstadt (Stadt)	21938.74	37312.36	50276.98	64285.83	84163.51
3	Güssing	9745.10	12739.69	16604.29	21016.89	25394.93
4	Jennersdorf	7333.80	9844.37	13133.98	16889.33	20589.91
5	Mattersburg	11771.08	15387.15	20198.09	26043.00	32424.91
6	Neusiedl am See	11685.79	14705.87	18536.51	22903.12	27388.90
7	Oberpullendorf	9957.46	<mark>1</mark> 3030.06	16996.84	21561.79	26239.20
8	Oberwart	7586.47	10085.51	13251.47	16834.19	20416.89
9	Rust (Stadt)	10083.56	12059.86	15119.88	18962.46	22004.10
10	Amstetten	7963.34	10583.63	13883.92	17618.69	21432.41
11	Baden	13844.94	17209.24	21474.63	26521.20	32224.66
12	Bruck an der Leitha	14850.48	18473.87	23133.04	28598.97	34467.23
13	Gänserndorf	12464.32	15679.48	19775.65	24506.52	29513.60
14	Gmünd	7777.01	10524.03	14035.05	17966.27	21836.76

The output includes information on several poverty/inequality type indicators including the Gini index shown here. The Gini has a range of 0 to 1.

Small Area Estimation

« 1 2 3 4 5 » Go to page

The Gini index (or coefficient) is perhaps the most commonly used measure of inequality (particularly by economists). It attempts to measures dispersion in a frequency distribution with 0 meaning all individuals in an area have the same value of the response (often income) with a value of 1 then representing the extreme case of all the values for the response (all the income) in an area being concentrated on one individual with all other individuals having response 0. The Gini coefficient can therefore be used to measure relative inequality across a series of small areas.

The formula for the Gini index can be written
$$\widehat{Gini}_i = \left[\frac{2\sum_{j=1}^{n_i} jy_{ij}}{n_i \sum_{j=1}^{n_i} y_{ij}} - \frac{n_i+1}{n_i}\right]$$

Below is a graph of the Gini index (with credible intervals) for the 94 small areas.

Prediction for eqincome (GINI)

about

After graphs of each indicator (Gini, Quintile share ratio, head count ratio and poverty gap index their values are summarised along with ranks for the small areas in the table shown below.

Small Area Estimation

« 1 2 3 4 5 »

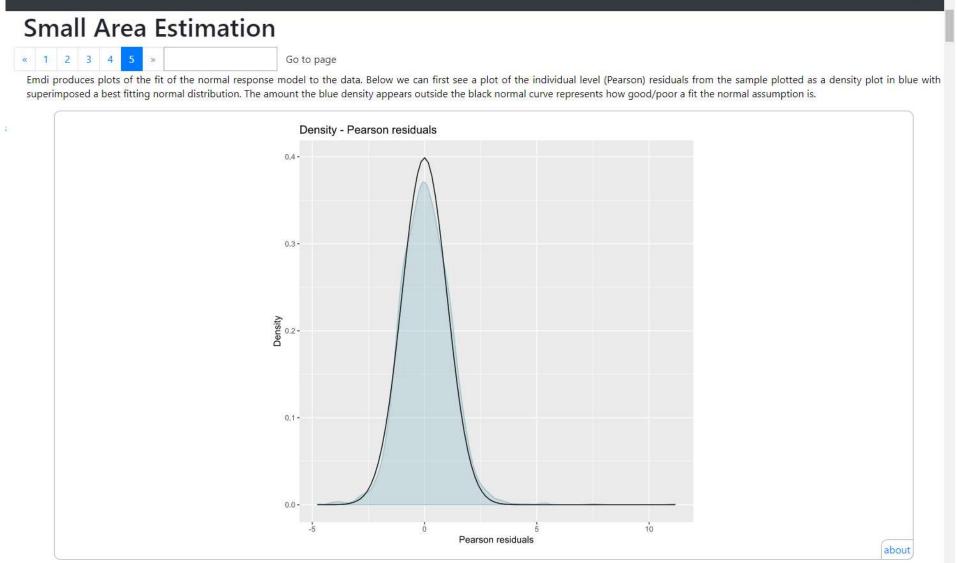
Go to page

about

Finally we can summarise all of these indices in tabular form so that it is easier to see values for individual small areas. We do this in the table below.

Code	Area	Gini	Gini rank	QSR	QSR rank	HCR	HCR rank	PGI	PGI rank
1	Eisenstadt-Umgebung	0.23	84.00	3.25	82.00	0.03	14.00	0.01	15.00
2	Eisenstadt (Stadt)	0.29	94.00	4.70	93.00	0.03	13.00	0.01	14.00
3	Güssing	0.20	46.00	2.89	52.00	0.16	50.00	0.03	52.00
4	Jennersdorf	0.22	78.00	3.17	78.00	0.33	84.00	0.09	83.00
5	Mattersburg	0.22	73.00	3.07	72.00	0.08	29.00	0.02	31.00
6	Neusiedl am See	0.18	10.00	2.58	17.00	0.08	30.00	0.01	29.00
7	Oberpullendorf	0.21	56.00	2.96	62.00	0.14	45.00	0.03	46.00
8	Oberwart	0.21	57.00	3.00	65.00	0.32	80.00	0.08	80.00
9	Rust (Stadt)	0.19	24.00	inf	94.00	0.24	68.00	0.06	68.00
10	Amstetten	0.21	60.00	2.93	58.00	0.28	71.00	0.07	71.00
11	Baden	0.18	9.00	2.55	11.00	0.03	15.00	0.01	13.00
12	Bruck an der Leitha	0.18	11.00	2.56	13.00	0.02	12.00	0.00	12.00
13	Gänserndorf	0.19	18.00	2.61	20.00	0.06	23.00	0.01	23.00
14	Gmünd	0.22	72.00	3.11	74.00	0.28	73.00	0.07	73.00

The software also allows fitting the same models using the EMDI package in R with StatJR acting as an interface to R and the same eBook used.


Select the data Exploring the response Exploring the predictors Estimating the model with MCMC Estimating the model with EMDI

Estimating the model with EMDI

For comparison we can also fit models using interoperability with the R statistical software and the emdi package. The emdi package only fits Normal response models to continuous data but does allow a selection of transformations – identity, log and Box-Cox. Below you are asked again to input options for the model.

Response variable:	eqIncome change
Transformation:	box.cox change
Common 2 ID:	district change
Common predictor variables:	gender,eqsize,cash,self_empl,unempl_ben,age_ben,surv_ben,sick_ben,dis_ben,rent,fam_allow,house_allow,cap_inv,tax_adj change
Do you want to calculate poverty related estimates, e.g. Head count ratio?:	Yes change
Threshold value:	Automatic change
Do you want to calculate inequality related estimates, e.g. GINI index?:	Yes change
Parallel cores for bootstrapping:	6 change
	abc

Many of the same outputs are available for EMDI along with some additional model fit checks as shown below.

Me can look at a similar nlot for the level (random) affects at level 2 of the model fitted and actain nlot actint a hest fitting normal curve as shown below:

Extensions to current work – Binary responses

- Given the current Brexit crisis we might be interesting in where in the UK wants to leave the EU and where wants to stay.
- Small Area Estimation can be used along with data polling a random sample from the population.
- The only difference is that a (multilevel) logistic regression model would be used for the remain / leave response and possible predictors like age, gender, ethnicity and voting constituency would be included.
- Such an approach is often used with exit polls in parliamentary elections to predict the results in each constituency in the election and thus the overall result.

Practical

- In the practical that follows you will try out the SAE functionality in StatJR
- Here we are provided a stripped down version of StatJR on a memory stick with only the templates required for SAE.
- The practical has 3 examples an educational tutorial example, the EU-SILC example in the slides and used this morning and a binary voting example
- This practical will become the LEMMA training materials practical for Small Area Estimation in StatJR
- We are not expecting you to finish it all this afternoon but you are free to take the stick with you and finish at home.

