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MODELLING LONGITUDINAL DATA USING THE STAT-JR PACKAGE 

Practical 1: Introduction to Growth Curve Modelling and the Stat-JR 
package 

Aims of Practical 

In this practical we will learn how to fit simple multilevel models in Stat-JR, firstly through 
interoperability with MLwiN and then using the e-STAT MCMC estimation engine.  We will 
introduce the main dataset that we will use for all practicals that follow and show how to 
restructure longitudinal datasets from wide to long format. We will cover both random 
intercept and random slopes models for longitudinal datasets. 

Getting Started with Stat-JR and the TREE interface 

The Stat-JR package is written in Python and has several application interfaces that run in 
Python with a command prompt window in the background. The TREE (Template Reading 
and Execution Environment) interface is a flexible environment allowing the user to interact 
with Stat-JR via a web browser and try out any Stat-JR templates in combination with user 
datasets. We will use this interface throughout the workshop but it is worth noting that 
Stat-JR also has a DEEP (Documents with Embedded Execution and Provenance) interface 
which embeds Stat-JR’s functionality within electronic books, and also a separate command 
line Python interface. 

To start up the TREE interface, double-click tree.cmd in the base directory of the Stat-JR 
install (on your memory stick); this will bring up a command window in which a list of 
commands will appear similar to the following: 

E:\newstruct\Software\StatJRrep\estat\trunk>SET Path=E:\newstruct\Software\StatJ 
Rrep\estat\trunk\MinGW\bin;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wb 
em;C:\Windows\System32\WindowsPowerShell\v1.0\;C:\Program Files (x86)\QuickTime\ 
QTSystem\;C:\Program Files\TortoiseSVN\bin;C:\Program Files\MiKTeX 2.9\miktex\bi 
n\x64\ 
E:\newstruct\Software\StatJRrep\estat\trunk>SET LTDL_LIBRARY_PATH=E:\newstruct\S 
oftware\StatJRrep\estat\trunk\JAGS-3.3.0\i386\modules 
 
E:\newstruct\Software\StatJRrep\estat\trunk>cd src\apps\webtest 
 
E:\newstruct\Software\StatJRrep\estat\trunk\src\apps\webtest>..\..\..\App\Python 
.exe webtest.py 8080 
WARNING:root:Failed to load package GenStat_model (GenStat not found) 
WARNING:root:Failed to load package gretl_model (Gretl not found) 
WARNING:root:Failed to load package MATLAB_script (Matlab not found) 
WARNING:root:Failed to load package Minitab_model (Minitab not found) 
WARNING:root:Failed to load package Minitab_script (Minitab not found) 
WARNING:root:Failed to load package MIXREGLS (MIXREGLS not found) 
WARNING:root:Failed to load package Octave_script (Octave not found) 
WARNING:root:Failed to load package SABRE (Sabre not found) 
WARNING:root:Failed to load package SAS_model (SAS not found) 
WARNING:root:Failed to load package SAS_script (SAS not found) 
WARNING:root:Failed to load package SPSS_model (SPSS not found) 
WARNING:root:Failed to load package SPSS_script (SPSS not found) 
WARNING:root:Failed to load package Stata_MLwiN (Stata not found) 
WARNING:root:Failed to load package Stata_model (Stata not found) 
WARNING:root:Failed to load package Stata_script (Stata not found) 
WARNING:root:Failed to load package SuperMix (SuperMIX not found) 
INFO:root:Trying to locate and open default web browser 
http://0.0.0.0:8080/ 
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The last line indicates that a web process is starting; Stat-JR uses a web browser as an 
input/output device however the computation will be done on your own computer. If you 
haven’t got a web browser already open, the default web browser will open and look as 
follows: 
 

 
 
Two important things to note: 
 

• The number 8080 (in this example) will vary each time you run the software to allow 
several versions of Stat-JR to run at once. 
 

• Stat-JR works best with either Chrome or Firefox, so if the default browser on your 
machine is Internet Explorer it is best to open a different browser and copy the html 
path to it.  
 

Clicking on the Begin button will then bring up the main screen for Stat-JR 
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• This window shows the Current template and Current dataset at the top of the 
screen along with pull down menus from which one can select different templates 
and datasets.  

 
• Underneath you will see the first inputs for the currently selected template. 

 
• The Current input string and Command boxes will contain information about the 

inputs being used and will be populated as the user chooses their inputs. One can 
paste in a string of inputs into the Current input string box and click Set as an 
alternative to filling in the inputs manually and the Command box can be used to 
store the command that contain the current inputs that can then be used in a 
Command line version of Stat-JR. 

 

Introduction to the reading development dataset 

In this exercise, we will analyse a subsample of data from the National Longitudinal Survey 
of Youth (NLSY) of Labor Market Experience in Youth. Starting in 1986, children of the 
female respondents of the original NLSY Youth sample were assessed in 1986, and again in 
1988, 1990 and 1992. For inclusion in the subsample considered here, children had to be 
between 6 and 8 years old at the first measurement. (For more details of the dataset and 
measures see http://www.unc.edu/~curran/srcd-docs/srcdmeth.pdf).  We also restrict the 
analysis to 221 children who were assessed on all four occasions. The data file is called 
readjuly (saved as readjuly.dta in the datasets subdirectory of the Stat-JR install). 
 
The file contains the following variables:  
 
CHILDID Child identifier (coded 1 to 221)  
MALE Child’s gender (1=male, 0=female)  
HOMECOG Amount of cognitive support at home, computed as the sum of 14 binary items, e.g. 

Does you family get a daily newspaper? How often do you read stories to your child? 
(score from 3 to 14) 

READ1 Reading score at time 1 (1986, when child aged 6-8 years), measuring word 
recognition and pronunciation ability  

READ2 Reading score at time 2 (1988)  
READ3 Reading score at time 3 (1990)  
READ4 Reading score at time 4 (1992)  
ANTI1 Antisocial behaviour score at time 1 (1986), based on mother’s report on six items 

e.g. cheats or tells lies, bullies, disobedient at school (score from 0-10)  
ANTI2 Antisocial behaviour score at time 2 (1988)  
ANTI3 Antisocial behaviour score at time 3 (1990)  
ANTI4 Antisocial behaviour score at time 4 (1992) 
CONS A column of 1s to represent the intercept 
 
To select the dataset readjuly, click on the Dataset pull down list and select Choose. From 
the dataset list scroll down until you find readjuly, highlight it, and click on the Use button to 
the bottom right of the window. 
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After pressing Use, the Current dataset will change at the top of the window to confirm 
your selection, and we can select View from the Dataset pull down list which will bring up a 
separate tab at the top of the screen with the first data records in the dataset as shown 
overleaf: 
 

 
 
The above data structure, with one record per child and measurements at each time point 
stored as separate variables, is commonly referred to as wide form. We can get some basic 
summary information for each column selecting Summary from the Dataset pull down; this 
produces the following in a new tab: 
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We see that, as expected, the mean reading score increases with time (or age). 
 

Restructuring the data from wide to long form, and plotting observed 
trajectories  

Most methods for longitudinal data analysis require data to be in long form, with repeated 
measures stacked into a single variable to give 1 record per year for each individual. 
Restructuring from wide to long form is possible in Stat-JR via the Split template 
(alternatively the UnSplit template is used to restructure datasets from long to wide form). 
Therefore, from the main Stat-JR screen, we need to use the Template pull down list at the 
top of the screen and select Choose.  From the screen that appears scroll down through the 
template list and select Split (alternatively we could have clicked on Data manipulation in 
the tag cloud to reduce the list of templates to just those concerning data manipulation, as 
shown in the screenshot below). Note that when Split is highlighted we get a description of 
it as well.  
 

 
 
Clicking on Use will change the Current template, listed at the top, to Split and then we can 
execute the template. We then need to fill in the inputs as follows: 
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Then clicking on Next and Run we can display the generated dataset (readlong) in the 
output objects pane at the bottom of the screen by selecting it from the pull down list as 
shown below: 
 

 
6 

 



 
You will see that we now have 4 rows for each child and the ind variable identifies these as 
records 0, 1, 2 and 3 which correspond to the years 1986, 1988, 1990 and 1992, 
respectively. We will use this new dataset in the rest of the practical. So at the top of the 
window select Choose from the dataset pull down list and select readlong which has now 
appeared in the dataset list, and then click on the Use button. 
 
It is useful to first take a look at the data graphically, which we can do by using one of Stat-
JR’s plotting templates; Firstly select Choose from the Template pull down list and here we’ll 
use XYGroupPlotFilter (clicking on Plots in the cloud of terms above the list of templates will 
list all plotting templates available). Select this template from the list and click on Use and 
then Run. We will use this template to produce a plot of the reading test scores for the first 
10 children; to do this we select the inputs as follows: 
 

 
 
Clicking on Run and selecting graphxygroup.svg from the objects list produces the following 
plot, towards the bottom of the page: 
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For these first ten children we see generally upward trends but lots of variability. 

Fitting a basic linear growth model (random intercepts) 

We will now consider fitting the random intercepts model that we covered in the lecture. 
We will do this first using maximum likelihood and the IGLS method in MLwiN before 
moving on to fitting the model using MCMC and the e-STAT engine. 
 
We will use variable ind to represent time; as this variable is defined from 0 to 3, the 
intercepts will represent the values of reading at time point 0 (1986). 

 
Stat-JR has many templates for model fitting and here we will use the 2LevelMod template 
that specifically fits random intercept models. So, return to the main Stat-JR tab, select 
2LevelMod from the templates list, and then click on Use. Fill in the inputs as follows: 
 

8 
 



 
 
Here we define read as our response variable and have two predictor variables, cons for the 
intercept and ind for the time effects. We also need to tell Stat-JR that childid identifies the 
level 2 identifiers.  
 
Clicking on Run gives many outputs in the objects list towards the bottom of the page, and if 
we select ModelResults from the pull-down list we see the following: 
 

 
 
Here we see estimates for the intercept (beta2) and slope (beta3), and the variances at the 
child (sigma2_1) and residual (sigma1_1) levels. So, at time point zero, we expect a reading 
test score of 2.72, increasing by 1.08 for each test (2 year period). Much of the variability is 
at level 2 (between children); in fact the variance partition coefficient (VPC) = 
0.729/(0.729+0.422) = 0.633: i.e. 63% of the variability can be attributed to between-
children differences. 
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We can also fit this using MCMC via Stat-JR’s e-STAT engine. To do this, click on the remove 
text next to the Choose estimation engine input and then make the following alternative 
choices: 
 

 
 
Here we will run 3 MCMC chains each for 2000 iterations after a burnin of 500 iterations. 
Clicking on the Next button will prompt Stat-JR to create the algorithm, and then the 
program code, for fitting the model. We can observe both the model code (model.txt) and 
the model in mathematical form (equation.tex) in the objects pane: 
 

 
 
When the code has been compiled we can look at some of the other outputs created, for 
example the output algorithm.tex displays the MCMC algorithm that is to be used. This can 
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be put in its own tab in the browser by clicking on the Popout text next to the object pull 
down list. 
 

 
 
For this model we have a Gibbs sampling algorithm for all parameters. 
 
Returning to the main tab, clicking on the Run button will run the code produced. When this 
has finished, we can select ModelResults from the list of objects: 
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Here we see similar estimates to those we saw from IGLS. Below we compare these 
estimates in a table: 
 

Parameter IGLS Estimate (SE) MCMC Estimate (SD) 
β0   (intercept) 2.719 (0.068) 2.719 (0.069) 
β1   (slope) 1.084 (0.020) 1.085 (0.020) 
σ2

u  (level 2 variance) 0.729 (0.080) 0.740 (0.083) 
σ2

e  (level 1 variance) 0.422 (0.023) 0.424 (0.024) 
 
The level 2 variance is slightly larger in MCMC but this is a posterior mean estimate whilst 
IGLS gives the mode. The effective sample sizes (ESS) for all parameters are reasonable, 
although the ESS for β0 is slightly lower. We can select the MCMC diagnostics for this 
parameter by selecting beta_0.svg from the object list and popping it out: 
 

 
 
Running left to right down the rows for each parameter, the charts include a trace plot of 
the 2,000 estimates for each chain, a kernel density plot of the posterior distribution for 
each chain, plots of the autocorrelation (ACF) and partial auto-correlation (PACF) functions 
for assessing chain mixing, a Monte Carlo standard error (MCSE) plot, and finally a plot of 
the Brooks-Gelman-Rubin diagnostic (BGRD). 
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• The trace plot provides some indication of how well a chain is mixing: as a crude 
test, the absence of large white patches in the plot would indicate that the whole of 
the posterior distribution is being visited in a short space of time, suggesting the 
chain is mixing well; here you can see all 3 chains plotted in different colours. 

 
• The kernel density plot is like a smoothed histogram of the posterior distribution; 

again, you can see the 3 chains plotted in different colours. 
 

• The ACF measures how correlated the values in the chain are with their close 
neighbours: an independent chain will have approximately zero autocorrelation at 
each lag. 
 

• The PACF measures discrepancies in the AR(1) process (referring to the fact that the 
Markov chain should have a power relationship in the lags (i.e. if ACF(1) = rho, then 
ACF(2) = rho2, etc.); normally, the PACF should have values 0 after lag 1). 
 

• The MCSE chart plots the Monte Carlo standard error of the mean against the 
number of iterations. The MCSE is an indication of the accuracy of the mean 
estimate (MCSE = SD/√n, where SD is the standard deviation from the chain of 
values, and n is the number of iterations), and allows the user to calculate how long 
to run a chain to achieve a mean estimate with a particular desired MCSE. 
 

• The final plot charts the Brooks-Gelman-Rubin diagnostic (BGRD) statistic, with the 
width of the central 80% interval of the pooled runs in green, the average width of 
the 80% intervals within the individual runs in blue, and their ratio BGRD (= pooled / 
within) in red.  BGRD would generally be expected to be greater than 1 if the starting 
values are suitably over-dispersed. Brooks and Gelman (1998) emphasise that one 
would wish to see convergence of R to 1, and with convergence of both the pooled 
and within interval widths to stability (but not necessarily to 1). 

 
Here we see that the chains are mixing reasonably well, though after only 2,000 iterations 
there is still some variability in the projected kernel density plots. The ACF shows that there 
is some correlation between draws that are up to about 25 iterations apart. The other 
diagnostics all look fine. 
 
Amongst the outputs produced when running the model using the e-STAT engine is a 
predictions dataset that contains predicted values for the model and can be used to 
graphically view the model fit. We will do this, as before, for the first 10 children. Return to 
the main Stat-JR tab and select XYGroupPlotFilter as the template, and prediction_datafile 
(which is the name given to the latest predictions produced) as the dataset, remembering to 
press the corresponding Use button after each selection. Next we fill in the inputs as shown: 
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If we click on Run and select graphxygroup.svg we will see the predictions as follows: 

 

 
 
So, as we expect, we see parallel lines for each child, with large variability between them. 
The random intercepts model only allows the intercept to vary between children whilst the 
slope is fixed; as you’ll remember from the lectures, we also considered the random slopes 
model which removes this constraint. We’ll investigate this in the section below; once again 
we’ll consider both the frequentist approach, via interoperability with MLwiN, and MCMC 
using Stat-JR’s e-STAT engine. 
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Fitting a random slopes model 

Firstly, return to the top of the main Stat-JR screen and this time select 2LevelRS from the 
template list and readlong for the dataset. Then click on Run and fill in the inputs as shown 
below: 
 

 
 
Note that here we are looking at frequentist methods in MLwiN, and so, as it states, the 
“Priors” input will be ignored. Clicking on Next and Run gives the results shown below if we 
choose ModelResults from the objects list: 
 

 
 
Here we see two additional parameters for the slopes (ind) variance at level 2 and the 
covariance between intercepts and slopes. The Deviance (-2*LogLikehood) value for this 
model is 2119.1 compared with 2202.7 earlier for the random intercepts model. We 
therefore have a change in deviance of 83.6 which follows a chi-squared distribution with 2 
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degrees of freedom (for the 2 additional parameters). This corresponds to a p-value of 
<0.001, and so the random slopes model is a significantly better model for this dataset. 
 
We will also fit the model using MCMC. If we click on remove next to Choose estimation 
engine we can redo the inputs as shown below: 
 

 
 
As you can see, we have chosen to use Uniform priors for now. When we press Next we can 
view the the mathematical description (equation.tex) as shown below: 
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Clicking on Run will run the model, and after a short while we can select ModelResults from 
the outputs in the right-hand pane thus: 
 

 
 
Again, we can compare the different parameter estimates from MCMC and IGLS, as we did 
previously for the random intercepts model: 
 

Parameter IGLS Estimate (SE) MCMC Estimate 
(SD) 

β0     (intercept) 2.719 (0.057) 2.726 (0.061) 
β1     (slope) 1.084 (0.024) 1.083 (0.025) 
Ωu00  (level 2 intercept variance) 0.516 (0.071) 0.539 (0.074) 
Ωu01  (level 2 intercept/slope 
covariance) 

0.029 (0.022) 0.027 (0.023) 

Ωu11  (level 2 slope variance) 0.069 (0.013) 0.073 (0.014) 
σ2

e    (level 1 variance) 0.306 (0.021) 0.308 (0.021) 
 
As before, we obtain similar estimates between the two methods, with the level 2 variances 
being slightly larger using MCMC but being posterior means. Note also that the Uniform 
prior is known to slightly overestimate the variances (Browne and Draper, 2000). 
 
For both the random intercepts and random slopes models, estimated via MCMC, we have a 
DIC diagnostic; this comprises a combination of fit and complexity, and can be used for 
model selection. For the random intercepts model we had a DIC of 1944.0 whilst here the 
DIC has reduced to 1766.1 indicating the random slopes model is much better, as we also 
found when using IGLS. 
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We can plot the fitted values for the random slopes model to see that the lines are not 
parallel. To do this we need to return to the main screen and change dataset to 
prediction_datafile. We now first need to calculate the predictions manually for this model1 
using the Calculate template - see the screenshot below (Output column name: 
pred_correct; Numeric expression: pred_full + (ind-cons)*pred_u1; Name of output dataset: 
prediction_datafile2): 
 

 
 
After pressing Next, then Run, this will add the corrected predictions to a new dataset called 
prediction_datafile2 and we can proceed to plot the lines by selecting this dataset and the 
XYGroupPlotFilter template and choosing inputs thus: 
 

 
 
Pressing Run and selecting graphxygroup.svg gives the lines: 
 

1 Basically the column pred_full is constructed by simply adding all  the predictions together, but for the 
random slopes models the predicted u variables for slopes need multiplying by their predictors and not just 
adding together. We therefore do this above, storing the result in pred_correct. 
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Here we see that the lines exhibit different slopes with a ‘fanning out’ pattern indicating a 
positive covariance between intercepts and slopes. To back this up we can also look at the 
residuals at level 2 as these are stored in a dataset called childid. If we wish to plot pairwise 
residuals we need to return to the top of the screen and choose XYPlot as the template and 
childid as the dataset. We can then set-up the inputs as shown (Y values: u0; X values: u1): 
 

 
 
We can look at the plot in its own tab by popping it out as shown below: 
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Here we see a slight positive correlation as indicated by the positive covariance at level 2. 
 
Finally we can also calculate the variance function at levels 1 and 2 by firstly returning to the 
main screen and choosing prediction_datafile2 as the dataset. Then via the Calculate 
template, inputs as follows (Output column name: lev2var; Numeric expression: 
0.539*cons + 2*0.027*ind + 0.073*ind*ind; Name of output dataset: prediction_datafile2): 
 

 
 
If we press Next and Run, this adds the column lev2var to the dataset prediction_datafile2. 
If we then press Start again (which you can find in the black bar towards the top of the 
browser window), we enter the following inputs, again using the Calculate template (Output 
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column name: lev1var; Numeric expression: 0.308*cons; Name of output dataset: 
prediction_datafile2): 
 

 
 
Pressing Next and Run adds the column lev1var. 
 
We can then use the XYGroupPlotFilter template to plot the curves as follows: 
 

 
 
This returns the following plot: 
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Here we see that the level 2 variance (top line) increases as time increases – this is to be 
expected, given the fanning out pattern. 
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MODELLING LONGITUDINAL DATA USING THE STAT-JR PACKAGE 

Practical 2: Extensions to Growth Curve Models 
Introduction 

In this exercise we will continue our analysis of reading development using measurements 
taken on four occasions for 221 U.S. children. The dataset was described in the first practical 
where we fitted models using both interoperability to MLwiN, and MCMC via Stat-JR’s e-Stat 
engine. In this practical we will simply use MCMC but you are welcome to investigate fitting 
the models using the other estimation methods that are on offer after finishing the 
practical. We will use the long form of the data (with 1 record per year) which we have 
stored in the dataset readjulylong. To start, open Stat-JR by clicking on tree.cmd and then 
find this dataset in the list and click Use to select it. If we select View from the Dataset 
menu we will see the following: 

 

In this saved version we have named the time variable t (as opposed to ind). Again, t = 0 
represents the first year of data (1986). 

Quadratic Growth curve model 

We will begin by extending the modelling to allow for a non-linear trend in the time 
variable. The quadratic term doesn’t exist in the dataset therefore we will need to construct 
it. We could do this via the Calculate template or alternatively simply use the New variable 
options in this View data screen. We will create the variable t2 by filling in the boxes as 
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follows: New Variable Name: t2; Expression: t*t; click on Create. The new variable t2 
should appear to the right of the list: 

 

We now wish to add this quadratic term, t2, as a fixed effect to the last random slopes 
model from practical 1, so click on the Choose option from the Template list. Here select 
2LevelRS from the template list and click on Use. The inputs should then be as follows, 
noting that for now we are just adding t2 to the explanatory variables list. 
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Clicking Next will start the algebra system that constructs the algorithm and then the code 
to fit the model will be written and compiled. While this is happening we can see that in the 
object pane we have a mathematical description of the model. 

 

Clicking on the Run button will then fit the model and, when the timer stops, selecting 
ModelResults from the object list gives the following: 
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Here the DIC diagnostic takes the value 1576.3, whilst for the model without the quadratic 
term the DIC was 1766.1: nearly 200 greater; so the addition of the quadratic term yields a 
much better model. We can also see that beta_2 takes value -0.187 (with standard error 
0.017) which is highly-significant backing up the DIC difference. The linear term takes value 
1.646 (with standard error 0.058) so, as one would expect, we have an increase in reading 
score with age but the speed of increase reduces (due to the negative squared term) as 
children get older. With this model we have, of course, forced the same quadratic 
coefficient for each child (by including t2 as only a fixed effect) so the obvious next model to 
try is to consider making the quadratic term different for each child. To do this click on the 
Start again button and fill in the inputs as follows 2: 

2  Alternatively, you can copy the Input string – a l ine of text appearing midway down the browser window: 
you need the section of it between, and including, the curly brackets. If you then press Start again (in the black 
bar at the top), and paste it in the Input String box towards the bottom of the window, and then change ‘x2’: 
‘cons,t’ to ‘x2’: ‘cons,t,t2’ before pressing the Set button, you’ll  set-up the same inputs as before, except that 
t2 is now allowed to randomly-vary at level 2. 
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Clicking on Next should give the following model: 

 

Again we need to click on Run to fit the model and the results will be available as 
ModelResults in the right-hand list. As this model has lots of parameters we have displayed 
ModelResults in its own tab by popping it out. 

27 
 



 

One thing to notice with this model is that the ESS values are quite low. To improve this we 
can run for an extra 3000 iterations (per chain) by typing 3000 into the Extra Iterations box 
on the main Stat-JR tab and clicking on the More button. On doing so we get the following 
results: 
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This improves the ESS a little, and the DIC for this model is 1492.2 (as compared with 1576.3 
for just a fixed effect for t2). 

It is therefore sensible to allow children to have their own quadratic term. So the next 
question is: what do the predicted curves for the children’s reading look like? As in Practical 
1, we will need to modify the predictions obtained by default from Stat-JR to correctly 
include random slopes. To do this we select Calculate from the template list, and 
prediction_datafile from the dataset list, clicking Use after selecting each. After pressing Run 
we enter the following inputs (Output column name: pred_correct; Numeric expression: 
pred_full + (t-cons)*pred_u1 + (t2-cons)*pred_u2; Name of output dataset: 
prediction_datafile2): 

 

Clicking Run will add the variable pred_correct to form the dataset prediction_datafile2. We 
can then create the graphs for the first 10 children by returning to the main window and 
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selecting XYGroupPlotFilter as the template and prediction_datafile2 as the dataset. Then, 
click on Run, and choose the inputs as shown below: 

 

 

Clicking on Run and selecting graphxygroup.svg gives the graph below: 

 

Here we see that the graphs curve and indeed the rate of increase reduces with age as 
reading scores begin to plateau off. We will next consider the covariate homecog which 
represents the amount of support given to the children at home. 
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Introducing covariates 

It is straightforward to add covariates to a growth curve model. We begin by exploring 
whether a child’s reading score is associated with the amount of cognitive support received 
at home (homecog). First we test whether homecog predicts the level of reading (i.e. the 
intercept) by simply including it as a fixed effect. To do this we return to the template 
2LevelRS and the dataset readjulylong. We set up the inputs as before but with homecog 
added to the explanatory variables list: 

 

 

Note here that we have increased the number of iterations to 5,000 per chain after seeing 
the poor mixing in the previous model. If we click on Run and go straight to the 
ModelResults (popping them out) upon the model finishing we see the following: 
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Here we see that beta_3 (the homecog effect) is just significant with an effect of 0.053 (and 
standard error 0.022) although we have rather a low ESS, and the DIC diagnostic which, at 
1504.83, is bigger than the model without homecog (which had a DIC of 1492.2). Given the 
ESS is small (64) we could run for longer, and in fact running for 25,000 per chain gives 
beta_3 = 0.050 (with standard error 0.023) which is still just significant though with DIC still 
at 1501.0. The effect is positive, as one might expect: i.e. more cognitive support at home is 
associated with higher reading test scores.   

Question: Does the addition of homecog (a child-level variable) explain much of the 
between-child variance? (Hint: omega_u_0 is the child-level intercept variance). 

The reason the DIC is not improved (and in fact is worse) with the addition of this predictor 
is an interesting one. The DIC diagnostic has a ‘focus’ which is where in the model it 
measures model fit. In this case the ‘focus’ is at level 1 and although homecog is a significant 
predictor it is explaining variation at level 2 which is not the ‘focus’ of DIC – in other words 
the variation it explained at level 1 had already been explained by the child random effects 
in the simpler model. This is not to say that including it doesn’t improve the model but 
simply that the DIC diagnostic is not so useful at establishing the importance of higher level 
predictors. 

We could also look at whether home cognitive support affects reading progress. To do this 
we will need to include an interaction between the homecog variable and time. Return to 
the main window and select Calculate from the template list and click Use and Run. 
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To construct the interaction the template inputs should be as follows (Output column 
name: t_cog; Numeric expression: t*homecog; Name of output dataset: readjulylong): 

 

Clicking on Run will construct the interaction variable and name it t_cog. We will next return 
to the template 2LevelRS and add t_cog to the explanatory variable list. If you do this (whilst 
repeating the other inputs from the last model fit (see page 9)) we see in the ModelResults, 
below, that now, both the main effect for homecog (beta_3), and the interaction (beta_4) 
are borderline significant. 

 

One could ask whether the addition of the interaction between t and homecog has 
explained much of the between-child variance in the effect of t (i.e. variances associated 
with t (omega_u_2) and t2 (omega_u_5)). 

33 
 



We might like to plot the average predicted curves for various levels of the homecog 
variable. In the lecture we did this for values of homecog equal to 8, 9 and 11 as these 
represent the quartiles of the data. We can construct these predictions as follows. Firstly 
select Calculate from the template list and click Use and then select prediction_datafile from 
the dataset list and click Use. Clicking on Run we can construct the prediction for the lower 
quartile as follows (Output column name: pred_homecog8; Numeric expression: 
pred_beta_0_cons + pred_beta_1_t + pred_beta_2_t2 + 8*0.0405*cons + 8*0.0187*t; Name 
of output dataset: prediction_datafile): 

 

Clicking on Run will construct this extra prediction variable and add it to the 
prediction_datafile. To construct the predictors for the median and upper quartile we simply 
change the name of the output column, and also replace the two 8s in the numeric 
expression with 9s for the median and 11s for the upper quartile. Each time we add the 
variable to prediction_datafile (i.e. Output column name: pred_homecog9; Numeric 
expression: pred_beta_0_cons + pred_beta_1_t + pred_beta_2_t2 + 9*0.0405*cons + 
9*0.0187*t; Name of output dataset: prediction_datafile; etc.). 

Finally we will plot these 3 curves by selecting the template XYPlot2 and choosing inputs as 
shown: 

  

And we get the graphs thus: 
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Autocorrelated residuals 

So far we have assumed that the occasion-level residuals are independent: i.e. we have 
assumed that the correlation between a child’s responses over time is explained by 
unmeasured time-invariant child characteristics (represented in the model by the child-level 
random effects). We now relax this assumption and assume an AR(1) covariance structure at 
the occasion-level. This is fairly recent work in MCMC and we are following the algorithms 
given in Browne and Goldstein (2010) so will use a template named 2LevelBGAR1 (where BG 
stands for Browne and Goldstein).  Although this template gives estimates, it doesn’t, as yet, 
give a DIC diagnostic for model comparison, nor LaTeX code for the model structure. 

So, to begin, select 2LevelBGAR1 from the template list, and readjulylong from the dataset 
list. Then, after clicking on Use, we need to set the inputs to the template as follows: 
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Note again here that we are running for 5,000 iterations. Clicking on Next and Run will fit 
the model. Note that the model code should be ignored as this template doesn’t use the 
algebra system but creates its own bespoke C code. The model takes a little longer to run 
but the results can be seen in ModelResults (popped out): 

36 
 



 

The parameter alpha represents the AR1 correlation and takes value -0.327, with standard 
error 0.222: so not significant, although the ESS is only 27 which suggests we need to run for 
longer. The software package Stata can fit this same model using the xtmixed command: this 
estimates the correlation as -0.291 with, again, a large standard error. If we look here at the 
diagnostics for alpha, by selecting alpha.svg, from the object list, we see: 
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Here we can see the chains are not mixing well but that the estimate of -0.291 from Stata is 
close to the modes we see for the blue and green chains. In fact if we were to run for a 
further 20,000 iterations per chain (don’t do this yourself as it will take too long!) we see the 
following: 
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Here the posterior mean estimate is -0.377, with standard error 0.236, which is not quite 
the Stata estimate, but both methods agree that the correlation is not significant. This may 
be because, by fitting quadratic terms for time for each child, we have explained much of 
the autocorrelation in their readings.  

To test this we will next fit a simpler growth curve model with a quadratic curve in the fixed 
part, but only permitting the intercept to vary across children. 

Using the same template (2LevelBGAR1) and dataset (readjulylong) as before, we enter our 
inputs as follows: 
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Clicking Next and Run we get the estimates that you see below, under ModelResults: 
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Here we observe a posterior mean estimate of 0.693 (Stata’s xtmixed gets 0.67 for this 
parameter) and this value is much bigger than its standard error. So, if we do not fit a 
realistic random effects model that better accounts for the variability between children in 
their reading progress, there is unexplained positive autocorrelation. 

An estimate of 0.693 implies that, after allowing for an overall quadratic growth trend and 
effects of cognitive support at home, the residual correlation between a child’s residuals on 
consecutive occasions (2 years apart) is 0.693. The correlation between residuals on 
occasions 4 years apart (i.e. times 1 and 3, or 2 and 4) decreases to 0.6932= 0.480. 

Further Exercises 

If you have time you might investigate growth models that answer the following questions: 

i. Is there a gender difference in the level of reading score (at any occassion)? 
ii. Do boys and girls differ in the rate of reading progress? 
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MODELLING LONGITUDINAL DATA USING THE STAT-JR PACKAGE 

Practical 3: Multivariate and Dynamic (Autoregressive) Models 

3.1  Multivariate model for antisocial behaviour 

In this exercise we begin by analysing repeated measures of antisocial behaviour which are 
contained in the same dataset as the reading score measures. As for reading, antisocial behaviour 
was measured on four occasions for 221 US children. See Practical 1 for a description of the dataset. 
We will use a wide form of the data (with 1 column per year), saved as the dataset antijuly. To use 
this dataset select it from the list and click on the Use button. To view the dataset click on the View 
dataset button towards the top of the page, and it will appear thus: 

 

This dataset is identical to that used in Practical 1, apart from an additional column of 0s named zero 
which we will need later. It is in wide format and therefore there are four variables for the four years 
of antisocial behaviour measures. In the lecture we saw that antisocial behaviour trajectories are 
highly nonlinear and variable across children, so a linear or quadratic model is unlikely to fit well. We 
will therefore fit a multivariate model using another template named 1LevelMVNormal. So, select 
1LevelMVNormal from the template list, and click Use and set-up inputs as follows: 
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Clicking on Next will give the LaTeX model description: 

 

Note that the algebra system has some limited ability to fit multivariate models; when we answered 
Yes to “Use MVNormal update for beta?”, all steps are in fact done by custom C code for this model. 
The equations show that all we are doing in this model is basically estimating the means and 
covariance matrix for the 4 variables. Clicking on Run gives the following results: 
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Here we see the four beta variables giving the mean levels of antisocial behaviour in the four time 
points, indicating an increasing trend of antisocial behaviour with time. We also see that all 
covariances are positive, meaning positive correlations for individual children’s levels of antisocial 
behaviour over time. The variances (omega_e elements 0, 2, 5 and 9) are also increasing over time, 
so not only is the level of antisocial behaviour rising but so is the variability across the group. This 
multivariate model does not include any child-level random effects. This is because we are 
estimating the full covariance matrix for the occasion-level residuals, which completely allows for 
correlation between a child’s responses over time: there is no further correlation to explain by a 
child-level random effect. 

3.2  Dynamic AR(1) model for antisocial behaviour 

We will next fit an AR(1) model for antisocial behaviour, ignoring initial conditions to begin with. To 
do this we need to construct a long version of the dataset that ignores the first time-point in the 
response variable but also includes a lagged response. We will do so by using the Split template that 
we used in Practical 1. Select Split from the template list and click on the Use button. Set up the 
inputs as follows: 
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Clicking on Next and Run will now create the long version of the dataset. 

We will now use 2LevelMod to fit a model, so return to the main window and select 2LevelMod from 
the template list and antilong from the dataset list, clicking on Use after each. Next we will set up 
the template inputs as follows: 
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Clicking on Next and Run will fit the model and give the following results: 
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Here we get the same results as shown in the lecture slides (for the ‘No IC’ model) and we 
observe that the level 2 variance (sigma2_u) is small whilst there appears to be a significant lag 
effect (beta_1). 

We next want to allow initial conditions by specifying an additional equation for the first time-
point. To do this we need to return to the wide version of the data and construct a new long 
form that includes time point 1, and then we need to set-up various dummy variables and 
interactions to identify each line as belonging to either year 1 or a later year. In fact, most of the 
work in fitting this type of model is initial data manipulation to get the data in a form that can 
then be fitted using the standard template. 

Firstly return to the main screen and set the template to Split, and change the dataset to antijuly 
(i.e. wide form), clicking Use after each. Click on Run and set-up the template inputs as follows: 

 

Here we are using the zero column as the lagged values for time point 1. Clicking on Run will 
now create the basic structure for our dataset. We next need to add some additional indicator 
variables, and so return to the top of the screen and change the dataset to antilong2 (which we 
have just created) and the template to Calculate, clicking Use, as usual, between each choice. 
We will firstly generate a dummy variable to indicate when the data line is the first time point, as 
follows: 
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Clicking Run will add this variable to the dataset. We will now add three more variables to the 
dataset: t234, which takes a value of 0 when ind = 0, and a value of 1 when ind = 1, 2 or 3 (i.e. it 
indicates whether it is the first time point or not), and interactions for both these variables with 
the male variable (t1male and t234male). 

To generate each of these, click on Start Again (in the black bar at the top) and fill in the inputs 
as shown below, clicking on Next and Run. Note don’t do this too quickly: in particular make 
sure that the dataset appears in the right-hand pane before clicking Start Again or that variable 
will not be added to the dataset. 

Firstly inputs for t234: 

 

Next for t1male: 

 

And finally for t234male: 
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After all the calculations, antilong2 should look something like the window below (although note 
the column order may differ) : 

 

We will fit a model where the fixed part is as follows: 

𝛽0𝑡1 + 𝛽1𝑡1𝑚𝑎𝑙𝑒+ 𝛽2𝑡234 + 𝛽3𝑡234𝑎𝑛𝑡𝑖𝑙1 + 𝛽4𝑡234𝑚𝑎𝑙𝑒 

This breaks down into two equations for t=1 and t>1: 

For t = 1 t1 = 1 and t234 = 0 thus we have  𝛽0 + 𝛽1𝑚𝑎𝑙𝑒 

For t > 1 t1 = 0 and t234 = 1 thus we have 𝛽2 + 𝛽3𝑎𝑛𝑡𝑖𝑙1 + 𝛽4𝑚𝑎𝑙𝑒 

Turning now to the random part of the model, we will allow a single child-level random effect for 
each child but we will allow the variability of the residuals at level 1 to be different for the first, 
and later, time-points. In order to fit different variances in Stat-JR we need to use the template 
2LevelComplex which allows complex variability at level 1. 
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So, select 2LevelComplex from the template list, and click on Use and set up the inputs as follows 
(note that the only two terms (of the large number) that we want variation at level 1 for are 
t1*t1 and t234*t234):  

 

 

and  
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Clicking Next brings up the LateX for the model, as follows: 

 

Here you can see that alpha0 and alpha5 are the variances for the first and subsequent time 
points, respectively. Clicking on Run will fit the model, after which the ModelResults appear as 
follows: 
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These results should correspond to initial conditions 1 (IC1) in the lecture notes, and we can now 
see a significantly larger level 2 variance, whilst the effect of the lagged variable has reduced. 
The alternative approach is to fit an extended model with separate child-level random effects for 
t = 1 and t > 1 whilst maintaining the same fixed effects in the model.  We do this by using the 
template 2LevelRS which assumes the same variance at level 1 for each time point whilst 
allowing a different variance at level 2 for t1 and t234 and a covariance between them. 

Return to the main window and choose 2LevelRS as the template and click Use and fill in the 
inputs as shown below: 
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Clicking Next and Run will fit the model and the ModelResults can be found from the objects list: 
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These results are for the model IC(2) in the slides. 
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