
eBook Writing Workshop ɀ Practical 3: Using Supertemplates

and incorporating html outputs in to eBooks.

Introduction
In this third practical we firstly are going to look at how we might construct an eBook that allows the

reader to fit multilevel models to their dataset. We could perform this using the skills we have

already learnt in practicals 1 and 2 by simply choosing a 2 level modelling template e.g. 2levelMod in

Stat-JR TREE and using the eBook-writer. There are, however, several post-estimation plots

associated with fitting multilevel models it would also be useful to include in an eBook. These are

available in other Stat-JR templates, which due to current limitations discussed in practical 2 cannot

be linked directly within the DEEP system. To use such plots in an eBook we require a super-

template that calls both the model fitting and plotting templates, passing the output from one as

input into the other. We will start by using the eBook-writer but will then look in a little detail at how

a super-template works and how we might modify it to include textual output.

Creating a Multilevel Modelling eBook
To fit multilevel models in Stat-WwΩǎ ¢w99 ƛƴǘŜǊŦace there are several templates including 2LevelMod,

which fits 2 level random intercepts models, and 2LevelRS, which fits 2 Level random slopes models

(with random intercepts as a special case). These templates simply fit the model and return

estimates along with residuals and predictions in the form of data files. We have therefore

constructed a super template called 2LevelPredictAll which combines the model-fitting with

graphical outputs by chaining together templates. We will begin by creating an eBook using only this

super template. As with the other practicals, we begin by starting up Stat-JR TREE afresh which

produces the following:

We click Begin and select the dataset jspmix1 (here you will choose your own dataset) from the

Dataset pull-down list and select the template 2LevelPredictAll from the Template pull down list.

Having done this the screen will look as follows:

Here we require the response and predictor (explanatory) variables as we have seen for regression

models previously, although in this case the intercept column is specified separately. We then

require the column containing the level 2 identifiers and the distribution type (which we will here

choose as Normal). We are also asked about random slopes as the super-template has different

behaviour based on this. We will fill in the inputs as follows:

This super-template is currently intended for demonstration purposes only so, for example, it

ŘƻŜǎƴΩǘ ŀǎƪ ŦƻǊ ǘƘŜ όa/a/ύ ŜǎǘƛƳŀǘƛƻƴ ŜƴƎƛƴŜ ǎŜǘǘƛƴƎǎ ōǳǘ ǳǎŜǎ ǎƻƳŜ ŘŜŦŀǳƭǘǎΦ Here I am trying one

binary predictor (sex) and one continuous predictor (ravens) and, for now, running a simple random

intercepts model. We suggest you choose two predictors in your own dataset. Clicking on Run will

run the super-template and eventually the timer will return to the green άweadyέ state and the

object list will be filled. The Python script that makes up much of the code for the template is what

you will initially see in the object browser. If we pop it out then we can see the code (here scrolled

down from the top by a few lines):

You may notice towards the top of the screen that the estimation inputs that have been hard-wired,

so for example this template always runs 3 chains (nchains) for 2000 iterations. The individual

templates that make up the super-template are called via the RunStatJR command within the

Python code, so here we can see both the 2LevelRS template and the Calculate template called in

the code. We use the identifier m to store the list of objects that are output from each template

execution and these are then uniquely named and copied into the global super-template objects list

via the outputs object.

We will now look at some of the objects that are returned by the super-template. If we want to look

at the model we have fitted then we choose the object Model_equation.tex and see:

In fact all objects generated by the template 2LevelRS will begin with the string Model_, for example

the parameter estimates are Model_ModelParameters as shown below:

Here we see (by looking at the mean and sd columns and comparing the values) that the predictors

sex and ravens are both significant predictors of english. We can also look at prediction plots, so for

example the object Graph_0_graphxygroup.svg is the plot of the individual cluster (school in this

case) lines against gender for the predictor sex as shown below:

Here the lines are all parallel as we are fitting a random intercept model, and they have a negative

slope due to the negative sex effect. We can also look at the school-level residuals in a caterpillar

plot by selecting Caterpillar_0_caterpillar.svg

This shows the variability in the schools and you will note that some of the confidence intervals do

not overlap with 0 which will explain why it is important to fit the school effects in the modelΦ [ŜǘΩǎ

now try and put some of these objects into an eBook. Scrolling up a bit we can find the Add to

ebook button and click on it to start writing our eBook. We firstly fill in the top level information:

We will then click on Add Region and Add Page and start the eBook off with a HTML box and the

opportunity for the user to input their settings as shown below:

