
Welcome to the SAA for fitting a
linear regression using MCMC
Firstly on this page you will need to specify the dataset required from the list of
available datasets.

Next you need to choose the response and predictor variables from the chosen
dataset. After choosing these variables the SAA will run and you will see a block of
text describing how many observations are to be used at the bottom of this page.
The rest of the analysis will appear in pages 2-7.

Linear regression done via MCMC

Which dataset do you wish to use?:  

Submit

What is the response variable?: normexam

What is the predictor variable?: standlrt

The Analysis Assistant you are currently using is designed to work on complete
datasets only and so as a pre-processing step we have to remove any rows that
contain missing data in columns used in the analysis that follows. For now the list
of columns to be considered is: normexam, standlrt. There are 0 (0.0%) rows that
get deleted This results in a dataset of 4059 rows.



We will begin our analysis of the dataset by doing some basic data exploration.

You have chosen normexam as your response variable and so a first step is to take
a look at this variable and assess its suitability for a normal model. The summary
statistics for the variable are in the table below:

Observations 4059

Mean 0.0

Standard Deviation 0.999

Median 0.004

We also look at a histogram of normexam to see if it is approximately normally
distributed. Although in modelling the response in terms of a set of predictors it is
what is unexplained (the model residuals) that need to be normally distributed, it is
still useful to look at the response variable as a very skewed variable will often lead
to very skewed residuals.

Here the distribution is reasonably symmetric with skewness value 0.004.

The values:



Row normexam

88 3.13405

124 3.13405

1324 -3.05954

1785 -3.05954

1786 -3.05954

1826 -3.05954

2129 3.66609

2198 -3.05954

2310 -3.05954

3210 -3.05954

3376 3.13405

3386 3.37474

3510 -3.66607

are greater than 3 sds from the mean. This might warrant investigating.



We can also look at the predictor variables that we have chosen.

For continuous predictors we are interested in looking at summary statistics, the
shape of the distribution and any unusual values. If the distribution is skewed then
we might want to transform the variable before fitting it in the model although it is
more important to consider transformations of the response variable and remember
what is important is whether the relationship between the response and predictor is
linear. If there are unusual values we will want to check that the unusual values are
correct and not errors and also whether we may want to treat the variable
differently. Another possibility for unusual shaped distributions is to instead
categorise the variable into ranges of values.

For predictor standlrt we see the following:

Name standlrt

Observations 4059

Mean 0.002

Standard Deviation 0.993

Median 0.04



Here the median is larger than the mean and there is significant skew to the left.
The skewness value is -0.128. Here the statistical significance may be to some
degree due to the large sample size as from a practical perspective values of skew
less than 2 in absolute magnitude are not considered too big a skew.

The values:

Row standlrt

532 3.01595

1299 3.01595

1613 3.01595

are greater than 3 sds from the mean. This might warrant investigating.



Once we are happy with our response variable and our predictor variable we now
want to have a preliminary look at them together before progressing to the linear
regression.

For the predictor we can look at correlations with the response and scatterplots
with best fitting curves to see if there is a linear relationship.

Predictor: standlrt

The Pearson correlation between normexam and standlrt is 0.592 (p value <
0.001).

The Spearman rank correlation between normexam and standlrt is 0.58 (p value <
0.001).

The graph includes best fitting curves for a constant, linear, quadratic and cubic
relationship between normexam and standlrt. In this case a quadratic relationship is
most appropriate and you might consider including a squared term in the predictor
list.



Here we simply fit the linear regression model using MCMC for our chosen
predictor.

Variable Coefficient SE ESS

standlrt 0.595 0.0127 5960

Intercept -0.00129 0.0127 6129

sigmasq 0.649 0.0143 5784

We can plot a predicted regression line to describe the model. This is shown below:



We will next look at the MCMC diagnostics produced for the parameters in our
model.

First for the intercept in the model:

MCMC estimation methods are simulation based which means that rather than a
point estimate (and accompanying standard error) for each parameter they instead
produce a (dependent) chain of values from the posterior distribution of the
parameter. In fact in Stat-JR several chains are run from differing starting values/
random number seeds and so for each parameter we have several chains of
values that can be combined to summarise the parameter. For parameter beta_1
we can first look at the posterior mean which has value -0.00129 and standard
deviation of the chain which has value 0.0127 and plays the role of standard error
for the parameter. We might also consider the posterior median which has value
-0.00131 as an alternative if the distribution is not symmetric. Here the median is
close to the mean as the posterior is reasonably symmetric. We can use the
quantiles of the distribution and so we see a 95% credible interval for beta_1 is
-0.0261 to 0.0235. We can look at the 3 chains for the parameter beta_1and we
can also look at kernel density plots (which are like smoothed histograms) of the 3
chains on a single plot:



Due to the nature of MCMC algorithms updating parameters in separate steps
there is some dependence in the parameter chains produced. One way of
investigating this is to look at auto-correlation functions (acf) for the chains.
Essentially an acf examines how correlated a chain of values is with a similar chain
shifted by a number of iterations (the lag). We can plot such a function for a series
of lags as shown below.



Here the acf value at lag 1 is ρ = 0.0154 and as MCMC algorithms should produce
chains resembling an auto-regressive process of order 1 i.e. the value at the
current iteration only depends on the last iteration, the value at lag 2 should be
approximately ρ  (0.000236) and in reality it is -0.0153. Here the chain is only a
little correlated.

The correlation in the chain results in the estimates containing possible Monte
Carlo standard errors (MCSE) and these explain why running the chain from
differing starting values results in estimates that are not exactly the same. The
longer the chains are run the less Monte Carlo standard errors and the graph below
plots how the MCSE decreases with further iterations. We have run for a total of
6000 and the MCSE is currently 0.000166
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In MCMC estimation a question that needs answering is how long to run the chains
for before we can rely on the estimates. There are many approaches here so for
example we might want to run until the MCSE described above is below a
particular value. Alternatively we might want to consider what number of iterations
we would run for if we could guarantee they were independent draws from the
posterior distribution. With this in mind a diagnostic the effective sample size (which
is based on the autocorrelation in the chain) aims to be used in just this way as it
estimates the equivalent number of independent iterations that the current
(dependent) chains represent. The effective sample size for parameter beta_1 is
6129. Another diagnostic, the Brooks-Draper diagnostic aims to quote how many
iterations are required to quote the posterior mean to a given number of significant
figures with some certainty. We could quote the estimate -0.0013 with 253856
iterations whilst -0.00129 would require 25385548 iterations.

Finally if we have run for multiple chains from differing starting values then we
might hope that those chains mix together and produce values from similar areas of
the posterior showing that the chains have converged. One way of doing this is via
a multiple chains diagnostic, the BGR (Brooks Gelman & Rubin) diagnostic which
investigates the variability between the chains compared to that within the chains. If
the three chains have converged together then the variability between the chains
should be similar to that within the chains and so the hope is that this diagnostic
converges to the value 1. We therefore plot this diagnostic against number of
iterations.



The BGR diagnostic reaches value 1 immediately therefore we are happy with
convergence.

Next for the slope:

MCMC estimation methods are simulation based which means that rather than a
point estimate (and accompanying standard error) for each parameter they instead
produce a (dependent) chain of values from the posterior distribution of the
parameter. In fact in Stat-JR several chains are run from differing starting values/
random number seeds and so for each parameter we have several chains of
values that can be combined to summarise the parameter. For parameter beta_0
we can first look at the posterior mean which has value 0.595 and standard
deviation of the chain which has value 0.0127 and plays the role of standard error
for the parameter. We might also consider the posterior median which has value
0.595 as an alternative if the distribution is not symmetric. Here the median is close
to the mean as the posterior is reasonably symmetric. We can use the quantiles of
the distribution and so we see a 95% credible interval for beta_0 is 0.57 to 0.62.
We can look at the 3 chains for the parameter beta_0and we can also look at
kernel density plots (which are like smoothed histograms) of the 3 chains on a
single plot:



Due to the nature of MCMC algorithms updating parameters in separate steps
there is some dependence in the parameter chains produced. One way of
investigating this is to look at auto-correlation functions (acf) for the chains.
Essentially an acf examines how correlated a chain of values is with a similar chain
shifted by a number of iterations (the lag). We can plot such a function for a series
of lags as shown below.



Here the acf value at lag 1 is ρ = 0.0132 and as MCMC algorithms should produce
chains resembling an auto-regressive process of order 1 i.e. the value at the
current iteration only depends on the last iteration, the value at lag 2 should be
approximately ρ  (0.000175) and in reality it is -0.00353. Here the chain is only a
little correlated.

The correlation in the chain results in the estimates containing possible Monte
Carlo standard errors (MCSE) and these explain why running the chain from
differing starting values results in estimates that are not exactly the same. The
longer the chains are run the less Monte Carlo standard errors and the graph below
plots how the MCSE decreases with further iterations. We have run for a total of
6000 and the MCSE is currently 0.000166
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In MCMC estimation a question that needs answering is how long to run the chains
for before we can rely on the estimates. There are many approaches here so for
example we might want to run until the MCSE described above is below a
particular value. Alternatively we might want to consider what number of iterations
we would run for if we could guarantee they were independent draws from the
posterior distribution. With this in mind a diagnostic the effective sample size (which
is based on the autocorrelation in the chain) aims to be used in just this way as it
estimates the equivalent number of independent iterations that the current
(dependent) chains represent. The effective sample size for parameter beta_0 is
5960. Another diagnostic, the Brooks-Draper diagnostic aims to quote how many
iterations are required to quote the posterior mean to a given number of significant
figures with some certainty. We could quote the estimate 0.59 with 26 iterations
whilst 0.595 would require 2531 iterations.

Finally if we have run for multiple chains from differing starting values then we
might hope that those chains mix together and produce values from similar areas of
the posterior showing that the chains have converged. One way of doing this is via
a multiple chains diagnostic, the BGR (Brooks Gelman & Rubin) diagnostic which
investigates the variability between the chains compared to that within the chains. If
the three chains have converged together then the variability between the chains
should be similar to that within the chains and so the hope is that this diagnostic
converges to the value 1. We therefore plot this diagnostic against number of
iterations.



The BGR diagnostic reaches value 1 immediately therefore we are happy with
convergence.

Finally for the residual variance:

MCMC estimation methods are simulation based which means that rather than a
point estimate (and accompanying standard error) for each parameter they instead
produce a (dependent) chain of values from the posterior distribution of the
parameter. In fact in Stat-JR several chains are run from differing starting values/
random number seeds and so for each parameter we have several chains of
values that can be combined to summarise the parameter. For parameter sigma2
we can first look at the posterior mean which has value 0.649 and standard
deviation of the chain which has value 0.0143 and plays the role of standard error
for the parameter. We might also consider the posterior median which has value
0.649 as an alternative if the distribution is not symmetric. Here the median is close
to the mean as the posterior is reasonably symmetric. We can use the quantiles of
the distribution and so we see a 95% credible interval for sigma2 is 0.621 to 0.677.
We can look at the 3 chains for the parameter sigma2and we can also look at
kernel density plots (which are like smoothed histograms) of the 3 chains on a
single plot:



Due to the nature of MCMC algorithms updating parameters in separate steps
there is some dependence in the parameter chains produced. One way of
investigating this is to look at auto-correlation functions (acf) for the chains.
Essentially an acf examines how correlated a chain of values is with a similar chain
shifted by a number of iterations (the lag). We can plot such a function for a series
of lags as shown below.



Here the acf value at lag 1 is ρ = -0.0051 and as MCMC algorithms should produce
chains resembling an auto-regressive process of order 1 i.e. the value at the
current iteration only depends on the last iteration, the value at lag 2 should be
approximately ρ  (2.6e-05) and in reality it is 0.0208. Here the chain is only a little
correlated.

The correlation in the chain results in the estimates containing possible Monte
Carlo standard errors (MCSE) and these explain why running the chain from
differing starting values results in estimates that are not exactly the same. The
longer the chains are run the less Monte Carlo standard errors and the graph below
plots how the MCSE decreases with further iterations. We have run for a total of
6000 and the MCSE is currently 0.000184
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In MCMC estimation a question that needs answering is how long to run the chains
for before we can rely on the estimates. There are many approaches here so for
example we might want to run until the MCSE described above is below a
particular value. Alternatively we might want to consider what number of iterations
we would run for if we could guarantee they were independent draws from the
posterior distribution. With this in mind a diagnostic the effective sample size (which
is based on the autocorrelation in the chain) aims to be used in just this way as it
estimates the equivalent number of independent iterations that the current
(dependent) chains represent. The effective sample size for parameter sigma2 is
5784. Another diagnostic, the Brooks-Draper diagnostic aims to quote how many
iterations are required to quote the posterior mean to a given number of significant
figures with some certainty. We could quote the estimate 0.65 with 32 iterations
whilst 0.649 would require 3114 iterations.

Finally if we have run for multiple chains from differing starting values then we
might hope that those chains mix together and produce values from similar areas of
the posterior showing that the chains have converged. One way of doing this is via
a multiple chains diagnostic, the BGR (Brooks Gelman & Rubin) diagnostic which
investigates the variability between the chains compared to that within the chains. If
the three chains have converged together then the variability between the chains
should be similar to that within the chains and so the hope is that this diagnostic
converges to the value 1. We therefore plot this diagnostic against number of
iterations.



The BGR diagnostic reaches value 1 immediately therefore we are happy with
convergence.



Here we look at the residuals from the model and plot them in various ways.

Here the distribution is reasonably symmetric with skewness value -0.039.

The values:



Row normexam

82 2.97404400232

88 2.52114023915

428 2.67167398957

530 -2.47663354852

2129 2.56143270149

2310 -2.54142517158

2624 -2.46206364098

2930 -2.4399736105

3326 -2.42650142258

3374 2.55763415614

3420 2.75541987377

3510 -2.65620317431

3645 -2.62794224366

are greater than 3 sds from zero. This might warrant investigating.



If the residuals are fairly normally distributed then the points in this graph should be
close to the red line.

Here you should consider whether there are any patterns in this plot. Ideally we
would like to see similar variability of the residuals across the range of fitted values.


