Stat-JR LEAF Workflow Guide
(1.0.4 beta release)

This documentation was written by William Browne*,
Richard Parker*, Chris Charlton*, Danius Michaelides** and
Luc Moreau**

*Centre for Multilevel Modelling, University of Bristol, UK

** Electronics and Computer Science, University of
Southampton, UK.

June 2016

Citing Stat-JR:

Please cite Stat-JR as:

Charlton, C.M.J., Michaelides, D.T., Parker, R.M.A., Cameron,
B., Szmaragd, C., Yang, H., Zhang, Z., Frazer, A.J., Goldstein,
H., Jones, K., Leckie, G., Moreau, L. and Browne, W.J. (2016).
Stat-JR version 1.0.4. Centre for Multilevel Modelling,
University of Bristol & Electronics and Computer Science,
University of Southampton, UK.

Stat-JR LEAF Workflow Guide (1.0.4 beta release)

© 2016. William J. Browne, Richard M.A. Parker, Christopher M.J. Charlton, Danius T.
Michaelides and Luc Moreau.

No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, for any
purpose other than the owner’ s personal use, without the prior written
permission of one of the copyright holders.

ISBN: To be confirmed

Printed in the United Kingdom

Contents

Section 1
1.1
1.2
1.3

1.3.1
1.3.2
133
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14

Section 2
2.1
2.2
2.3
24
25
2.6
2.7
2.8
2.9
2.10

Section 3
3.1
3.2
33
34

Getting Started with Stat-JR WOrKfIOWScooviiiiiiiiiiiiicc e 6
OVEIVIBW ..ttt st st e s b e e e s b e e e s e b e e e s s nbae e s snraeas 6
STartiNg UP TREE ... eeaees 6
(U Y=Y o T0 e 1Y s I F- | = 1] AU 9

If your dataset is already in .dta formatccccceevciiiicciiec e 9

If your dataset is in Xt fOrmat ..ooccueieiiiiiii e 9

Converting your dataset to .dta format.......cccccveiiioii i, 9
VIEWING the datasetlcciicciiiii et e e e et e e e e bt e e e s ebaeeeesnraeeeeanes 9
OPENING STAt-JRILEAF ...ttt e e e e s st e e e e e e e e e s asneeeeeeas 16
Making our Workflow iNteractive.......coucuiiiiiiieecce e 21
Pa¥e o [T oY= o TU LTy 4T a1 o] (oYl &3P 24
[To LoV W VI o { = o o F SRR 26
Connecting UP the OPErationsccueeiiciie ettt rbee e e e areeas 30
Using variables in @ WOIKfIOWuiiiiiiiiiice et 32
Running a statistical regression model and showing predictions..........ccccceevviieeiicieeeeenneen. 36
Adding predictions to the WOrKFIOWcoccviiiiiciiie e 43
What have WE COVEIEA? ..ottt sttt sb e s s st beens 45
WAt S MEXE? ittt ettt e bt s b e st e b e e bt esbe e saeesaresabeebeennes 46

A statistical analysis assistant for conducting regression type modelsccccccvveeeenneen. 47
OVEIVIBW ...ttt ettt ettt e e st e e sttt e e s ab et e e s be e e s e abe e e e s abeeeeenbaeesenreeesennreeesenreeas 47
QuEestioNs and @ NISTOZIAMoiiiiiie et et e e et e e e ebee e e e rabe e e e enreeas 47
Introducing the “for-do” BIOCK.........uei i e e 48
Univariable models — creating an intercept......ccoccueeeeeciiee et 51
Univariable Models — running the models..........occcuiiiiiiiiiiiii e 54
INterrogating the OULPULSviii e e ree e s abe e e e s areeas 59
Templates that do their own iNterrogationc..eeicciiiiieciiie e 67
Checking fOr SKEWNESSoiieiiie e et e e e et e e e e ebae e s e rabee e e eeareeas 67
MCMC EXPlanation te€MPIate....cicciiie it e s 69
What have WE COVEIEA?ooiiiiiiiiiiie ettt e 72

Making workflows to support the LEMMA training materials.........ccccecvvveeircieeeiccieeeennns 73
OVEIVIBW ..ttt ettt et e s s e e s e e e s r e e e s s b e e e e s mr e e e s smreeessnneeesenrenas 73
[aYdfoTe [N ol T oY= o g o Yol =T o [0 o TSR 73
LEMMA P3.1: Regression with a single continuous explanatory variable............ccccueeennneee. 76
LEMMA P3.2: Comparing groups: regression with a single categorical explanatory variable

78

3.5 LEMMA P3.3: Regression with more than one explanatory variable (multiple regression).79
3.6 LEMMA P3.4: Interaction effeCtScooue it 80
3.7 LEMMA P3.5: Checking model assumptions in multiple regression..........cccccccveeeecvveeeennen. 82
3.8 What haVe WE COVEIEA? ...ttt ettt ettt et e st e s nee e sareeesanes 82
Section4 Translating @ workflow into an @BOOKc.eeviiiiiiiiiciiie e 83
4.1 What have W COVEIEA? ..ottt st et e b e s e 100
Y= Yot o) o o T Y T o =T o Vo [PR STRR 101

The Stat-JR:LEAF workflow system: beta release

The Stat-JR software package was first released in 2012 as a beta version and in September
2013 as a fully-released piece of software (version 1.0.0). Since then there have been a
number of updates and 2016 sees the release of Stat-JR 1.0.4: this features an additional
workflow interface, LEAF (which stands for Logging and Execution of Analysis Flows), that is
being distributed for the first time in beta form. This has been developed as part of our
ESRC-funded project “The use of interactive electronic-books in the teaching and application
of modern quantitative methods in the social sciences” (see
http://www.bristol.ac.uk/cmm/research/ebooks/ for more information).

The Stat-JR:LEAF workflow system was primarily developed by Danius Michaelides**, with
additional input from Luc Moreau**, Chris Charlton*, Richard Parker* and William
Browne*.

To support the beta release of LEAF we have written this additional manual (to complement
the existing Beginner’s Guide to Stat-JR’s TREE interface, the Quick-start guide to the Stat-JR
1.0.4 TREE interface, the Advanced User’s Guide to Stat-JR and the DEEP eBook Reader and
Authoring Guide). This guide is self-contained and does not assume that the reader is
familiar with any of the other supporting guides, although each of those will provide further
information regarding their corresponding topics.

This manual contains four main sections:

e In Section 1 we will introduce the TREE interface into Stat-JR and use the information
we glean from that to create a simple workflow in the new workflow system.

e In Section 2 we will introduce some of the other work in our ESRC grant: namely
investigating the development of a statistical analysis assistant.

e In Section 3 we will look at linking the workflow system to the training materials
available in the LEMMA Multilevel Modelling Online Course
(http://www.bristol.ac.uk/cmm/learning/online-course/).

e In Section 4 we will look at how we can export workflows into an eBook so that we
can link the workflow system with the DEEP eBook interface, and also investigate, in
greater depth, the system’s logging features to “complete the loop” and produce a
workflow from user interactions.

The materials in Section 1 to Section 3 are based on those used in teaching workshops and
we are grateful to attendees at these workshops for their helpful comments that have
greatly improved the final system.

* Centre for Multilevel Modelling, University of Bristol, UK

** Electronics and Computer Science, University of Southampton, UK.

http://www.bristol.ac.uk/cmm/research/ebooks/
http://www.bristol.ac.uk/cmm/learning/online-course/

Section 1 Getting Started with Stat-JR
workflows

1.1 Overview
This manual is designed to introduce new users to Stat-JR and in particular to its new workflow
interface LEAF (Logging and Execution of Analysis Flows). In order to introduce the workflow
interface, we will first provide an overview of how to use the TREE (Template Reading and Execution
Environment)! interface to Stat-JR and will briefly touch on certain aspects of the Python language
(https://www.python.org/) in which large portions of Stat-JR is written.

The main building block in Stat-JR is the template: a piece of code that performs operations one
might associate with a (statistical) software package. For example, one template might draw a
certain type of graph, whilst another might fit a particular statistical model, and so on. Templates are
the common currency shared by the various Stat-JR interfaces —i.e. they are used in LEAF, TREE and
DEEP (Documents with Embedded Execution and Provenance: Stat-JR’s eBook-reading interface) — so
it is important to have an understanding of how they work in order to use Stat-JR.

In order to perform its function appropriately, a template requires inputs from the user (just like a
function call in R or Stata, for instance): for example they typically need to know which variables to
use, and might need input concerning estimation options (for a model fit), plotting options (for a
chart), etc. We will begin by illustrating this using the TREE interface.

1.2 Starting up TREE
To start we will fire-up Stat-JR TREE which we do via All programs > Centre for Multilevel Modelling
> StatJR - TREE. When we do this we will find a command window appears which looks something
like the following:

! For a more detailed introduction to TREE, see the Beginner’s Guide to Stat-JR’s TREE interface.

https://www.python.org/

N 5

(=
S
(=

ChAStatlRh\src\appshtreeitree.exe

=
=

(=

= = L lly

=

=

=
ol fuo)

=

=

=
=
(=

1]

=

5 b 5 kally?

=

=
= 5 S

=

=

=

(=

=

.'jj i
ARMIN
ARHIN
ARHIN
ARMIN
ARHIN
ARHIN
ARNIN
ARHIN
ARHIN
ARHIN
ARMIN
ARMIN
ARHIN
ARHIN
ARMIN
ARHIN
ARHIN
ARNIN
ARHIN
ARHIN
ARHIN
ARMIN
ARHIN
ARHIN
ARHIN
ARMIN
ARMIN
ARHIN
ARNIN
ARMIN
ARHIN
NED
N 0

A
0
0
(0
4
L
Figure 1

This command window will be where the software is actually running from and will contain
debugging information, but the user interacts with the software via a web browser (although often
Stat-JR will be running locally on the user’s machine); this should open automatically after a few

seconds, as follows?:

2 Stat-JR works best with either Chrome or Firefox, so if the default browser on your machine is Internet
Explorer it is best to open a different browser and copy the html path to it; this will be something like
localhost:52228 (although the number will likely differ each time you run Stat-JR). You can change your default
browser via Settings in the Chrome menu, or via Options > General in the Firefox menu (both menus are

found in top-right of their respective browser windows).

Stat-JR:TREE

Welcome to Stat-JR 1.0.4

Thank you for using our software. Stat-JR has been developed by a team of programmers based at the Universities of Bristol and Southampton and funded
by several grants from the UK Economics and Social Science Research council (ESRC). For more information on the software, including downloadable
manuals, please visit our webpages.

If you use this software for your research, then please cite it as:

Charlton, C.M.J., Michaelides, D.T., Parker, R.M.A., Cameron, B., Szmaragd, C., Yang, H., Zhang, Z., Frazer, A.J., Goldstein, H., Jones, K., Leckie, G.,
Moreau, L. and Browne, W.J. (2016) Stat-JR version 1.0.4. Centre for Multilevel Modelling, University of Bristol & Electronics and Computer Science,
University of Southampton.

Figure 2

Now clicking on the Begin button will allow you to run the Stat-JR TREE software and the main
screen will look as follows:

Stat-JR:TREE Start again Dataset ~ Template ~ Regression1

© Response:

© Explanatory variables:

school
student
normexam
cons
standirt
girl
schgend
avslrt
schav
vrband

© Current input string: {}

© Command: RunStatJR(template="Regression1’, dataset="tutorial', invars = {}, estoptions = {})

Figure 3

The TREE interface allows the user to try out one template at a time, pairing it with one dataset, and
you can see at the top of the screen pull-down menus headed Dataset and Template, and the names
of the template and dataset currently selected by default (tutorial and Regression1). These pull-
down menus allow you to change the template and dataset you are using (and also to view, edit and
summarise the current dataset).

Below the black bar, in the central area of the window, you can see some of the inputs required for
the currently selected template (Regression1), namely the Response and Explanatory variables, and

you can further see that you are being offered variables from the default dataset (the tutorial
dataset) as possible values for some of these inputs.

1.3 Using your own dataset
Below we will be working with one of the sample datasets provided with the Stat-JR package (one
which you may be familiar with from MLwiN, namely the tutorial dataset). However, you might like
to use your own dataset in certain sections (or try out both). The remainder of this section details
how to import your dataset; if you don’t have your own dataset, you can move onto Section 1.4.

Stat-JR works with datasets saved in Stata format, i.e. with a .dta extension. It looks for these in
the...\datasets folder of the Stat-JR install, and also in a folder saved, by default, under your user
name, e.g. C:\Users\YourName\.statjr\datasets (you can change the path via Settings in the black
bar at the top of the browser window in the TREE interface).

1.3.1 If your dataset is already in .dta format
If your dataset is already in .dta format (see below), then you can upload it, in TREE, via (i) Dataset >
Upload (menu options in the black bar at the top of the browser window), which will upload it into
the temporary memory cache, or by (ii) saving your dataset in one of the datasets folders (as
discussed above), and then selecting Debug > Reload datasets (again, accessible via the black bar at
the top of the browser window).

In the case of option (i), the dataset will be available for use in the current session, but you then
need to download it (as a .dta file) via Dataset > Download (e.g. saving it into the
C:\Stat/R\datasets or C:\Users\YourName\.statjr\datasets folders) for use in the future sessions too.
In the case of option (ii), the dataset will be available in future sessions since it has been saved in
one of the folders in which Stat-JR searches for datasets on start-up.

1.3.2 If your dataset is in .txt format
If, instead, you have your dataset saved as a .txt file, you can use Stat-JR's LoadTextFile template to
save it into the temporary memory cache (the template LoadTextFileMoreOptions allows the user to
specify more particulars, and can also handle string variables).

This dataset will be available for use in the current session, but you then need to download it (as
a .dta file) via Dataset > Download (e.g. saving it into the C:\Stat/R\datasets or
C:\Users\YourName\.statjr\datasets folders) for use in the future sessions too.

1.3.3 Converting your dataset to .dta format
Via the procedure described in Section 1.3.2 (and downloading), Stat-JR will save your .txt dataset as
a .dta file, but you can also create .dta files via Stata, MLwiN and R (e.g. the foreign package in R).

1.4 Viewing the dataset
You can select your dataset of choice via Dataset > Choose, remembering to press the Use button
once you have selected it from the list.

Once the dataset is selected, if we click on the Dataset menu and click on View we will get a second
tab in our browser as shown:

Stat-JR:TREE

Dataset name: tutorial |E Unload Duplicate Download

Data Summary Add variable Delete variable Edit data label Edit value labels
] school student normexam cons standlrt girl schgend avsirt schav vrband

1 a 1 1 0.261324 1 0.619059 1 mixedsch 0.166175 mid vb1 \:I
2 m} 1 2 0.134067 1 0.205802 1 mixedsch 0.166175 mid vb2 1
3]} 1 3 -1.72388 1 -1.36458 0 mixedsch 0.166175 mid vb3

- a 1 4 0.967586 1 0.205802 1 mixedsch 0.166175 mid vb2

5 a 1 5 0.544341 1 0.371105 1 mixedsch 0.166175 mid vb2

6 o 1 6 1.7349 1 2.18944 0 mixedsch 0.166175 mid vb1

7 a 1 7 1.03961 1 -1.11662 0 mixedsch 0.166175 mid vb3

8 a 1 8 -0.129085 1 -1.03397 0 mixedsch 0.166175 mid vb2

9 a 1 9 -0.939378 1 -0.538061 1 mixedsch 0.166175 mid vb2

10 o 1 10 -1.21949 1 -1.44723 0 mixedsch 0.166175 mid vb3

11 a 1 11 2.40869 1 2.43739 0 mixedsch 0.166175 mid vb1

12 a 1 12 0.610729 1 2.10679 0 mixedsch 0.166175 mid vb1

i3 =] 1 13 -1.83669 1 0.040499 0 mixedsch 0.166175 mid vb2

14 o 1 14 -0.129085 1 1.19762 0 mixedsch 0.166175 mid vb1

15] 1 15 2.20312 1 2.52004 0 mixedsch 0.166175 mid vbi1

16 a 1 16 1.24053 1 1.11497 1 mixedsch 0.166175 mid vb1

17 =] 1 17 1.7349 1 1.03232 1 mixedsch 0.166175 mid vb1

18 o 1 18 1.31014 1 0.784362 0 mixedsch 0.166175 mid vb1

Figure 4

You can see the top few rows of the tutorial dataset, together with several tabs one could then click
on. Clicking on Summary, for example, produces the following:

Stat-JR:TREE

Dataset name: tutorial E

Unload Duplicate Download

Data Summary Add variable Delete variable Edit data label Edit value labels

Name Count Missing Min Max Mean Std Description Value Labels
school 4059 0 1 65 31.0066518847 18.9368110726 School ID
student 4059 0 1 198 38.6999260902 30.2606908983 Student ID
normexam 4059 0 -3.66607 3.66609 -0.000113912741¢ 0.998821 Age 16 exam score (normalised)
cons 4059 0 1 1 1.0 0.0 Constant.
standlrt 4059 0 -2.93495 3.01595 0.0018102547619! 0.993102 Age 11 exam score (standardised)
girl 4059 0 0 1 0.60014781966 0.489867751763 Girl
schgend 4059 0O 1 3 1.80487804878 0.914079654538 School gender schgend
avslrt 4059 0 -0.75596 0.637656 0.0018102471949! 0.314831 School average LRT score
schav 4059 0O 1 3 2.12712490761 0.652926315528 School average LRT score (3 categories) schav
vrband 4059 0 1 3 1.84306479428 0.630784592987 Age 11 verbal reasoning level vrband

Page 1 of 1 View 1 - 10 of 10‘
Figure 5

10

This gives us, for each of our ten columns in the tutorial dataset, some basic statistics including the
minimum, maximum, mean and standard deviation. In fact one of the first things one might do when
presented with a dataset might be to produce summary statistics. The summary statistics we’ve just
viewed are not actually produced via a template: this dataset summary table is just an in-house
widget the TREE interface has to assist users with their exploratory data analysis. However, various
summary statistics can be produced via templates, and we will do this ourselves as a means of
illustrating both the TREE and workflow interfaces to Stat-JR.

Click on the first tab in the browser to return to the screen with the Regression1 inputs showing. If
you now choose the Template menu and click on Choose, a new window will appear that contains a
list of templates (and a cloud of key terms to help pare down the list to those most relevant).

Scroll down and select AverageAndCorrelation from the list and the screen will look as follows:

Change template
1-Level 2-Level Alternative MCMC methods aML Averages Binomial
Categorical predictors Complementary log-log Complex level 1 Correlation
CustomC Data manipulation Diagnostics €Stat GenStat_model
gretl_model JAGS Logit MATLAB_script Minitab_model MLwiN_IGLS
MLWIN_MCMC MLwiN_seript MLwiN:point & click Model
Multiple membership Multivariate response N-Level Negative binomial Normal
Octave_script OpenBUGS Ordered multinomial Orthogonal parameterisation
Plots Poisson Population ecology Predictions Probit Python_PyMC
Python_script R_gm R_INLA R_Ime4 R MASS R_MCMCglmm
R_MCMCpack R_mgev R_RStan R_script R_scriptMCMC R:comments
Random slopes Recapture Reference category SABRE SAS_model
Saving and Loading SPSS_model Standard deviation Stata_model
Summary stats Unordered multinomial WIinBUGS [reset]
AverageAndCorrelation
BarChart
BoxPlot
BoxPlotGroup
Calculate g
CapRecap
CaterpillarPloto5
CaterpillarPlotSD
Choose
Generate
' Histoaram
WLiName: AverageAndCorrelation
Description: Choose to either calculate mean averages and standard deviations, or
correlations, for selected variables.
Close

If we next click on Use then the main screen will reappear, but this time asking for the inputs specific
to this template. We can fill these in as follows (Operation: averages; Variables: normexam, girl; or
variables from your own dataset if not using tutorial):

n

Figure 6

11

Stat-JR:TREE Start a) et te v AverageAndCorrelation Ready (1s)

Operation:

averages

Variables:

school
student
cons
standirt
schgend
avsirt
schav
vrband

normexam
girl
© Current input string: {}

© Command: RunStatJR(template="AverageAndCorrelation’, dataset="tutorial’, invars = {}, estoptions = {})

Figure 7

Here we have selected averages (as opposed to calculating correlations) and chosen two variables to
work out averages for. If we then click on Next to confirm the inputs and Run to run the template,
the screen will look as follows:

12

AverageAndCorrelation Ready (1s)

Operation:

averages remove

Variables:

normexam,girl remove

Download Add to ebook

@ Current input string: {'vars'": ‘normexam,girl', 'op" 'averages'}

© Command: RunStatJR(template="AverageAndCorrelation’, dataset="tutorial’, invars = {'vars": 'normexam,girl’, 'op":
'averages'}, estoptions = {})

script.py |+| Popout

import numpy

import numpy.ma

import EStat

from EStat.Templating import *

tabout = TabularOutput()
if op == 'averages':
tabout.column_headings = ['name', ‘count®, 'mean", 'sd']

Figure 8

At the bottom of the screen there is a results pane which displays whatever output object is selected
in the pull-down list just above it. Here we see the Python script (script.py) that has been run to
execute the template. If instead we pick the object table from the pull-down list of outputs then the
screen looks as follows:

AverageAndCorrelation Ready (1s)

Download Add to ebook

© Current input string: {'vars': 'normexam,girl', 'op': 'averages'}

© Command: RunStatJR(template='AverageAndCorrelation’, dataset="tutorial’, invars = {'vars": 'normexam,girl', 'op":
‘averages'}, estoptions = {})

table ~| Popout
name count mean sd
normexam 4059 -0.000113912741654 0.998821
girl 4059 0.60014781966 0.489867751763

Figure 9

So here we have done something really rather simple which is to execute a template that has taken
the two variables we chose and worked out their means and standard deviations; these should
correspond to those we have already seen in the Dataset Summary screen we looked at earlier.

13

We will shortly use this template in the workflow version of Stat-JR to create a workflow that
performs the same averaging operation. For this we need to pay attention to the names of the
inputs, which you can see in the grey Current input string® box and again in the Command box below
(which is how one would run this template with these inputs in the Python command driven version
of Stat-JR).

As this implies, the templates are written such that the input questions asked of the user in the
browser window (in this example, Operation and Variables) might be different to the name the
template actually assigns to those input objects in the background (in this example, op and vars,
respectively). This simply allows the input questions posed of the user to be more expansive than
the underlying assigned names, which may be shorter to spare the coder’s fingers and allow for
coding efficiency. We’ll have a look at the template itself in a moment to illustrate how this
distinction is realised in its code.

So using TREE is a useful way to test out a template and find the names of the inputs it requires, and
the names of the output objects too (via the pull-down list above the results pane); i.e. we now
know:

o The name of the template: AverageAndCorrelation
e The inputs it requires:
o op, which we assigned the value averages
o vars, which we assigned the value normexam, girl
e The name of the template’s output most relevant to us: table

As well as gleaning a template’s required inputs by running the template in TREE, however, you can
also retrieve that information by looking at the code in the template file itself. In the Stat-JR
directory from which you ran TREE, you will see there is a subdirectory called templates. In this
subdirectory there will be a Python file for each template; for example AverageAndCorrelation.py
contains the Python code for the template we’ve just run. If you open this file you will see the
Python code as shown below:

Copyright (c) 2013, University of Bristol and University of Southampton.
from EStat.Templating import Template
class TemplateAverages (Template) :

'Choose to either calculate mean averages and standard deviations, or correlations, for
selected variables.'

__version = '1.0.0'
tags = ['Summary stats', 'Correlation', 'Averages', 'Standard deviation']
engines = ['Python script']
inputs = """
op = Text('Operation: ', ['averages',6 'correlation'])
vars = DataMatrix ('Variables: ')
T
pythonscript = '"'

3 The input string allows the user to specify all the inputs directly, via the Set Inputs option in the Template
pull down list, without having to point-and-click through the list as we have done. If you click on Template >
Set Inputs you will see this input string reproduced in the Input string box; clicking on the Use button
populates the inputs with these values, which obviously will have no effect here, but it would if you first
changed a value, or indeed used the inputs from a previously-run template execution, as selected from the
History box above.

14

import numpy

import numpy.ma

import EStat

from EStat.Templating import *

tabout = TabularOutput ()

if op == 'averages':
tabout.column headings = ['name', 'count', 'mean',6 'sd']
for i in range (0, len(vars)):
var = datafile.variables[vars[i]]['data']

tabout.add row(vars[i], [len(var), var.mean(), var.std()])

if op == 'correlation':
invars = numpy.ma.row stack([datafile.variables[var]['data'] for var in vars])
corrs = numpy.corrcoef (invars)
tabout.column headings = ['name']
for j in range (0, len(vars)):
tabout.column headings.append(vars[j])

for i in range (0, len(vars)):
row = []
for j in range (0, len(vars)):
row.append (corrs[i, j])
tabout.add row(vars[i], row)

outputs|['table'] = tabout

Here you can see that the template code is structured such that it includes an inputs section where
you can see both the prompts asked of the user (Operation and Variables) and, importantly, the
names the template assigns to the values provided by the user to those prompts (op and vars,
respectively; all highlighted in yellow); i.e. the latter names are the same as those appearing in the
Current input string box in TREE. You can also see why we were offered a choice of averages or
correlation as values for op, since these are coded as the options to be presented to the user.

Below that you will find a section of the code called pythonscript; this contains the Python code
executed once the inputs defined in the section above have all been completed (i.e. had values
assigned to them) by the user (you can see that the objects op and vars are used in this section, so
the template cannot run to completion unless the user has provided values for them). On the last
line of this section you can see the output name of interest (table; again highlighted in yellow),
which is one of the outputs which appeared in TREE.

So either of these methods (via TREE, and via the template code itself) can be used to uncover the
information needed by a workflow in order for it to execute the operation we have just performed in
TREE. Having gleaned this information, we could ‘manually’ start building up such a workflow from
scratch in the LEAF (workflow) interface, but TREE can help us make a start by providing blocks
corresponding to our choice of input values, dataset and template. Back in the browser window you
will see a Make workflow button just below where you specified the inputs, above the Current input
string grey box. If you press this button a box will open entitled Save history. If the template
execution described above is the only one you’ve conducted in the current Stat-JR session then the
Only include last run box can remain unticked (otherwise tick as appropriate if you have run other
template executions beforehand).

Press the Workflow button; you now have a few options with regard to the choice of directory in
which to save it. You can simply choose any directory of your choice and then request LEAF upload it
from wherever you have saved it, or you can save it into one of the two directories in which LEAF
automatically looks for workflows. By default these two directories are (a) a folder under your user

15

name, e.g. C:\Users\YourName\.statjr\workflows, and (b) a folder under the Stat-JR install, e.g.
C:\StatJR\workflows*. To complicate matters a little further, workflows need to be saved in a
subdirectory of these root folders to be automatically accessible from LEAF: e.g. if the workflow you
are saving is called my_workflow.xml, then:

C:\Users\YourName\.statjr\workflows\my_workflow.xml|
C:\Stat/R\workflows\my_workflow.xml|

...won’t work (i.e. your workflow will not be automatically accessible from LEAF), whereas:
C:\Users\YourName\.statjr\workflows\My new workflows\my_workflow.xml|
C:\Stat/R\workflows\My new workflows \my_workflow.xml|

..will work (i.e. your workflow will appear be automatically accessible from LEAF, and will appear
under “My new workflows”).

1.5 Opening Stat-JR:LEAF
We will now open LEAF: the workflow interface to Stat-JR; you can open this via All programs >
Centre for Multilevel Modelling > StatJR - LEAF. This will fire-up another command window which
will contain debugging commands and another web browser window for the workflow version of
Stat-JR, as shown below:

Stat-JR:LEAF

Selected
block

Control
Logic
Math
Lists Change
Text

Hypothesis

Data Preparation

Data Exploration

Models

Post-process

Input

Qutput

Variables

Procedures

Cther

Devel

Figure 10

Stat-JR’s LEAF system is still using Python as the code in the background but the web interface is
using a program called Blockly (developed by Google; https://developers.google.com/blockly/;
https://blockly-games.appspot.com/); this is a visual programming system that involves using blocks
to represent operations, and has been used by a variety of applications as an aid to help people
learn to code.

We will first open the workflow we have just made in TREE. Depending on where you saved it you
can either do this via the Upload link in the black bar at the top of the LEAF interface, or —if you

4 The distinction between these folders is that workflows saved in the Stat-JR install directory (e.g.
C:\StatJR\workflows) will (usually) be available to all users, whereas those saved under your own user name
(e.g. C:\Users\YourName\.statjr\workflows) will be available just to you.

16

https://developers.google.com/blockly/
https://blockly-games.appspot.com/

have saved it to one of the directories in which LEAF automatically looks for workflows on start-up —
via the Workflows pull-down list.> Note that, whichever method you choose, you are asked to make
a choice as to whether you would like to (Up)Load or Import the workflow.

If you (Up)Load a workflow, this will clear any workflow currently displayed in the LEAF interface,
replacing it by the workflow you are bringing in.

If instead you choose to Import a workflow, this will keep the workflow currently displayed in the
LEAF interface and bring the imported workflow into the same workspace (you may need to move
blocks around to see them both). This can be useful if you want to add blocks from one to the other.

Having opened the workflow we saved in TREE, our screen will look as follows (to make things a little
clearer we’ve increased the size of the blocks here by pressing the + button just above the bin
symbol towards the bottom-right corner):

I Control Selected
I Logic block
| Math
I Lists Change
I Text .
Hypothesis Select dataset | 66
l Data Preparation
Data Exploration Set Input [€€ s »
l Models
| Postprocess Setlnput (¢ EP»” = ¢ ”
Input
I ostpui A1 0 AverageAndCorrelation 2
| Variables
I Procedures
I Other
Devel
Figure 11

These blocks represent our earlier choices in the TREE interface as a workflow, and we could have
instead constructed it by choosing blocks from the menu on the left-hand side and dragging them
into the central area.

First we have a Start block, whose simple purpose is to indicate the start of the workflow (you will
find this in the Control menu). Then we have a Select dataset block (Data Preparation menu), with a
text block (Text menu) attached to the right of it indicating we wish to select the tutorial dataset.
Next we have two Set Input blocks (Models menu) which specify that the inputs “vars” and “op”
have the values “normexam,girl” and “averages”, respectively. As we saw earlier, “vars” and “op”
are the inputs for which the AverageAndCorrelation template needs values in order to run to
completion. Finally we have a Template block (Devel menu) with a text block to the right of it
indicating we wish to run the AverageAndCorrelation template.

If you press the Run button, towards the top right-hand corner, a new tab will open in the browser,
and after a short time the following content will appear:

5 NB If you have saved it to one of these folders during a session of LEAF, then you can refresh the list
accessible via the Workflows pull-down by pressing Debug > Reload workflows.

17

Stat-JR:LEAF

Results

Block 1 DatasetSelect(dataset=tutorial)

Block 2 Setlnput(vars=normexam,qirl)

-

Block 3 Setlnput(op=averages)

Block 4 TemplateExecution(template=AverageAndCorrelation)

N
Provenance

Re-edit Save to Ebook

Validate | Translate into | json | | xml | provn || turtle | trig = svg
Show Prov J | Show Bindings

Figure 12

The current output from workflows is a little crude: essentially we get a list starting with “Block 1”
and numbered through to “Block 4”, corresponding to the four blocks (counting vertically,
downstream from the Start block) in the workflow. If we click on the pull-down list just below Block
4 (the Template block) we can see the outputs from the template execution; e.g. selecting table
displays the output we saw earlier in the TREE interface, containing selected summary statistics for
the variables normexam and girl.

Returning to the browser tab containing the workflow blocks, we can request that this table is
displayed automatically by using a Show block from the Output menu. We need to do this manually
as the Make workflow tool in the TREE interface currently does not have the facility to specify which
output to show. So, click on Output in the left-hand menu to find the Show block:

18

Selected

I Control
|
|
|

Lists Change

g

Hypothesis
Data Preparation
Data Exploration Select dataset | €€ ”
Models
Post-process =LA vars 220 e normexam,girl [
| input Setlnput [«ERY»” = | averages |- | _averages |21
- w
| Variables LGl EICME 0 AverageAndCorrelation
Procedures
Other
Devel
Figure 13

Having located the Show block, place your cursor over it and, holding down the left mouse button,
drag it into the central workflow area. You will see there is a groove into which it can fit under the
Template block: if you attach it, it should join to it with a satisfying clicking noise (if your speakers

are on), and visually ‘snap’ into place to look as follows:

Control Selected
B block:
Logic
Math !
Lists Change

Text

Hypothesis

Data Preparation

Data Exploration Select dataset f (19 ”»
Models N

Post-process Set Input [€€ = T normexam
Input
Qutput

Variables
Procedures

Other Template [l 1 AverageAndCorrelation |-

Devel

Sel Input [¢ [T »? " averages .

Figure 14

Here you can see, in a hollow towards the right of the Show block, a faint ‘shadow block’: this is a
prompt, or placeholder, to save the user pulling in a block separately from the palette of blocks on

19

the left-hand side. It’s not actually an active block until we decide to type something in it, so let’s go
ahead and type the output we want to display, table, as follows:

I Control E;'::‘Ed
Logic
I Mmath
I Lists Change
| Text
Hypothesis
I Data Preparation ~
I Data Exploration Select dataset | “”
| Modeis ~ ' . ;
| Post-process Set Input (14 » = 13 »
I Input . - .
| output ' 1 1
I \Veriables Setlnput | Y ?»? = 111 b}
l Procedures . : .
I oter IG g EICHME 1 AverageAndCorrelation |2
Devel -
Figure 15

At this point it would be good to save our modified workflow, so click on Save and specify a name
(we will name it after this section of the manual, and choose section1_05.xml) thus:

Save Workflow

Filename section1_5.xml

Figure 16

You will be asked for a directory, so store this file somewhere you know where to find it!

If you press Run, a separate tab will again open, but this time displaying the table towards the end:

20

Stat-JR:LEAF

Results

Block 1 DatasetSelect(dataset=tutorial)

Block 2 Setlnput(vars=normexam,girl)

Block 3 Setlnput(op=averages)

Block 4 TemplateExecution(template=AverageAndCorrelation)

Block 5 OutputObject(table)

name count mean sd
normexam 4059 -0.000113907102736 09983821
girl 4059 060014781966 0.439868

Provenance

Re-edit Save to Ebook

Validate Translate into jsen | xml | provn | turtle || trig | svg
[Show Prov | I Show Bindings

Figure 17

1.6 Making our workflow interactive
As things stand we have what is effectively a log of what we did in TREE and for which there is no
interactivity. Next we will show how we can make the workflow interactive by asking the user which
variables they want to use to calculate the averages.

We will firstly do this rather crudely: click on the first tab to return to the workflow creation screen.
Next we will remove the Set Input block for “vars” from the workflow; there’s no need to delete it:
we can simply set it to one side of the workflow as shown below. The workflow system doesn’t
currently have a separate place to store fragments of workflow; however, only those blocks that are
contiguous with the Start block will be executed by the Run button, so effectively we’ve rendered
these inactive by removing them from the workflow stream: i.e. we’re simply storing them to the
side for now:

21

Selected
block

Control
Logic
Math
Lists Select dataset | Change
Text
Hypothesis

Xqpsz

-
Set Input & 113 op EEEE () 11 averages |/

Data Preparation ICLEICE [AverageAndCorrelation |-

Data Exploration
Models

Post-process
Input

Output Set Input [€€ » | = (13 ”»
Variables

Procedures

Other

Devel

Figure 18

This time, after we click on Run, two aspects of the output are notable. Firstly there is a statement at
the top indicating “Extra code ignored”. This simply means that it has detected the Set Input block
we removed from the workflow and set to one side. Secondly, we are prompted for the outstanding
input values the template needs before it can run to completion:

22

Extra code ignored.

Results

Block 1 DatasetSelect(dataset=tutorial)

Block 2 Setlnput(op=averages)

-

Block 3 TemplateExecution(template=AverageAndCorrelation)

-

Input for TemplateExecution(AverageAndCorrelation)

Variables: school

student
normexam
cons
standirt
girl
schgend
avsirt
schav
vrband

Figure 19

If we click on standlrt and schgend (or variables of your choice) and then Submit then the workflow
will execute and look as follows:

23

Stat-JR:LEAF

Results

Block 1 DatasetSelect(dataset=tutorial)

-

Block 2 Setlnput(op=averages)

-

Block 3 Setlnput(vars=standirt,schgend)

-

Block 4 TemplateExecution(template=AverageAndCorrelation)

Block 5 OutputObject(table)

name count mean Sd
standirt 4059 0.00181025476195 0.993102
schgend 4059 1.804873048783 0.914080
Provenance

Re-edit Save to Ebook

Validate |Translate into json | xml | provn | turtle | trig | svg

Show Prov | [Show Bindings

Figure 20

And thus we have created a workflow that will ask the user for variables (from the tutorial dataset,
in our example) and then produce their means and standard deviations.

1.7 Adding question blocks
If we want to change how we ask for an input —i.e. the prompt presented to the user — from within
the workflow (cf. changing the code in the template itself) then instead of removing the Set Input
block from the workflow, we can instead reinstate it but this time with the addition of a question
block. So, move the Set Input block back in, and remove the text block in which the input values
were ‘hard-wired’ (you can select it and press the Delete button on your keyboard, or right-click and
select ‘Delete Block’, or finally you can drag it to the bin in the bottom right corner - the bin will
open and if you let go of the mouse button it will swallow the blocks!)

24

Then, from the Input list of blocks select the Ask multiple variables® block from the list and drag it to
fill the hole we left in the Set Input block. You will see that the Ask multiple variables block has a
blank box in which you can type your question (truncated here, but we asked “Which variables do
you want to calculate an average of?”):

| control Selected block
| Logic
I Math Change
| usts
| Text Select dataset tutorial
Hypothesis 4 —_—
| Date Preparation Set Input SO SRR EBIEST Which variables do you want to calculate an aver...
I Data Exploration g
| Models Set Input averages
I Post-process :
| input Template AverageAndCorrelation
I Output :
I Variables
I Procedures
I Other

Devel

Figure 21

Running the workflow will then prompt the user with this question, as we see below:

Results

Input for QueryMultipleVariable()

Which variables do you want to calculate an average of ?: school i

student
normexam
cons
standlrt
girl
schgend
avsirt
schav
vrband

Figure 22

Here if we answer the question we will once again get output showing the means and standard
deviations for the selected variables. Let’s overwrite the workflow we saved earlier with this version,
so save it as section1_05.xml.

® We're using the Ask multiple variables block here as it allows the user to select more than one variable in
their answer; the Ask single variable block only allows the user to select one variable.

25

1.8 Plotting a histogram
We will now move on from working with the AverageAndCorrelation template and turn our
attention to trying a second template and placing it in a workflow. This will be another operation
one might do when beginning to look at a dataset, namely plotting a histogram of a variable to
assess the shape of its distribution.

We can go back to TREE to identify the template we will need. If you don’t still have TREE active you
will need to restart it. Once you’re back on the main TREE window, select the Template list and click
on Choose. If you select Plots in the cloud of terms, you will see the list reduces to those templates
which generate charts, including one called Histogram, which we can use.

Change template

1LevelMod 1-Level 2-Level 3-Level Alternative MCMC methods aML Averages Binomial CAR Categorical predictors
Causal Censored Changepoint Cluster analysis Gomplementary log-log Complexlevel 1 ConvergingC
Correlated classifications Cormelation CustomC Data manipulation Diagnostics eStat Factor analysis GenStat_model
gretl_model Informative priors Interactions JAGS Logit MATLAB_script MDS Measurement error Minitab_model
Missing data MIXREGLS Mixture MLwiN_IGLS MLwiN_MCMC MLwiN_script MLwiN:point & click Model
Multiple imputation Multiple membership Multivariate response N-Level Negative binomial Normal Octave_script
OpenBUGS Ordered multinomial QOrthogonal parameterisation PCA Plots Poisson Population ecology Prediction
Predictions Probit PSPP_model Python_PyMc Python_Script auiz R GARBayes R gim R_hgim R_INLA
R_Ime4 R_MCMCglmm R_MCMCpack R_mgcv R_nimble R_RStan R_script R_script_map R_scriptMCMC R:comments
Random slopes Recapture Record linkage Reference category ROC SABRE SAS_model Saving and Loading Selection
Simulation Spatial SPSS_model SPSS_script Standard deviation Stata_model Stata script Summary stats SuperMix
Survey Survival T Unordered multinomial VPG wf WinBUGS [reset]

HDITakeStub f WName: Histogram
Heatmap
Description: Produces a histogram from a column of data, with
HistogramBinOptional = the number of bins chosen by the user.
HistogramBinOptionalAndRange i
HistogramBinOptionalGrouped

HistSkew

HistskewRP

HistskewRPR

HistSuper

Figure 23

In an earlier section we chose to run our template of interest in TREE and then export a workflow
reflecting our choice of template, dataset and inputs via the Make workflow button. This time we’'ll
try a different method.

Returning to the LEAF interface, make sure you have saved the previous workflow we were working
on (section1_05). Then, delete the blocks specifically relating to our execution of the
AverageAndCorrelation template (so that’s the Set Input, Template and Show blocks) as shown
below:

26

Selected
block:

Control
Logic
Math
Lists -
Text Select dataset | ¢ ”»
Hypothesis

Data Preparation

Data Exploration

Models

Post-process

Input

Output

Variables

Procedures

Other

Devel

Change

Figure 24

As an aside — whilst we’ve got this small set of blocks —it’s worth noting that one of the features of
using Blockly to realise Stat-JR’s workflow system is that many of the syntactical rules are inherent in
the shape of the blocks, and their readiness to fit together. As you can see, the Select dataset block
has a slot on its right-hand side, like the side of a jigsaw piece. As you might imagine, this can only
take another block which is appropriately shaped to fit into that slot. However, it can’t take any such
block: for example if you were to try to replace the current text block with a not block (from the
Logic menu), you’ll see it resists, like trying to join like poles of two magnets:

Selected
block:

Control
Logic

Math

Lists

Text
Hypothesis
Data Preparation Select dataset
Data Exploration
Models
Post-process
Input

Output
Variables
Procedures
Other

Devel

Su9l

. tutorial | Change

Figure 25

Clearly, this is the wrong sort of block (we can just delete it, as were only trying it out to prove a
point!) In this instance, of course, the shadow block is suggesting an appropriate choice of block: a
“text’ block, which is exactly what we had anyway, so we can just re-attach our “tutorial” text block,
and we’re back where we were.

27

Next we'll add a Template block indicating we wish to run the Histogram template we identified in
TREE; to do this, pull in a Template block from the Devel menu on the left-hand side (alternatively
we could, of course, have edited the Template block we just deleted) and write Histogram in the text
block attached to the right of it, as shown below:

Selected
block:

I Control
I Logic

| watn

I Lists Change
I Text

Hypothesis

Data Preparation

Data Exploration Select dataset | ¢ “

Models Template Histogram
Post-process

Input
QOutput
Variables
Procedures
Other
Devel

Figure 26

Now, if we press Run, it will prompt us for the inputs the template needs. In this example we’ve
chosen to plot the variable normexam in a histogram with 15 bins:

Results

Block 1 DatasetSelect(dataset=tutorial)

Block 2 TemplateExecution(template=Histogram)

Input for TemplateExecution(Histogram)

Values: normexam \:

Number of bins: 15

Figure 27

28

Once you have pressed the Submit button, you will see that a final block appears (Block 4) pertaining
to the template execution; from the pull-down underneath it select histogram.svg:

Stat-JR:LEAF

Results

Block 1 DatasetSelect(dataset=tutorial)
Block 2 Setlnput(bins=15)

Block 3 Setlnput(vals=normexam)

Block 4 TemplateExecution(template=Histogram)

histogram.svg |=

800 T T T

700

600 |

500

400 |

300

200

100

~4 -3 -2 -1 0 1 2 3 4
normexam

Provenance

Re-edit Save to Ebook

Validate Translate into json | xml @ provn | turtle | trig svg

Show Prov j I Show Bindings

Figure 28

29

So, we’ve been prompted for the input values the Histogram template needs, and have identified
the relevant output object (histogram.svg). If we now press the Re-edit button, towards the bottom-
left of the screen, we will see that a workflow appears containing the Histogram template’s inputs
(bins and vals) and the values we just assigned to them (15 and normexam, respectively). What this
workflow doesn’t have is the output object (it’s currently not possible to add that to a workflow via
the Re-edit button), so let’s add that ourselves by pulling in a Show block from the left-hand menu:

| contral ae‘elf_led
I Logic ock
I wmath
I st Select dataset | Change
I Text
. T o= oo |

Hypothesis Setinput [« I » = «EH”»
I Data Preparation L_— |
| Data Exploration Setinput SEEEIE 22 = e N Cll 22
I Models | I
I Postprocess Template [" Histogram |-/
| Input
I output histogram.svg
| Variables
I Procedures
I Other

Devel
Figure 29

Now, if you Run this workflow, you see that the plot appears towards the bottom of the output.

Save this workflow as section1_08.xml.

1.9 Connecting up the operations
We have now created two workflows and an obvious next step is to join them together; to do this
we can import the earlier workflow we produced and then append them. With the last workflow we
constructed (section1_08.xml) still on the screen, select Upload from the black bar at the top, and
navigate to the workflow we earlier saved as section1_05.xml. Having selected it and pressed Open,
next choose Import file when prompted: this will bring that workflow into the same workspace as
the current workflow (rather than first clearing the workspace).

The two workflows may appear alongside each other, or perhaps one may be overlaying the other; if
the latter you can just move one aside so you can clearly see them both:

30

Control Selected block

Logic 4439297V
Math Change
Lists

| Text
Hypothesis
Data Preparation Select dataset | &6 [GIE]) 2

Data Exploration Set Input (| ¢¢ (I 9 =1 «g@»
odes st vont BT - WD
Post-process Sl 5 ¢ EmEED

Input I ECE T Histogram |2

Select dataset tutorial
Set Input = I ERETELESS Which variables do you want to calculate an aver.

Set Input averages

Template AverageAndCorrelation
Output Show histogram_svg
Variables i, °
Procedures
Other
Devel
Figure 30

We now need to append the blocks pertaining to the histogram below those generating our
summary statistics of interest; remember we only need one Start block and one Select dataset block
(since both template executions use the same dataset):

Control Selected
. block:
Logic
d43g2q0f7

N.Iath Select dataset tutorial

Lists - Change
I Text Set Input vars = ST EREERIEST Which variables do you want to calculate an aver...

Hypothesis

Data Preparation

) Set Input = averages
Data Exploration

Models Template AverageAndCorrelation
Post-process
Output

. e
Variables Setlnput [¢« R = [¢ ”»
Procedures ———

Other SEELETEE vals BEH S normexam [0

Devel
Template (6€ ”»

Show histogram.svg

Figure 31

If we press Run, and then answer the question when prompted (here we have chosen just
normexam) we will see that both operations are done thus:

31

Stat-JR:LEAF

Block 6 OutputObject(table)

name count mean sd

normexam 4059 -0.000113907102736 0.988821

Block 7 Setinput(bins=15)

Block 8 Setlnput(vals=normexam)

—

Block 9 TemplateExecution(template=Histogram)

-

Block 10 OutputObject(histogram.svg)

800 T r T

700

600

R0nk

Figure 32

1.10 Using variables in a workflow
So we have now seen how we can join up two template executions in one workflow and it is easy to
continue this with further operations to create a logfile-style workflow, either by appending blocks in
LEAF or via the Make workflow button in TREE.

We have investigated how to ask questions to replace hard-wired inputs and add an element of
interoperability. A natural extension of this is to ask a question where the answer is shared by
several templates downstream. To do this we will introduce the concept of variables within a
workflow and illustrate it by constructing a workflow that asks for a single input and then produces
its average and its histogram.

You will see in the list to the left there is a menu entitled Variables and in this list is a red set <item>
to block. Grab a copy of this block and place it in your workflow under the Select dataset block (if
you place it in the approximate area and let go of the mouse button it should be added into the
workflow thus):

32

| control Selected
I Logc block
I Mo:m odlutdyme
| usts tutorial Change
I Text
Hypothesis
| Data Preparation AL EVELERES Which variables do you want to calculate an aver... }
| Data Exploration =
I Mocels Set Input averages
I Post-process
I input Template AverageAndCorrelation
| output
I Procedures N
e | T s
| Other Set Input (" ¢« G | = | “”}
Devel ~ - ‘ ‘
Set Input | &6 ”» 13 ”
LG Histogram
Show histogram.svg
Figure 33

By default the variable is called item but we can change this by clicking on the pull-down arrow to
the side of it and selecting New variable... A window appears where we can enter a name; we will
choose response:

Mew variable name:

response

OK] ’ Cancel

Figure 34

Clicking on OK will select response as our variable name. We now need to assign it a value (in this

case the answer to a question), and so from the Input list select Ask single variable and move it to
the right of response. We can then add the question text (“What is your variable of interest?”) as

shown below:

33

I Control Selected
I Logic block:
I Math
| usts Select dataset tutorial Change
I et set e ST (EREELIEE What is your variable of interest?
Hypothesis -
| Data Preparation Set Input = L0 ERELERIEST Which variables do you want to calculate an aver... }
| Data Exploration g =
I Models Set Input
I Post-process
I mnput Template
] output
I Procedures N
_—
| other Set Input (¢« I | =
Devel ~ ‘

Setinput | ¢ Q73 . normexam |-

L Histogram B2

Show histogram.svg

Figure 35

This has created a variable (called response), the value of which will be whatever the user chooses
when prompted by the question “What is your variable of interest?” However, before running this
workflow, we first need to slot this variable (response) into places in the workflow where it is to be
used (as the values for inputs vars and vals, for example). Have a go at doing this yourself (you'll
need a new type of block from this list on the left). Note that, as well as pulling multiple instances of
the same block in from the left-hand menu, if you right-click on a block you can choose Duplicate
from the resulting menu and a copy of the block appears (alternatively you can select the block(s)
you wish to duplicate and press Ctrl-C then Ctrl-V to copy and paste). The completed workflow looks
as follows:

Control Selected
s block:
ogic JrOwmkewwns
Math y .
Lists Select dataset tutorial
Text set e L B ERETELEE What is your variable of interest? |
Hypothesis . Set Input “ = averages
Data Preparation .
Data Exploration Set Input =
Models e —

Template AverageAndCorrelation

Post-process

Output
Variables Set Input =
Procedures
Other Set Input 15
Devel Template Histogram
Show histogram.svg
Figure 36

34

Hopefully you managed to find the block you needed.” We can now save this workflow as
section1_10.xml before clicking on the Run button to run the workflow. In our example we’ve
chosen avsirt in answer to the question:

Stat-JRILEAF

Block 6 TemplateExecution(template=AverageAndCorrelation)

Block 7 OutputObject(table)

name count mean sd

awslrt 4055 0001810247 15485 0.314831
Block 8 Setinput(bins=15)

Block 9 Setinput({vals=avsIrt)

Block 10 TemplateExecution(template=Histogram)

-

Block 11 OutputObject(histogram svg)

700

awslrt

Figure 37

7 Look under the Variables list. Once you’ve chosen the correct block, you can change the name away from
item by selecting response from the drop-down list in the block.

35

Here we see the mean and then a histogram for the avsirt variable; i.e. it’s taken our answer and
used it as input for two template executions.

1.11 Running a statistical regression model and showing predictions
We will now move on to actually fitting a statistical model in Stat-JR. We will continue our approach
of adding to our current workflow. We have so far seen how we can put together a sequence of
operations in one workflow but up to now outputs from one template execution have not yet been
used as inputs for the next template execution. We will remedy that by illustrating how to create
predictions for our regression model based on the model fit.

We will begin by returning to TREE to fit a model using Stat-JR’s built-in eStat MCMC engine. This
time we’re going to export the template executions we make in TREE as a workflow. We don’t want
to export earlier template executions, so it’s probably easier to open a new TREE session and work
with that.?

To do this we will use the Regression1 template to fit a simple regression. The Regressionl template
requires the user to include a constant in their list of predictors if they want to fit an intercept. As it
happens, the tutorial dataset we have been using has a constant of ones (the variable cons) which
we could use, but since you may be using your own dataset which might not have a constant already
in it, we’ll show how to add a constant to the dataset using the template Generate.

Here, having selected the template Generate in TREE, we request our constant of ones as follows:

Stat-JR:TREE Start again Dataset~ tutorial Template ~ Generate Ready (0s) Settings About Debug +|
Output column name: intercept remove
Type of number to generate: Constant remove
Value 1 remove

Name of output dataset: my_dataset remove

@ Current input string: {'type': 'Constant, 'outdata’: 'my_dataset, 'outcol” intercept’, ‘value': '1}

Figure 38

On pressing Run we create a variable consisting solely of ones called intercept in a new dataset
called my_dataset (which is exactly the same as our original dataset, but with the new variable
appended to the end). Selecting this modified dataset (my_dataset) from the list of datasets, and
Regression1 from the list of templates, we can now include this new variable as one of our
predictors, setting up the inputs as follows:

8 If you want to close the current TREE session to avoid possible confusion, then remember to close the
browser tabs related your current TREE session and the associated command line window: this will be the one
with TREE in the title bar. An alternative, of course, would be to work within the current TREE session, and
then just delete any superfluous blocks we export as part of our workflow.

36

Stat-JR:TREE

Regression1

@ Response: normexam remove
@ Explanatory variables: intercept,standirt remove
Number of chains: 3 remove
Random Seed: 1 remove

Length of burnin: 500 remove
@ Number of iterations: 2000 remove
Thinning: 1 remove
Use default algorithm settings: Yes remove
Generate prediction dataset: Yes remove
Use default starting values: Yes remove
© Name of output results: out

@ Current input string: {burnin’: '500, 'defaultsv: 'Yes', 'thinning’: *1', 'nchains’: '3', 'defaultalg’: 'Yes', ‘iterations’: '2000', 'y": 'normexam’, 'x: ‘intercept,standirt', 'seed": '1’, 'makepred’: 'Yes'}

Figure 39

Here we are using the default settings for our MCMC estimation procedure®, although we answer
Yes to the prompt Generate a prediction dataset. Clicking on Next and Run will run the model and
choosing ModelResults gives a summary of the model we have fitted thus:

Regression1

Ready (19s)

Results
Parameters:
parameter mean sd ESS variable
tau 154160995074 0.0340065114631 5799
beta_0 -0.00127835184871 0.0125770014327 5960 intercept
beta_1 0.594959154334 0.012745358164 6129 standlrt
sigma2 0.648987956705 0.0143068971085 5784
sigma 0.805548947358 0.00887975878981 5789
deviance 9763.48848832 2.43302399601 6061
Model:
Statistic Value
Dbar 9763.48843832
D|thetabar) 9760.50978897
pD 2.97869934714
DIC 9766.46718766
Figure 40

% This particular template can only use this estimation engine, although many others can use a wide variety of

third-party software, including R, Stata, MLwiN, etc.

37

Now click on the Make workflow button and then, within the resulting box, the Workflow button,
and save it somewhere you can access from within LEAF.

Return to the LEAF interface and then Upload the workflow you have just saved during your TREE
session, again choosing to Import file so that your current workflow remains in the workspace.
Again, once you have done so, one workflow might be partially overlaying the other, so if so just
move one aside to clearly see them both:

I Control is::md
Logic .
Math Select dataset tutorial 1
Lists S response v NG TG ERETELEN What is your variable of interest? Change
Toxt Set Input =
Hypothesis Set Input op = averages Select dataset 11 ”»

Data Preparation

Data Exploration Template AverageAndCorrelation Set Input [¢ » | =«)
Models show oETNN -
Set Input | ¢ IS my_dataset [

Post-process 1

Setlnput | <« [»? = <« §&»” n -

| input : L1o) SetInput (" ¢ » ="« ”»

AL TENTY vals BEEAEEA rosponse + |
Output . = £ SetInput | &€ » | = [»
Variables UIEElS - Histogram |
EEEEEs P £ Template EE ”»
Other shov LG Select dataset 6 »

Devel Setinput | ¢ (WY »? = (»
SetInput (| ¢ (EEMED»? = | « »
Set Input (¢ » = TwEm» |
SetInput | ¢ [NHEY?? = [«“EH»
Set Input (¢ » = «ugn

SetInput | ¢ GEEWERY»? | = [« 3 »

SELRTEEY terations EXMISNERCY 2000 |2
Setlnput |« |- e ? |
ST CPEEE T intercept standrt 1)
Setinput (' «EZT)» | = « gD |

SetInput | ¢ T | - | “RE |
Template (SEIRENECEENYSA

Figure 41

We can attach this imported workflow (after first discarding the Start and Select dataset blocks at
the top of it) to our existing one, as follows:

38

Control Selected
) block:

Logic

Math .

Lists Select dataset tutorial —

Text set R 6 ERETEDI Y Wihat IS your variable of interest? Jf

Hypothesis set Input oKD [response - |

Data Preparation
Data Exploration
Models

Set Input = averages

Template AverageAndCorrelation

cosiprocess [t

e SetInput (" ¢ D » |

Qutput :

Variables Set Input (¢¢ [EE) »?

Procedures N Histogram |2

Other Show histogram_svg

Devel :
SIS type 120 =11 Constant |
ST outdata ko) | = |14 my dataset Lo

-
SEURTEE outcol EMENEN T infercept |2
Setinput (' «EEIMY» = «gh» |
I Generate |
Select dataset | €A E GRS 22
SetInput (' ¢« (MM »? | = | « G » |
SETET defaultsy Bt 1 Yes LA
SHUITETT outdata B2 out |2
ST thinning Ll L 1 B0
Setinput ("« EEEGD » | = (| « @2
Figure 42

We're almost there, but there are a couple of changes we first need to make. Firstly, it is better
practice within the LEAF system to explicitly extract the modified dataset we need from the relevant
template execution, rather than rely on it being there in the global cache of datasets. So, remove the
Text block to the right of the Select dataset block midway down the workflow (the one containing
the text “my_dataset”), and replace it with a Retrieve block (found in the Other menu). The Retrieve
block retrieves a named object from whatever stage of the workflow execution is cited in the block.
Thus we have to give the object name we want (my_dataset)'® and tell it which block to take this
from. We perform the latter by referencing a unique ID code each block is assigned — it’s the black
Template block we need to reference (the one to which “Generate” is appended). If you select this
block you will see the corresponding reference ID appears in the “Selected block” box towards the
top right-hand side of the screen. In the example in the screenshot this is 16, but the unique block
IDs don’t always take this form: sometimes they are assigned long alphanumeric IDs (e.g.
pofzefaivngbosOn3x7h) — it just depends on the history of the workflow (e.g. whether it was created

10 Note we could type this in the gap to the right of “Output”, as we have done in the screenshot, or if you still
have the text block we just removed you can attach it to the end of the Retrieve block, to the same effect.

39

via the Re-edit button, etc.) You will also note that we’ve copied this block ID and pasted it in our
Retrieve block (between “Block” and “Output”), as shown below:

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Output

Variables
Procedures
Other

Devel

Figure 43

Set Input

Set Input

Template (66 ”»

' - ' > Selected
4 outcol |24 | =1 {1 intercept |2/ block:
“Em» = «@» °

Change

Select dataset | Retrieve from Block s} Output [EIERE:

Set Input
Set Input
Set Input
Set Input
Set Input
Set Input
éet Input

Set Input

burnin .
L defaultsy | = L Yes | '
| outdata |- | =

 thinning |

' nchains .|| —
| defaultalg |21 =
 iterations | | =

(1500 120

out 2|

T B2

T-ER

1 Yes |
* 2000 | '

=1 1% normexam |2

Actually, let’s change this block ID to something more meaningful: making sure the relevant
Template block is still highlighted, type “Generate_constant” in the “Selected block” box and press
the Change button. You'll see that the reference to it in the Retrieve block is also automatically

modified to reflect this change:

1 outdata |-
[outcol AR
' value |2 IS

3 burnin L2
1 defaultsv - | —
1 outdata |-} | —

1 thinning L1
1 nchains |./1}
% defaultalg 20 5

Selected

" my_dataset | block:

- intercept |1
“E Y

Selectdataset | Retrieve {ES3# from Block [eEEECNenS e Output my_datasett

500 |1 |
2 Yes)|
out 4|
“«@» |
«@» |
L Yes ||

I Control Set Input
I Logic
I M Set Input
I st
I Text Set Input
Hypothesi
ypeness ' I L Generate |2
I Data Preparation
I Data Exploration
I Models Set Input
I Post-process
I input Set Input
I Qutput
I Variables Set Input
I Procedures e .
| other et Inpu
Devel Set Input
Set Input
Figure 44

Note our choice of last in the Retrieve block simply tells the workflow to take the version of the
object created the last time this block was executed (this becomes important within loops where the
same block is called more than once).

40

Next, rather than hard-wiring our choice of response (y) variable in the subsequent model fit, we

need to feed in the variable (response) defined above, so the value for the input “y” to the variable
response as shown below:

I Control = Selected
.] 1 block:

= g S0 terations o0 L1 2000 |- =
a]]

I Lists 1 Change
Hypothesis - : :

I ﬁZ:EZT::;‘,f: Set Input | ¢ 37 1 intercept,standlirt |

I Models : . : .

I Post-process Setlnput “m” = “’,

I Input 2 : .

| oo Setinput (|« GEOTT? | = || « (D »
Procedures |

| o T Regressioni .
Devel

Figure 45

Finally, append a Show block to the end of the workflow requesting the output ModelResults be
displayed:

I Control 1 . Selected
I Logi SetInput (¢ §7 » blck
I wmath . : : - : w2zl
I ;‘S:: SEEeie s x a1 intercept, standlrt 2 e
e | I
Hypothesis - ’ .
| Data Preparation Setlnput “@” = “’,
I Data Exploration . - .' :
s SSLS e makepred ol] Yes |
| oo el Regression’ |-
I Variables
|
|

Procedures W ModelResults
Other

Devel

Figure 46

We will Save this workflow as section1_11.xml and then Run it (in this example choosing normexam
as our variable of interest). Note that it will take a little longer for this workflow to finish its
execution, and nothing will appear until the workflow has finished. If you scroll down to the bottom
of the window after running it, it will look as follows:

41

Stat-JR:LEAF

Results
Parameters:
parameter mean
tau 1.541610
beta_0 -0.001278
beta_1 0.594959
sigma2 0.648988
sigma 0.805549
deviance 9763.488488
Model:
Statistic
Dbar
D(thetabar)
pD
DIC

Figure 47

sd

0.034007

0.012577

0.012745

0.014307

0.008880

2.433024

ESS

5799

5960

6129

5784

5789

6061

Value

9763.488488

9760.509789

2.978699

9766.467188

variable

intercept

standirt

So we see the results that we saw within TREE, from our model fit, appearing in the final block of the

output.

As we saw earlier, the Show block is not the only way to see outputs; we can view any of the output
objects from the regression model fit via the pull-down list under the block above (Block 27 in this
example) which represents the Regression1 template run. For example if we choose equation.tex we

get the following output:

42

Stat-JR:LEAF

Block 29 TemplateExecution(template=Regression1)

equation.tex |E

normexam; ~ N(M,az)
pi = Bointercept; + Bistandlrt;
Boox 1
froc
T ~ I'(0.001, 0.001)
o =1/t

Block 30 OutputObject(ModelResults)

Results
Parameters:
parameter mean sd ESS variable
tau 1.541610 0.034007 5799
Figure 48

The only difference with this and the Show block is that the pull-down list is interactive, but it can
only display one object at a time (whereas you could append several Show blocks on top of each
other).

1.12 Adding predictions to the workflow

Going back to the TREE interface, since we selected the option to generate a prediction dataset we
can look at the predictions graphically. The Regression1 template has created a dataset object called
prediction_datafile which we can select from the list of datasets in TREE (it will be in darker font to
indicate it has been generated by the software and is loaded in the current session). Having chosen
this as our dataset in TREE (it should appear in the black bar at the top once you have selected it) we
can perform operations on it — e.g. plot predictions — by choosing an appropriate template (we will
choose XYPlot) via the usual means.

Having chosen XYPlot, we can now set Y values to plot both the prediction and the original response
variable (pred_full and normexam, in our example) and the X values to be our predictor variable of
interest (standirt, in this example). Clicking on Next and Run will give the following (if we select
graphxy.svg from the list):

43

© Cunrent npes string (xaas™ SAOHT, ‘yaun' ‘poed_Adl Aormexany)
Set
ot’."*"’ and RnSLAURtempine=XXYPIOr . datasetr'predcion datafle’ mvars = ["caa’ ‘SanalT yaos” peed_ Nl normecam esvptons =)
rag .
L
pred_full
normexam
3
2

X values

Oowntos? A4 O ctook

Figure 49

Here we see the data in green and the regression line in blue.

So, to add this to the workflow we will need to change dataset (to the prediction_datafile generated
by the template). Let’s return to the workflow interface and add the following to our existing
workflow; note that we’ve changed the Block ID of the Template block for the Regression1 template
to “Simple_linear_regression” (by selecting the relevant Template block and changing its block ID via
the “Selected block” box towards the top right-hand corner):

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

QOutput
Variables
Procedures
Other

Devel

Figure 50

Selected

Set Input defaultalg block:

:
:
Set Input defaultsv =

Set Input outdata =

Template Regression1
Show ModelResults

Select dataset | Retrieve (EEED from Block Simple_linear_regressianmpredictinn_daiaﬁler

Simple_|

Set Input makepred
Change

44

As before, then, we change the dataset name via the Select dataset block, appending a Retrieve
block to the end of it, and specifying in that block that we want to use the output object called
prediction_datafile from the relevant template execution (the black Template block which runs the
Regressionl template).

For the graph, the input names and output objects are those we saw in TREE (although we can
create these dynamically, based on the user’s earlier choices: see Figure 125 in the Appendix for an
example of how to do so) — we will leave these to you to add (e.g. see Section 1.4; remember to
choose the corresponding template too; if in doubt, see Figure 125 in the Appendix). Save the
resulting workflow as section1_12.xm/ and then click on Run to see what happens (in our example
we again choose normexam when prompted). At the end of the run output you will see the
prediction plot thus:

pred_full
normexam

-3 -2 -1 0 1 2 3 4
standirt

Figure 51

So here we have demonstrated how we can link together output (via an outputted dataset) from
one template as input for another template.

1.13 What have we covered?
From this first session you should now be comfortable with using Stat-JR TREE: selecting a dataset
and template, entering inputs, running it and inspecting the outputs. We've investigated how to use
this information (the dataset, template, inputs and outputs of interest) to replicate the same
operations in the Stat-JR workflow system, either doing so manually in LEAF, via TREE’s Make
workflow button, or via the Re-edit button in LEAF. In doing so we have covered:

e how to find and append blocks;

45

e duplicating and deleting blocks;

e saving workflows;

e including questions in workflows;

e using the same variable more than once in a workflow;

e retrieving output from one template execution for use in a later template execution;
e the functional relevance of the Start block.

1.14 What’s next?

In the next section we will build on what we have covered and think about creating more interactive,
generalised workflows for fitting regression models and also introduce the idea of a statistical
analysis assistant. In doing so, we will also explore more of the workflow system’s functionality.

46

Section 2 A statistical analysis assistant for
conducting regression type models

2.1 Overview

In the first section we introduced Stat-JR’s TREE interface and its workflow system. By the end of
that section we had become familiar with blocks within a workflow that allow us to ask questions of
the user, to perform some statistical operations via Stat-JR’s template system, to output objects and
to use outputs from one operation as inputs for another operation.

In this second section we will introduce further blocks that will allow us to influence the route
through a workflow, and also additional templates that contain some textual output conditional on
the results. As well as covering the workflow system in more detail, our parallel aim in this section is
to think more about what people do when they want to fit models to a continuous response variable
when they have an independent sample from the population, i.e. we are focussing here on linear
modelling and the associated operations that go with it. As part of the eBook research grant we
would like to create an automated system (a statistical analysis assistant) that will take a user’s
dataset and by asking him/her questions perform an appropriate statistical analysis of it (or at least
offer the user useful help and guidance along the way). This section will make a modest start in
building one; we’ll be some distance from achieving a generalisable statistical analysis assistant, but
it will facilitate discussion about some of the possibilities and challenges one might encounter when
trying to undertake such an endeavour, and it will also allow us to investigate further functionality in
the workflow system.

2.2 Questions and a histogram

We will begin by simply creating a workflow that asks for some inputs and produces one plot. We
have already encountered blocks that ask for a single and multiple variable input, and we will use
those again here, but also introduce a third question block which asks for a dataset (this block is
available from the Input menu). So either start up Stat-JR:LEAF afresh or click on the Clear button to
clear the current workflow, and set up the workflow using the palette of blocks accessible from the
left-hand menu, as follows:

Selected

Control

B block:
Logic
Math
L Select dataset | .GGLEIEEE Please choose the dataset to be used LS
Text
Hypothesis set LSRR EAEIETILY Please choose your response variable

Data Preparation

set ' preds + REEEETE) T SRETELEST Please choose your list of candidate predictor v...
Data Exploration .

Models

Post-process Set Input
Input
Output
Variables

Template Histogram

Show histogram.svg
Procedures

Other
Devel

Figure 52

47

So here we have constructed blocks which first ask the user which dataset they would like to use,
and then asks them to nominate their response and predictor variables (truncated here) of interest
(assigning these to the variables resp and preds, respectively). We then plug in their response
variable as the values (vals) the Histogram template will plot (with 15 bins), and finally run the
template and show the graph (histogram.svg). You'll notice that whilst we ask the user to nominate
their predictor variables, we don’t actually use these yet, but will do soon.

Save this workflow as section2_02.xml and then Run it. In this example we are still using the tutorial
dataset but you may like to try a different dataset yourself. Here is an example of the output:

Stat-JR:LEAF

Block 10 OutputObject(histogram.svg)

800 T T T T T T

700

600

500

400

300

200

100

0 |
-4 -3 -2 -1 0 1 2 3 4
normexam

Figure 53

In this example we have chosen normexam as our response from the tutorial dataset and hence a
histogram of normexam is returned.

2.3 Introducing the “for-do” block

We also asked for predictor variables, so we can do something with those as well: for example let’s
plot the response against each of them in turn. Here we face a situation we haven’t previously
encountered in that there are (likely to be) multiple predictors, so we need to introduce a new block
which performs the same operation for each one. Such blocks are found in the Control list on the
left hand side, and in this example the for-do block is a good choice:

48

Input Template Histogram

QOutput
Variables
Procedures
Other
Devel

Show histogram.svg

for each item (@ in list

I Control Selected
) block:
I Logic
I Math = nnadx
SRR EIEES SRR SR BT Please choose the dataset to be used
I Lists - . . . Change
I Text (5% resp * RN] 5 Sl ENELER) Please choose your response variable
Hypothesis set_ preds + REEECIE TSNS Please choose your list of candidate predictor v...
| Data Preparation Set et 1
I Data Exploration
| Models Set Input
I Post-process

Figure 54

The for-do block has slots for two attached blocks (or sets of blocks) — the uppermost slot (to the
right of “...list”) requires a list containing elements to loop through, whilst the other slot, beneath,
requires blocks defining what to do to each element of that list. The variable i will contain the value
from the list at each pass through the for loop, and so can be used as an index to reference within
the instructions.™

So what we want to do is to loop through the variables the user nominates as predictors, and for
each one plot it against the user-nominated response variable (we can use the XYPlot template we
used in the last section), showing the relevant output (graph) for each. Have a go at doing this
yourself, and then compare it to our worked example in Figure 126 of the Appendix.

How did you get on? Save your workflow as section2_03.xm/, and then Run it. In our example,
below, we have chosen normexam as our response and the predictors standirt and avsirt:

11 conventionally, i (perhaps an abbreviation of index, iteration, or integer) is used as the default counter in a
control structure such as this, but you can change it to whatever name you like (although some care is needed
if names have been used elsewhere).

49

Figure 55

b o B 0 R
ER A =
4

-4

o M
‘\‘k *

R
*

-3 -2 -1 a 1
standlirt

Block 15 Setlnput(yaxis=normexam)

[=]

Block 16 Setlnput(xaxis=avslrt)

-]

Block 17 TemplateExecution{template=xY Plot)

-

Block 18 OutputObject(graphxy.svg)

4 T T T T T T
3t .
; ®
2| rE::: g
% 4 s
1 I = & B
= § i
= 4
2 X8 %
-1 _)* g9 it § ;]
#
k4 g* %
* ®
=21 %x E
*
3|
-‘—4(}.3 —6.5 —6.4 -0.2 0.0 0.2 ﬂ'l.fl- CIjE

50

0.8

[it ﬂﬂrmﬁnﬁm.

[A nmme:am'

Here we see that both of the predictor variables we chose appear to have a positive relationship
with the response (normexam), with avsirt plotted as discrete bands of points as this variable is
constant for each school in our two level dataset.

2.4 Univariable models — creating an intercept

So we’ve started to visually investigate relationships in these plots and, as well as perhaps giving the
user the option of different plot types (or of different settings for the plots we’ve used) we might
want to allow them to explore cross-tabulations, or to examine the effect of transforming variables
on their plotted distributions and relationships, and so on. We don’t have time to explore all these
options in this short example, other than to acknowledge they’re all viable choices at this stage of an
exploratory data analysis (and there may be many more options we have left out too; e.g. what
would you do?) Instead, we’ll jump into some models and run analyses with each predictor in turn,
in what epidemiologists call univariable models. We can use the Regressionl template that we used
in the first section. You will recall that it requires an intercept to be explicitly added as a constant in
the list of predictors, and so as before we can generate a constant again, using the Generate
template.

As we found in Section 1, we will need a few blocks to generate a constant: four for the inputs, one
to run the template, and another to extract the output of interest (the dataset with the new variable
in it). In fact, to help further organise our workflow we can nest these into a grouping block (see the
green block with group description written on it in the Other list on the left-hand side). This block
helps us to visually structure our workflow (identifying contiguous blocks all concerned with the
same function), can be collapsed for brevity (by right-clicking on the grouping block and selecting
Collapse Block), and allows easy duplication of all the blocks inside it (just by right-clicking the
grouping block and choosing Duplicate), although it can’t be called from elsewhere in the workflow
(unlike procedures, which can; we will investigate these in Section 3).

Here we’ve nested our completed Set Input blocks and a black (run) Template block all inside a
grouping block, together with a Retrieve block. As you can see, we have given the grouping block an
appropriate name (“Generate intercept”) to describe the function of the blocks within. Instead of
plugging the Retrieve block straight into a Select Dataset block, we assign it to a variable (which we
happen to call modeldata), and then, outside the grouping block, we plug this into the Select dataset
block. We've also changed the default block ID for the black Template block associated with the
Generate template to “Generate_constant” and used this to reference that block in the Retrieve
block. Here we constructed this section of the workflow afresh, but as we’ve seen in earlier sections
we could instead have (a) imported another workflow and taken our blocks of interest from that,
deleting the rest (e.g. section1_11, which we made earlier: if you do this make sure you select
Import, otherwise you will over-write the current workflow), (b) run the Generate template in TREE
and imported the resulting workflow, or (c) used the Re-edit button to populate input values for the
Generate template.

51

Selected

Control
- oW histogram svg block:
Math for each item (5B in list = [EEENE
Lists do =
S —
Hypothesis Set Input 4 EN | - |
Data Preparation
Data Exploration Template
Models Show graphxy.svg
Post-process [
I input Generate intercept
Output
Variables Set Input outcol intercept
Procedures I
Set Input outdata = my_dataset
. Template Generate
\ 5ol CIEREEN to | Refrieve (ZSH flom Block pufzeTaivnqhus[)nﬁxThmy_dataselI:
Select dataset | HulLERETER
Figure 56

Here we’ve collapsed the block, helping to simplify what is becoming a busy workflow:

I control Selected
I - block:
ogic
I wath S EEEE S EEIEECE Please choose the dataset to be used
I s 58 resp v el G ENELEEY Please choose your response variable Change
I Text e
o .
B oee S preds + RGBS ITTWERELELESY Please choose your list of candidate predictor v...
| Data Preparation Set Input =
I Data Exploration
I Modess Set Input
Post+
I SR Template Histogram
I Input 4
| output Show histogram.svg
Variabl T
= p::edz; for each item ([in list ‘
I otner % | setinput o ST - XD
Devel I
Template XYPlot
Show graphxy.svg
L —
Generate intercept Set Inpu...
CEIEEGEICEC Sl modeldata +
Figure 57

In fact we can further add grouping blocks around those generating the histogram of the response
variable, and another around our for-do loop, as follows:

52

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Qutput

Variables
Procedures
Other

Devel

Figure 58

Selected

block:
LB EE GBI B Please choose the dataset to be used 290
=l resp ¢ REOERLETETL L EREELEE Please choose your response variable Change

SO preds + REREVACTE T CRETETEST Please choose your list of candidate predictor v...

response histogram

Set Input

7 Template Histogram

Show histogram.svg
—

response vs predictor scatterplots
- for each item [in list = EEEED

et TN - (0

Template

Show graphxy.svg
—

Generate intercept Set Inpu...

modeldata *

Select dataset

Collapsing those blocks effectively shows the workflow at a higher level of information:

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Qutput

Variables
Procedures
Other

Devel

Figure 59

Selected
block:
SEEERE S S B Please choose the dataset to be used
= resp ¢ BT EEETEL S Please choose your response variable Change

AT EVELES S Please choose your list of candidate predictor v...

set [0 1o
résponse histogram Set Inpu...
résponse vs predictor scatt..

Generate intercept Set Inpu...

modeldata *

Select dataset

To complete the operation we will use a block we haven’t yet investigated, namely the Summary
Statistics block available in the Data Exploration block list. This block will produce summary statistics
for the dataset and we can pull these out for display by adding a Show block for the “table” output,
as shown below. In fact, the Summary Statistics block hard-wires the execution of a template called
SummaryStats, with the inputs that template requires hardwired too (to include all the variables
contained in the current dataset); i.e. the same effect could be achieved by using Set input and
Template blocks, as we’ve done previously.

53

I Control Selected
I G block:
I il Select dataset tutorial
Lists o
I o Select dataset | , LEdiki e Please choose the dataset to be used
Hypothesis set LT U Please choose your response variable
| Data Preparation LN preds + RGN “ LS EREEDIEEE Please choose your list of candidate predictor v
I LaiE B arEEn response histogram Set Inpu...
Models e
I Post process r(isiponse \-IS predictor scatt..
I input Generate intercept Set Inpu...
I output Select dataset | (LR
I variables Summary Statistics
I Procedures
Devel
Figure 60

Running the workflow should still produce plots and finally the summary table thus (for tutorial):

Block 28 OutputObject(table)

name school student normexam cons standirt girl schgend avsirt schav vrband intercept
N 4059 4059 4059 4059 4059 4059 4059 4059 4059 4059 4059
mean 31.006652 38.699926 -0.000114 1.000000 0.001810 0.600148 1.804878 0.001810 2127125 1.843065 1.000000
sd 18936811 30.260691 0.998821 0.000000 0.993102 0.489868 0.914080 0.314831 0.652926 0.630785 0.000000
median 29.000000 33.000000 0.004322 1.000000 0.040499 1.000000 1.000000 -0.020198 2.000000 2.000000 1.000000
min 1 1 -3.66607 1 -2.93495 0 1 -0.75596 1 1 1.000000
max 65 188 3.66609 1 3.01585 1 3 0.637656 3 3 1.000000

2.5% 2.000000 2.000000 -1.962075 1.000000 -2.108439 0.000000 1.000000 -0.650231 1.000000 1.000000 1.000000

5% 4.000000 4.000000 -1.623730 1.000000 -1.703447 0.000000 1.000000 -0.649018 1.000000 1.000000 1.000000

50% 29.000000 33.000000 0.004322 1.000000 0.040499 1.000000 1.000000 -0.020198 2.000000 2.000000 1.000000

95% 62.000000 92.000000 1.661806 1.000000 1610877 1.000000 3.000000 0.441041 3.000000 3.000000 1.000000
97.5% 64.000000 114.550000 1.977107 1.000000 1.941483 1.000000 3.000000 0.635056 3.000000 3.000000 1.000000

IQR 33.000000 38.000000 1.378264 0.000000 1.239772 1.000000 2.000000 0.359866 1.000000 1.000000 0.000000

ESS 3 66 549 -2147483648 2130 163 63 18 22 2615 -2147483648

BD 15127929 676492 -2147483648 -2147483648 1887747528 109976 159871 -2147483648 107217 720 -2147483648

Figure 61

You will see that at the end we have the new column labelled intercept. (You may also notice that
the Summary Statistics block (via the SummaryStats template) produces a table with some rows
which are better suited to an MCMC chain (such as the ESS (effective sample size) and BD (Brooks-
Draper) diagnostics).

Save your workflow as section2_04.xml.

2.5 Univariable Models — running the models
We will next perform the actual model fitting by looping through the list of predictors. Note, in this
short example, we are assuming that all predictors will be treated as continuous rather than

54

categorical variables and thus be included in the model in their current form rather than as a series
of dummy variables. Recall that in the first section we fitted a regression model and so many of the
input blocks will be the same as we used there. To begin we will take the current workflow and bin
the last two blocks (for Summary Statistics). We will add a grouping block which we will label as
“univariate model fitting” thus:

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Output

Variables
Procedures
Other

Devel

Figure 62

Selected
block:

Slsl S Bl a I S E CE Sl Please choose the dataset to be used Change

S8 resp v NEERLS @G [ERENELIER Please choose your response variable

S8 preds v RGBS S T ERYETETI S Please choose your list of candidate predictor v....

rééponse histogram Set Inpu...

response vs predictor scatt...

éénerate intercept Set Inpu...

modeldata ~
univariate model fitting

Select dataset

We will now need to loop over the predictors and so we will add a for-do loop block inside the
grouping block and begin filling in the inputs required for a regression as shown below:

55

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Output
Variables
Procedures
Other

Devel

Figure 63

Selected
block:
Select dataset ‘ Sk Please choose the dataset to be used 29(
set to | Ask single variable
set to (| Ask T EREE ESY Please choose your list of candidate predictor v.... Change

response histogram Set Inpu...
response vs predictor scatt...
Generate intercept Set Inpu___

modeldata -

Select dataset

univariate model ltling

for each item [JEB) in list
do

Set Input

Set Input

Set Input defaultalg = Yes

X -

defaultsv

Set Input

Set Input

makepred

Set Input
—

modelchains

These inputs are just a reiteration of what we chose in the last section for this template, although we
need to add the y and x variables. For y we simply choose the resp variable nominated (by the user)
earlier in the workflow but for x we need to introduce a new block, namely the create list block
(available from the Lists menu to the left). We will use this block to create a list of names for the x
variables. Here you can reduce the number of items that the create list block expects by clicking on
the blue button in the create list block and dragging out one of the items from within the block as
illustrated below:

56

I Control I preds - RO S THER TR S Please choose your list of candidate predictor v... || Selected
i response histogram Set Inpu._... block:
I Logic .
response vs predictor scatt... ©2n
I Math Generate intercept Set Inpu...
I Lists Select dataset | [LEECRS Chang¢
I Text univariate model fitting
Hypothesis for each item [JE3 in list
. do =
| Data Preparation Sttt =
I Data Exploration Set Input = [(&) create listwith [&€ [[EEE 22
I Modeis = I
| Postprocess :
- o setnout oSN - WS
I Output
I Variables -
I ot =
Devel Set Input defaultalg =
Set Input defaultsv =
Set Input outdata modelchains
—
Figure 64

You'll see we are creating a list that includes the variable intercept and whatever is the current
predictor (as indexed by j) as we loop through the list. We next need to add the template block and
we will also add a Show block for the ModelResults thus:

57

T Selected
I Control S EER S S modeldata + block:
I Logic univariate model fitting
I Math for each item (B in list
Lists . = Change
do =
Set Input =
I e s Lreso
Hypothesis Set Input _ = | (3 create listwith | 66 [T
I Data Preparation m-
I Data Exploration | — '
et Inpu
I Modess - setinput o SEETTETONEN
I Post-process Set Input m =
Input |
I Output |
I Variables Set Input m
Procedures |
| other _
Devel Set Input defaultalg =
Set Input defaultsv =
Set Input outdata = modelchains
- Template Regression1
Show ModelResults
—
Figure 65

If we now save this workflow as section2_05.xm/ we can then run it. Note we will be fitting an MCMC
model for each predictor so it may take a while to run. Below are the last outputs for the tutorial
dataset with response normexam and predictors standlrt and girl.

58

Stat-JR:LEAF

Results
Parameters:
parameter mean sd ESs variable
tau 1.015308 0.022397 5795
beta_0 -0.140384 0.024397 1679 intercept
beta_1 0.233549 0.031327 1661 girl
sigma2 0.985402 0.021723 5780
sigma 0.992614 0.010042 5783
deviance 11458.672417 2.417203 3817
Model:
Statistic Value
Dbar 11458.672417
D(thetabar) 11455.702111
pD 2.9703086
DIC 11461.642723
Figure 66

Here we see the results for a model with just girl as the predictor (normexam is the response
variable), and higher up were the results for a model with standirt as the sole predictor instead. By
viewing the beta_1 parameters in the model fit with girl we can see that the mean estimate of its
effect is far larger than its standard deviation (sd) and so there is a significant effect of gender on
exam score.

2.6 Interrogating the outputs

It would be good to automate this description (of significance) or even simply to construct a table
from the model results that includes the significance of the predictors. Looking down the list of
outputted objects (e.g. via the pull-down list in the penultimate block of the workflow output
window), we can see that the model parameter estimates are also returned as a .dta file, with the
name modelparameters.dta, and so we can work with this dataset.

To do this we can add to the workflow within the for-do loop:

59

Selected

Control Select dataset | L LR block:
Logic univariate mode! fitting
Math “for each |tem (D in list |

Change

Lists
do

Hypothesis Setlnput n (%) create list with L L1 intercept |2
Data Preparation [m

Data Exploration

Models Set Input [rchains &
Post-process Set Input m

Set Input
Se:t Input
Set Input
S
Set Input
Sé.t Input

Set Input outdata

Input
QOutput
Variables

Procedures
Other
Devel

modelchains

Template Regression1

Show ModelResults

Eélect dataset | Retrieve last + Kol ={HE Simple_linear_regression Kellii+[l|{ modelparameters.dia

Figure 67

Here we’ve included another Retrieve statement, this time to pluck out the modelparameters.dta
dataset, and have changed the block ID for the Template block associated with the Regression1
template to “Simple_linear_regression”.

We will next append an additional column to this dataset that contains the ratio of the mean
estimate to its standard deviation which we will give the name zscore (since, for the fixed
parameters, this will have an approximate normal distribution). To do this we will use the Calculate
template which adds a variable to the working dataset based on an expression defined by the user.?

Going back to TREE (or opening it, if it is closed), your last execution may still be the model run via
the Regression1 template, but if not you can run one (the specifics of the model you fit don’t matter
so much here, we’re just running one to demonstrate use of the Calculate template in post-
processing the results). Having run a model, change the working dataset to modelparameters.dta,
and the template to Calculate. You'll see from the template description that the expression it
evaluates is based on numexpr syntax. numexpr is a Python package “for the fast evaluation of array
expressions elementwise” — there’s a hyperlink in the template description which takes you to a
supporting website describing the operators and functions it supports. We need to ensure that the z-
score is positive, so can use the abs function to return the absolute value of the expression mean/sd
(dividing the columns of interest from our selected dataset); our whole expression therefore is
abs(mean/sd). The screenshot below shows our inputs, and also the outputted dataset (which we’ve
chosen to call zscore_table) in the results pane at the bottom:

12 NB: there is also an in-built Calculate block in the workflow system which simply calls the Calculate
template, although it currently outputs a dataset with the name a which is perhaps a little opaque for the
user, so here we use the template directly instead.

60

modelparameters.dta Calculate Ready (1s)

Output column name: ZScore remove
Numeric expression abs(mean/sd) remove
Name of output dataset 2score_table remove

Download Add to ebook

© Current input string: {'expr": 'abs(mean/sd)’, ‘outdata’: ‘zscore_table', ‘outcol" ‘zscore’}

@ Command: RunStatJR(template="Calculate’, dataset="modelparameters.dta’, invars = {'expr" 'abs(mean/sd)’, 'outdata”. 'zscore_table', ‘outcol: 'zscore’}, estoptions = {})

zscore_table H Popout

variable ESS
1 5799.0
2 intercept 5960.0
3 standlrt 6129.0
4 5784.0
5 5789.0
6 6061.0
Figure 68

sd
0.0340065114631
0.0125770014327
0.012745358164
0.0143068971085
0.00887975878981
2.43302399601

parameter mean zscore
tau 1.54160995074 45.3327872933

beta 0 -0.00127835184871 0.101642021395

beta 1 0.594959154334 46.6804578324

sigmaz 0.648987956705 45.3618944613

sigma 0.805548947358 90.7174357351

deviance 9763.48848832 4012.90266941

So let’s now convert this into workflow blocks; of course we could save this as a workflow in TREE
and export, but given it involves just a few blocks it’s just as quick in this instance to assemble the

blocks ourselves in LEAF:

Workflows ~

Data Preparation

Input

Output
Variables Template
Procedures Show
Other fa
Devel

Figure 69

| Select dataset

Post-process Set Input

Set Input

aeraunsv

Selected

GEGEE last + Bielp:llEY S Simple_linear_regression NeNi+[1'§ modelparameters.dta
Data Exploration Set Input m -
Models

outdata

Control

Rt Sét Input outdata = modelchains

Lists Change
Text Template Regression1

Hypothesis Show

zscore

abs(mean/sd)

= zscore_table

Calculate

zscore_table

Press Run to check we’ve set this up correctly. Does the output make sense? In our example we
chose standirt, girl as our predictor variables; once it had been running for a few seconds it strangely
asked us to nominate our Response and Explanatory variables for the Regression1 template —
behaviour we weren’t expecting:

61

Block 57 TemplateExecution(template=Regression1)
Block 58 ForEach()
Input for TemplateExecution(Regression1)

© Response: parameter -

© Explanatory variables: parameter

mean
sd

ESS
variable

Figure 70

So it’s behaving as if it doesn’t have the inputs it needs to run the Regressionl template (hence it’s
asking the user for them). Let’s look back at the workflow; can you work out what might have
happened?

Selected
I control Select datasat bock
| togic
I wmatn for each item ([in list
I uists @ setmput o iENE - =2 Change
I mext setinput RN = © croatistwin ¢ & CITET0”
Hypothesis
I Data Preparation Sullnpul
| Data Exploration
I Modeis
I Postprocess “'"""‘m
I Input
I Qutput
l Variables
I Procedures
| Other |
Devel Set Input makepred
Set Input outdata

Regrassiont

expr abs(mean/sd) I

outdala 2score_table I

Calculate
Figure 71

Inspecting our workflow indicates that before the group of univariate model fitting blocks start, we
select our working dataset (modeldata): this is the dataset from which the inputs for the Regression1
template are to be drawn. However, within the model-fitting loop we change the working dataset
away from this one, and instead select one of the datasets outputted by the Regression1 template,
modelparameters.dta, as the working dataset to use when calculating the z-scores. When the loop
starts over with the second predictor variable, then (assuming the user has chosen >1 predictor), the

62

working dataset is modelparameters.dta, which has a whole different set of columns from the one
our inputs (as written by us) within the loop are expecting. Looking back at the workflow outputs
tab, this makes sense: it’s asking us to choose variables for the Response and Explanatory variables
which are from the outputted modelparameters.dta dataset, and further up we can see that it has
actually fitted one model successfully: when it first passed through the loop; the problems began
when it swept through for a second time.

Let’s remedy this by moving the Select dataset: modeldata blocks so that they appear within the
loop. That way, the working dataset will be changed to the one the Regression1 template inputs are
expecting each time the loop begins again:

| = ——

Control Selected

block:

Logic for each item KB in list | (CECCEE S
Rt do | Select datasel
Lists Set Input = —
Ted setinput fEERR = © createlistwitn (| ¢ CEEED »
Hypothesis —
Data Preparation
Set Input nchains = 3
Data Exploration P egn
Models s war

Post-process

Output |
\a’ari:hles | setoout oIV - oJEKNEN
Procedures
Other
Devel | Set Input
Set Input l
Template
| Select datasel | Retriove (ZEH from Block Output
Sel Input outcol = zscore
Set Input abs(mean/sd) I
Sel Input outdata zscore_table I
Template Calculate
h
Figure 72

Pressing Run this time results in the workflow working as anticipated, as the end of the outputs
window indicates:

Block 65 OutputObject(zscore_table)

parameter mean sd ESS wvariable zscore
1 tau 1.01530779531 0.0223966710742 5795.0 = 45.3329779209
2 beta_0 -0.140384374851 0.024397158694 1679.0 intercept 5.75412803645
3 beta_1 0.233549417316 0.0313266019613 1661.0 girl 7.45530643904
4 sigma2 0.985401953167 0.0217228903881 5780.0 = 45.3623774535
5 sigma 0.992613838282 0.0109417191326 5783.0 = 90.7182707083
6 deviance 11458.6724167 2.41720340611 3817.0 B 4740.46676739
N View 1 - 6 of 6

Block 66 ForEach()
Provenance

Re-edit Save to Ebook
Validate | Translate into json | xml provn | turtle | trig svg

[Show Prov] [Show Bindings

Figure 73

63

As all our ‘univariable’ models are just fitting the intercept and one predictor during each run
through the loop, then we know that the important number in the table indicating whether we have
a significant predictor is in row 3 of the last column. We can interrogate individual entries in a table
by extracting them into variables. We will do this here as indicated in the bottom of the workflow
below:

Control — Selected

Lo ! Set Input outdata modelchains block:

2 Template Regression1

Math Show ModelResults

Lists Fa Change
R ETESE I E T last + Rielul=|M{ Simple_linear_regression R&NHNE modelp .dta |l g

Text e

Hypothesis —

Data Preparation !_Se' g = abs(mean/sd)

Data Exploration ! S;l Input outdata zscore_fable
Models I Template Calculate
Post-process Show
Input | sel EZTER to | Extract
Qutput Table) RN last + BN Calculate_zscore Mo zscore_table
Variables Row
SrsrcalTes Column zscore
Other
Devel
Figure 74

So here we’ve defined an item called zscore as comprising the value of whatever is in row 3 of the
column headed “zscore” of the table we constructed with the z-scores in it (zscore_table).*®

We now want to make some form of decision based on the value of our zscore item and for the
purposes of this example we will do something simple, namely indicate in the output that the
predictor is significant if the zscore is greater than 1.96. We can do this by using some further new
blocks — an if block that is available from the Control block list, a light blue comparison block
available from the Logic block list and Comment blocks available from the Output block list.

We will begin by simply grabbing the three blocks and arranging thus:

13 NB: the blue block is retrieved from the Math block list, and the Extract block is from the Other block list.

64

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

OQutput

Variables
Procedures
Other

Devel

Figure 75

| set to | Extract

RN =T

Set Input outcol Selected
block:
Set Input outdata
Change

Template Calculate

Table GEGEES last « FielgNs|lie e Calculate_zscore ReNITE zscore_table

Row
Column zscore

90 | Gomment -

L.

By default, the if-do block can do something if the if statement is evaluated as true, but it isn’t giving
us the opportunity to state what we wish to happen if the if statement is evaluated as false.
However, we can modify the block to suit our requirements by clicking on the blue symbol on the if
block to expose structural changes one can make thus:

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Output

Variables
Procedures
Other

Devel

Figure 76

Set Input outcol zscore Selected
i block:
Set Input = abs(mean/sd) ~
| urQlz
Set Input outdata = zscore_table
Change

Template Calculate

Zscore
Ii.g\'f_(l .l (= -] ..

do I Comment -

If you drag the else into the if then we can add an alternative if the condition tested is evaluated as
false:

65

Selected

Control Set Input outcol = zscore
i I block:
Logic Set Input = abs(mean/sd) ol
ul

Math ' ‘
Set Input outdata = zscore_table

Lists Change
Template Calculate

Text

Hypothesis W _

Data Preparation

FEINETEN last ~ RiplgNE|hM Y Calculate_zscore mm’ zscore_table l
Models T zscore
Post-process @) | .' (= ‘

Input do
Comment
Comment N

Output
Variables

Data Exploration

Procedures
Other
Devel

Figure 77

As you do so you can see the if-do block turning into an if-do-else block. Clicking on the blue symbol
will return control to the main workflow and now we can fill in the gaps in the blocks. Firstly we need
to define our conditional statement as zscore > 1.96 by using an appropriate combination of blocks,
and then instruct the if-do-else block what to do when it returns ‘true’, and what to do when it
returns ‘false’. The Comment blocks are simply used to send a string to the output. We could use
these to simply say this variable is significant or not depending on the result of the evaluated
expression, but it’s helpful to the user if we include the predictor’s name as well; to do this we can
use the create text block to create a text string that contains the current predictor name used in this
iteration of the loop (remember to include a space at the end of “...variable ” and the start of “ does
not...”):

ZSCore_table
I Control Selected
I Logi set EEM to | Extract block:

galt Table EE S last + RiplnNEibid g Calculate_zscore Relliiviid zscore_table
I wMath _—
I Lists Column 2zsc0re Change
I Text
RS 1 The variable 2/
I Data Preparation
I Data Exploration 0 has a significant effect. |2
I Models i
I Post-process B CEER DRSS The variable £2) -
I Input L2
0 does not have a significant effect. 2]
I Output .
I Variables
I Procedures
| other
Devel
Figure 78

If we save this workflow as section2_06.xml and then run it we can see it in action. Here again | am
using the tutorial dataset with response normexam and predictors standirt and girl:

66

Stat-JR:LEAF

Block 68 OutputObject(zscore_table)

parameter mean sd ESS variable zscore
1 tau 1.01530779531 0.0223966710742 5795.0 = 45.3329779209
2 beta_0 -0.140384374851 0.024397158694 1679.0 intercept 5.75412803645
3 beta_1 0.233549417316 0.0313266019613 1661.0 girl 7.45530643904
4 sigma2 0985401953167 0.0217228903881 5780.0 - 45,3623774535
5 sigma 0.992613838282 0.0109417191326 5783.0 - 90.7182707083
6 deviance 11458.6724167 2.41720340611 3817.0 - 4740.46676739

View 1 - 6 of 6

Block 69 SetVariable(variable=zscore, value=7.45530643904)
Block 70 OutputComment()
The variable girl has a significant effect.

Figure 79

So here we see the textual output indicating that girl has a significant effect on normexam**. We can
use the if-do block to perform more advanced operations like running different templates depending
on the result of the evaluated statement, and we can also nest if statements to create more complex
structures too.

You should now hopefully have an idea of how, through conditional blocks and comment blocks, we
can produce a system that can give feedback and take the user through the workflow in different
ways.

2.7 Templates that do their own interrogation

We will finish this section by introducing a couple of templates that have some built-in interrogation
of their outputs. Firstly we will replace the Histogram template that we used towards the start of our
workflow with a template by the name of HistSkew which gives textual feedback about the shape of
the variable.

In addition, whilst we haven’t greatly dwelt on the fact that we are fitting our model using MCMC
estimation, we can pay our choice of method a little more attention here by checking whether we
have run our MCMC chains for long enough. Indeed, we have created a template called
MCMCExplanation which aims to do precisely that.

2.8 Checking for skewness

Let’s begin by replacing the current Histogram template in the workflow. If we continue from the
workflow as stands we will need to Expand the block entitled response histogram (to make life
easier we can also Collapse the univariate model fitting block). The workflow will then look as
follows:

14 Obviously this is quite a crude way of evaluating evidence for an effect (one would typically wish to look
beyond simply considering whether a test statistic has an associated p-value below 0.05 or not), but this
example nevertheless illustrates the functionality of the if-do-else block, using it to return conditional textual
output.

67

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Qutput

Variables
Procedures
Other

Devel

Figure 80

Selected
block:

=E S E e L S EIE S S Please choose the dataset to be used beie

S5l resp + RONESLETEST G EREEL SN Please choose your response variable Change

S5 preds + REREEISE TG SNEGELIES Please choose your list of candidate predictor v. ..

response histogram

Set Input

Template Histogram

histogram.svg

response vs predictor scatt...

Generate intercept Set Inpu...

univariate model fitting fo...

The HistSkew template actually has the same inputs as the Histogram template, so we only need to
change the name in the Template block and then add the additional outputs as follows:

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Output
Variables
Procedures
Other

Devel

Figure 81

Selected
block:

LR RS B S E L Please choose the dataset to be used Vime

set [EES to " Ask 0 LR Please choose your response variable Change
set O T ERETE S Please choose your list of candidate predictor v

response histogram

Set Input

Template HistSkew

Sron

show
| .
response vs predictor scatt...

erate intercept Set In

ate model fitting fo. ..

Of course, we could have discovered the names of the outputs we required by running the Histskew
template in TREE or LEAF, but for brevity we’ve done that for you. We’ve also detached (but not
deleted) the section of workflow downstream of the response histogram group of blocks; this is
simply so our outputs of interest are returned more quickly without having to first wait for all the
models to fit. Running this workflow we see the following outputs:

68

700}

600 -

500

400

300

200

100

-4 -3 -2 -1 0 1 2 3 4
normexam

Block 11 QutputObject(table)

name count skewness I score P value Minimum

norme xam 4059 0.003742 0.097510 0.922322 -3.66607

Block 12 OutputObject(skewtext)

Here the distribution is reasonably symmetric.

Figure 82

So the HistSkew template simply works out the skewness of the column of numbers (given in the
table along with its significance) and based on this statistic provides a textual output providing some
(hopefully appropriate) information about the distribution. We could use this in a statistical analysis
assistant to potentially suggest fitting a transformed response variable to make normality of the
residuals more likely if the data are very skewed (whilst remembering it is the residuals not the
response that is assumed normally distributed).

Attach the latter part of the workflow back onto the former part of it, and save it as section2_08.xml|
before continuing.

2.9 MCMC Explanation template

We will next add some extra blocks to the univariate model fitting group of blocks and so let’s
expand this group, and collapse the response histogram group. To provide feedback on the MCMC
chains, we need to select them from amongst the output of the Regression1 template and then feed
them into an appropriate operation. The Regressionl template produces an output object called
modelchains. To illustrate its structure we’ve selected it from the pull-down list of outputs after
running the workflow in the screenshot below:

69

Block 40 TemplateExecution(template=Regression1)

modelchains E‘

iteration chain

1 1
z 2 1
3 3 1
4 4 1
5 1
6 [1
7 7 1
8 & 1
) L] 1
0 10 1

1 1
2 12 1
3 13 1
4 14 1
5 15 1
6 1% 1
7 17 1
] 18 1
] 19 1
20 20 1
2 21 1
2 2 1
3 3 1
14 4 1
25 25 1
26 26 1
27 27 1

Figure 83

tau

1
1
1

48402569577
54223076933
5537328291
55805416608
54541084455
53813753843
54353085601
46376546004
51897351656
53740159027
59415446962

4881743501

54091080067
54808783055
46450616417
60420477835
54297066875

5269208456
4577821825
4628574438

57327031235
58818667452
55859113879
51298546424
54543587807
55992929573
52250312308

beta_0
- 0.00246726384374.
0.0261961226489
0.00226250596686
0.0102261324351
-0.00322714273158
-0.0211858142625
0.010825812477
-0.0284840520851
-0.0034536857684
0.014582088553
-0.010919268148
-0.000220928355074
- 0.00783326967825
0.00857047859577
0.0131921126686
0.0106405540122
- 0.00851374737921
-0.0117425695753
-0.0147891777584
- 0.00485430657023
0.00765276123%4
0.00653435053444
0.00565684211163
-0.000529367970113
-0.016748E962588
- 0.00124880336681
-0.0198215530917

beta_1

0.60360757455
0.585771314825
0.590442976215
0.596429239993
0.616244252782
0.591833781435
0.602497693189
0.593965620769
0.585725351804
0.595731448104
0.605922760041
0.576222577061
0.599113157106
0.585441245226
0.397331961787
0.620328384294
0.565672077558
0.595176118054

0.6D065025215
0.594361258133
0.591944314015
0.595271406204
0.607814622208
0.607BT1505114
0.603007699666
0.583358469347
0.5684445856132

sigmaZ

0.6T384277971
0.648411292048
0.643611936633

064182620975
0.64TOTTI207EZ
0.65013691884%
0.64T865247466
0683407996456
0658339325273
0.650448136261
0.627291783237
0.671964276183
0648966831544
0645958181599
0.682824029333
0.623361813589
0648100459887
0.654912754112
0.66T653778311

068359360937
0.635618680497
0629648504657
0641605084947
0660944881575
0.647066639382
0.641054695709
0656810514158

sigma

0.820879272311
0.805239959297
0.802254284272
0.801140568034
0804411039654
0.806310683824
0804900768707
0826681919759
0811381122083
0806503649627
0.792017539728
0.81973427169
0805584776137
0803715236635
0.826331670295
0.789532655176
0805046868128
0809266825041
0.817100837257
0.826797199663
0.797256972687
0.793504193219
0.£8010025459
08129851675
0.804404524T15
0.800658913464
0810438470334

deviance
9763.917213% -
9765.73123662
9760.82928039
9761.55852608
576332032882
976308492444
9761.7397 341
STT0. 51344147
5764 564TETE
9762.16451024
9764124448
9765.17949897
976083765031
5761 TOBITOB1
9767.10260372
976872325312
976618401377
9761.40037416
9T63.5396759
976615891832
9761.88138145
5762 TOITTM
976205085548
9762.24521564
976242484469
9761.62978772
5763 67914885 i

View 1 - 30 oF 6,0

As you can see, there is a column for each parameter, with rows corresponding to the value at each

iteration of each chain (chains 2 and 3 appear further down), so here we have our chains.

We will add some MCMC explanations after the model fit, so let’s insert some blocks under the
Show: ModelResults block, changing our working dataset to modelchains. We will run the template
MCMCExplanation which requires one input only (incol), namely an MCMC chain. The output we are

interested in is called memctext:

70

uziaunay

I Control | 3 Selected
I i Set Input outdata = modelchains
| usts ! - Change
I Text Template Regression
Hypothesis Show ModelResults
I Data Preparation | Select dataset || Retrieve from Block Cutput
I CEE [BEIEIET Set Input incol = beta_0
I wodels -
I Post-process Template MCMCExplanation
I Input Show memctext
l ot Set Input
I Variables
l Procedures I Template
| other Show
CE@ Set Input
Template MCMCExplanation
Show memctext
| Select dataset GETEES Jast « SGIEE 0 Simple_linear_regression (&NTNE modelparameters.dta |
Set Input = ZSCOre
Set Input = abs(mean/sd)
Set Input outdata . il o
Figure 84

So here we have changed the dataset (to modelchains) and then repeated three steps of setting the
incol input, running the MCMCExplanation template and showing the resulting object of interest
(memctext). We do this for the intercept (beta_0) the slope (beta_1) and the residual variance
(sigma2; as an exercise, perhaps at the end of the section, you may like to try converting this to a
loop). Save this workflow as section2_09.xml.

If we Run it you will see it creates lots of output, including the mcmctext object we have just added,
e.g.:

71

Block 78 OutputObject(mcmctext)

MCMC estimation methods are simulation based which means that rather than a point estimate (and accompanying
standard error) for each parameter they instead produce a (dependent) chain of values from the posterior distribution of the
parameter. In fact in Stat-JR several chains are run from differing starting values/ random number seeds and so for each
parameter we have several chains of values that can be combined to summarise the parameter. For parameter beta_0 we
can first ook at the posterior mean which has value -0.14 and standard deviation of the chain which has value 0.0244 and
plays the role of standard error for the parameter. We might also consider the posterior median which has value -0.14 as an
alternative if the distribution is not symmetric . Here the median is close to the mean as the posterior is reasonably
symmetric. We can use the quantiles of the distribution and so we see a 95% credible interval for beta_0 is -0.186 to
-0.0934. We can look at the 3 chains for the parameter beta_0Oand we can also look at kernel density plots (which are like
smoothed histograms) of the 3 chains on a single plot:

Parameter traces Kernel Density
0.00 16

kernel density
®

0.25

0
0 500 1000 1500 2000 -025 -020 -015 -010 -005 000
stored update parameter value

Due to the nature of MCMC algorithms updating parameters in separate steps there is some dependence in the parameter
chains produced. One way of investigating this is to look at auto-correlation functions (acf) for the chains. Essentially an acf
examines how correlated a chain of values is with a similar chain shifted by a number of iterations (the lag). \We can plot
such a function for a series of lags as shown below.

Lag
Here the acfvalue at lag 1 is p = 0.589 and as MCMC algorithms should produce chains resembling an auto-regressive
process of order 1 i.e. the value at the current iteration only depends on the last iteration, the value at lag 2 should be

Figure 85

Within this template we have written code to interrogate the chains that come out of the MCMC
algorithm, and have used the results to tailor output in the style of a short report. The hard work’s
done in the template here, and this is an alternative to coding such interrogations within a workflow,
albeit one which is somewhat less transparent since the user would need to go into the template
code if they wished to change what is written, or query the algorithms. We might also like to allow
the user to decide whether to run the chain for longer based on the diagnostics, and so this would
require interaction within the workflow.

2.10 What have we covered?
In this section we have made a tentative start to building a ‘statistical analysis assistant’, in doing so
encountering some new functionality, such as:

e grouping blocks;

e control structures, such as if-do blocks;

o modifying the functionality of blocks (e.g. changing if-do to if-do-else);
e selecting elements from tables;

e returning textual output from a workflow;

e investigating templates which have their own textual outputs.

In the third section we will return to teaching-focussed examples and show how we are updating the
LEMMA training materials to be used within a workflow format.

72

Section 3 Making workflows to support the
LEMMA training materials

3.1 Overview
This section is somewhat different to the previous sections in that all the workflows have been
written for you and the idea is simply that you follow them and learn some further features of the
workflow system as you go. We will be using workflows that aim to produce the equivalent analyses
presented in the MLwiN practical for Module 3 of the LEMMA training materials (written by Fiona
Steele). It is therefore best to have a copy of the practical with you as you run through the workflow
(the website supporting the online LEMMA training materials can be found here:
http://www.bristol.ac.uk/cmm/learning/online-course/index.html).

3.2 Introducing procedures
To begin you will need to start up Stat-JR:LEAF, or return to the workflow screen if it’s already open,
and press Clear. The screen will look as follows:

Stat-JR:LEAF Workflows ~ Edit~ Clear Dump Save Upload Dataset~ Run About

Selected
block:

Control
Logic
Math
Lists Change
Text

Hypothesis

Data Preparation

Data Exploration

Models

Post-process

Input

Output

Variables

Procedures

Other

Devel

Figure 86

The workflows we will use can be opened from Workflows > LEAF_Guide (via the black bar at the
top of the LEAF interface); there’s one for each of the five sections of the LEMMA Module 3
practical, and you will find them saved as lemma3_1 ... lemma3_5. Let’s open the first of these,
lemma3_1:

73

http://www.bristol.ac.uk/cmm/learning/online-course/index.html

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

OQutput
Variables
Procedures
Other

Devel

Figure 87

Selected
block:

1820

SR <p>This workflowsnbspis adapted 1|

Change

Mod3.1 with:
nopause

o) (2) to [with: nopause

EF 00 nopause

SO ols |2 NI SRR o you want o continue? |
| I

@) (7) to [MEREKD with: nopause

Select dataset | & [EHMENLEND 2

SLLCUEE L Here is the dataset summary (page 5) 1
‘ Sl.l'nrmry Statistics

Show [& [F) 22

set LN | score L

histogram of response
Set Input | & [T »
Setlnput || & EED» |
Template pEE »
oLt & Here is the histogram of the response variable, ... m

Show
—

Pause with:

nopause | [ETECCNE

This looks somewhat different to the workflows you have seen previously. There appears to be a
rather short workflow contiguous to the Start block consisting of a Show block, one set <variable>
block and a purple block that we haven’t yet come across. There are then some other blocks
elsewhere in the workspace, which do not appear to be connected to the main workflow.

The purple blocks relate to procedures; these are available from the Procedures menu which, if you
click on it, looks as follows:

I Control
I Logic
I wmath
I Lists
I Text
Hypothesis
I Data Preparation
I Data Exploration
l Models
| Postprocess
I Input
I output
I Variables
I Other

Devel

Figure 88

Selected
\EN@)] do something | block:
s workflow is adapted f... |
Change

B | do something }

o) (2) to [GEI) with: nopause

GRS E] nopause - |

SO ols |2 NI SRR o you want o continue? |
| I

A L

{ataset suj 5

Mod3.1 with:
nopause

Pause with:
nopause

1e histogram of the resp variable, ... n

The top three blocks are always found in this list, whilst the others appeared in the list as we added
procedure blocks when building our workflow — we describe this further below. We used the top
block to create the procedures in this workflow. It looks similar to the grouping block we used in

74

Section 2 — we can change the name away from “do something” and place some blocks within the
‘mouth’ of the procedure block which will be executed when the workflow reaches it — but one
important difference is that it’s call-able: we’ve been able to place it away from the main workflow
because we can call it from there.

To demonstrate, if we bring another of these onto the central workflow pane, and give it a name in
place of the default “do something” (we’ve chosen “run a model” in this example), another purple
block (with “run a model” written on it) has now appeared at the bottom of the Procedures list:

Control Sa\e:.tad
Logic 18] do something | ok
lkmi
Math S WOTKNOWGNDSP,1S B0APIT 1.,] i
Lists Change

Text
?) o

(t) (2) to [EE) with: nopause

Hypothesis

1
|
|
|
|
I Data Preparation
|
1
|
1
1
|

B0 E S nopause - |

Data Exploration do | get B cols [EERIREREREE ST LY do you want to continue? |
O !

Models F
Post-process nma3_1

Input fataset sul 5
Output Mod3.1 with:

Variables nopause

;
I Other Pause with: :um
nopause
Devel
run a model
1e histogram of the resp variable, n
Figure 89

If we next click on the blue button on the procedure block we have just introduced, we can modify
the procedure block, requesting that it accept a named input when called — here, in keeping with a
number of the other procedures we produced when originally writing this workflow, we’ve called
the named input “nopause”:

Control slele:ted
IOCK:
Logic Start
ummlkr
Math Show [HTML <p>This workflow is adapted f...
Lt * T nopause [l true - | Change
UL Mod3.1 with: @) (2) ith:
Hypothesis . . (¢) () to (FENES) with: nopause

hopause nopause *

Data Preparation

input name: E3

Data Exploration 2o do you want'

Models (o) (3) to [YEEED with: nopause
Post-process Select dataset (¢ ([EEIEENEEKD

Input OIS Here is the dataset summary (page 5) |2

Output

Summary Statistics

Variables A 5
T ()) to with: nopause
Procedures Show (766 EEVIE) 9 "
Other =1 response - oM}] score |1}
Devel hitogram of response
= —
‘ Setinput | «EID» = | «E0»
| Setinput || GTH = CTEEED
Figure 90

75

Now if we look again at the list of blocks under the Procedures list we see the block at the bottom
has been modified, and now looks just like the ones immediately above it:

I Control Selec-led
I Logic (2 @ . dosomething block:
ummlkr

I wath s workflow :is adapted f...
I Lists Change
I Text o -

Yl () @ . dosomething] @) to (ZIY with: nopause
I Data Preparation | not |

Data Exploration (el £ E-Set Input [N9 | = [Ask yes/no CEECINELN
I Models :
I Post-process wnam
I I ataset summary (page 5)
I output Mod3.1 with: ﬁ

i nopause < _

e [2) (5 to GTIETGEEE) vith: nopause
.
I Other Pause with: :m

nopause
Devel P

= «gmr»

& L. response -

run a medel with:
nopause

Figure 91

This new block (the one which has appeared at the bottom of the left-hand list) is the block we
would use if we wished to call the procedure we’ve just defined (although we’ve not defined it fully:
we haven’t added any blocks in the procedure itself in this simple example). Since we’ve modified it
such that it takes an input (called “nopause”), we can use this input to control internal aspects of the
procedure.

Let’s bin the procedure we’ve just made (you’ll notice the Procedures list is modified appropriately)
and turn our attention back to the original workflow. It has two procedures defined: one named
Pause and another named Mod3.1; this latter procedure carries out all the instructions in section 1
of the LEMMA Module 3 practical. The procedure called Pause is a lot shorter; like the dummy
procedure we produced for illustration a moment ago, it takes an input called nopause. Looking
inside the Pause procedure we can see that it evaluates this input via an if-do block (as used in
Section 2). The use of not when evaluating the nopause item means that if nopause is ‘false’ then it
will set an input called “cols” (the name we’ve given it here is incidental) to be a Boolean yes/no
guestion asking the user whether they wish to continue or not.

The calls to the Pause procedure are within the large Mod3.1 procedure, whilst the nopause input it
uses is defined in the main workflow, just three blocks below the Start block. It’s currently set to
‘true’, which means that the whole workflow would run without pausing when you click Run; if it
were instead set to ‘false’ the user would be prompted with the question “do you want to
continue?” whenever the pause procedure was called.

So here a procedure is being used not for data analytical purposes, but to simply modify the
interface for the user; cf. the other procedure, Mod3.1, which is used for data analytical purposes.

Below we run through each of the five workflows (lemma3_1 ... lemma3_5) in turn.

3.3 LEMMA P3.1: Regression with a single continuous explanatory variable
So let’s now look at the first section of LEMMA Module 3.

76

If you press Run, the workflow will execute; this will take some time (you may see a flurry of activity
in the command line window running in the background), so whilst its running we can look at the
workflow blocks themselves.

You will see that the procedure consists of green grouping blocks identifying what each section of
code does, with occasional Comment blocks. These Comment blocks link the workflow to the page
numbers in the LEMMA documentation, and the text in the Comment blocks will be printed out in
the output. The workflow is also punctuated by calls to the Pause procedure which, as described
above, if set to ‘false’ would pause the workflow and present the user with a prompt asking whether
they would like it to continue or not. Otherwise, the functional structure of the workflow is much
like that encountered in the last two sections: Set Input blocks specifying the inputs for subsequent
Template executions, and Show blocks displaying certain outputs from those executions.

Once it’s run to completion you will see the following output if you scroll down:

Finally for section 3.1 here is a histogram of the standardised residuals

Block 147 OutputObject(histogram.svg)

3500

3000

2500

2000

1500

1000

500

stdresidual

Provenance

Re-edit Save to Ebook

Validate = Translate into | json | xml | provn | turtle | |trig | | svg

Show Prov | | Show Bindings

Figure 92

Here is the histogram from page 24 of the MLwiN practical. If you have two screens (or two
windows) you can have the workflow-code window and the workflow-results window up together to
see their correspondence.

In this first section, whilst a number of the blocks are familiar to us from the first two sections, some
of templates aren’t. We make use of the Tabulate template that can produce quite a wide range of
summary statistics in tabular form and is designed to mimic the MLwiN tabulate window. We also
use a RecodeValues template for recoding the values of a categorical variable, again mimicking the
MLwiN window for recoding values.

Scrolling down the workflow reveals some other new templates we have used:

77

Control Selected
Logic ST axis ARSI cohort90) block:
Math I vlinePlot
W55 (o] 1118 Here we work out the prediction line and plot ag... |- Change
Text |
Hypothesis fh""" 1 graphaxy.svg |
Data Preparation |
Data Exploration | Pause with: nopause nopause
Models (L Currently no way to do R-squared calculation |20
Post-process Select dataset | Retrieve LGOS 2052 [elNTTE prediction_datafile
I TN Here we calculato the residuals, storesiduals an_ |
Output
: Calculate Residuals
Variables Calculate Residuals
Procedures SERTTE outcol MR residual £2)
S SRR expr MY score - pred_full 20
Devel

SCLLUEE Y utdata |20 prediction_datafile |
Jemp\me . Calculate =2
Select dataset | Retrieve LI 2097 [N prediction._datafie
Calculate standardised residuals
Setinput (| & G | = | ¢ EEEED »
I —— —
Setinput | €T | = | GRS
ST outdata o0 prediction_datafile |+
LT»?mp\ahz | StandardiseResiduals -/
Select dataset || Retrieve (T 2117 [N d prediction_ datafile
Calculate normalised scores
SRR S ncol LSRR T stdresidual |
Setinpul | & DY = | «EEED
SEU L outdata o0l 4 prediction_datafile)
| Template WREEEETLICES

Select dataset | Retrieve from Block (611118 prediction_datafile

Figure 93

Here we use the XYLinePlot template which is simply a variant of the XYPlot that plots lines rather
than points. Then, having switched dataset to the prediction_datafile generated from the model fit,
we use in quick succession: Calculate (which you have encountered before) to create residuals from
responses and fitted values; Standardise, to create standardised residuals from raw residuals and
their standard errors; and Zscore, to create normalised scores from the (standardised) residuals.
Each of these templates adds a column to a dataset, each of which we save using the same name,
ensuring we are using the correct (latest) version by appending the Retrieve block onto a Select
dataset block.

As an exercise you might take your own dataset and see if you can, by choosing one response and
one predictor, replicate this exploratory analysis on your dataset: which aspects of the workflow
would you need to modify to accommodate your own dataset, and how?

3.4 LEMMA P3.2: Comparing groups: regression with a single categorical

explanatory variable
We can now look at the next workflow, lemma3_2 (accessible via Workflows > LEAF_Guide):

78

Selected
block:

2172

Control (2) (2) to [GETEY with: nopause
Logic (o) i _nopause - |

Math
CORSEETTTE 2 cols 20— TS do you want to continue?

Lists ~—

Text

Hypothesis

Change

I Data Preparation Show [HTML <p>This workflow :is adapted f...
I Data Exploration

I mocess Mod3.2 with:

I Post-process nopause | EITEIES

I Input

I output

I Variables) (7) to (IR with: nopause

l Procedures Select datasel | ¢ [EAL L) 2

I otner Table vs gender

Devel

Setlnput | ¢ EEEY? = (|« QL)
SR rows = cons 1
Setlnput | « @Y = | < [TED
Set Input | ¢ » = «EED”

Setinpu | € EED? | - (% AT
Template " Tabulate =

e LS Here is the table of average scores for each gen -

Show (! & ”
A,

Pause with:
nopause | GILETEENS
Setlnput [6 EB? | = «EED»

SEU d x cons, female |
Set Input [&€ » = &g
Setinput [¢ EIE)? = «@@»

Figure 94

Section 3.2 of the LEMMA MLwiN practical covers some basic modelling of categorical predictor
variables. The workflow here consists of some tabulations of the response variable (score) for
different categorical variables using the Tabulate template, several calls to the Regression1 template
for model fitting and much use of the Calculate template to create dummy variables for the different
categories of social class and the different cohorts, primarily because the models fitted have
differing base categories.

There are no really new templates or blocks here so we suggest you simply Run the section and
cross-reference it with the relevant LEMMA materials. If you have your own data and it contains
categorical predictors you might like to adapt the code to your dataset.

3.5 LEMMA P3.3: Regression with more than one explanatory variable (multiple

regression)
We can now look at the next workflow, lemma3_3:

79

Text
Hypolhesis

Data Preparation
Data Exploration
Models
Post-process
Input

Output

varnables
Procedures
Other

Devel

Figure 95

Set Input
Sel Input
Sel Input
Set Input
Set Input
Set Input
Set Input
Set Input

Set Input

Selected
block.

= Askyesino

Change

«g@n
[nchains IR 3 L)
7T seed LARRI] 1 LJ

(7Y bumin ELERERT 500 £
I horations LORR] 2000 LJ
[T ttunning -] 1 1)
T defaunalg LSRR Ves)
(77 makepred EIMENAN] Yes |}
«Emr - «gm»
" oudata | L chains |

L Feoesooni L

L1 Here are the equations and parameters for multip £

This workflow is actually quite short as this section of the LEMMA 3 MLwiN practical simply
introduces the concept of multiple regression by placing the three predictor variables, investigated
separately up to that point, into the same model. It does this using the Regression1 template, with
which we are familiar. It then also displays a tabulation of two categorical variables to show how
social class has changed over time.

Again we suggest you Run the code and investigate whether it replicates the LEMMA materials, and
if it relates to your own dataset try modifying it accordingly before moving onto the next section.

3.6 LEMMA P3.4: Interaction effects
This section is quite a long one in the training materials. Here is workflow lemma3_4:

DeAB|
omeL
blocennise
Asuspiez

onibng

wbay
bozl-bioceze
WOgeR:

DS Exbiowspou
D9fS bisbaispou
HAbojusziz

sy

reg

W

rodic

coupo]

Figure 96

eup

| Hete ms jps sdnapoua sug szfusies o e woq |
| gstuszatou |
(14 onaors FRSIERINTY cyawz F°Y
aellDn = «llDs

EIn = «f@a

[Es - elDn

ol@an = el
(1] weumpouz FARRRENEY 5000 £
ellMM» = «BD»
«BDn = w«lx

ael@@s = «Bs
L B T couz' copousy iswae F1F

cuauds

—
qo @siiubr | e ED e

C N obsres . |
10 (D) My wobsnzs

LAY 9o Aan wau 1o couuns |

procic
2eiecieq

In this section of the LEMMA materials the concept of interactions is introduced, and several
regressions are fitted. To start with a multiple regression of cohort and gender on the hedonism

80

score is fitted. The resulting model fit is plotted using a template we haven’t come across previously,
XYGroupPlotLine, which plots separate lines for each group. Another new template, Choose, is then
used to select subsets of the data, firstly all boys and secondly all girls, and separate regressions of
the hedonism score on cohort are performed for each subset. To illustrate interactions, the
Calculate template is used to create the interaction term and a model including it is fitted. The
XYGroupPlotLine template is used again, plotting separate lines that are not parallel for the two
genders.

Attention then moves from gender to social class, which has more categories. The Calculate
template is used to create interactions before the Regression1 template is used to fit a model
including these interactions. The fit of the model is illustrated in two ways using the XYGroupPlotLine
template. Firstly a straightforward predicted line plot with a line for each social class and then a plot
of the differences for each social class from a base category. Here the workflow illustrates how to
extract values from a table of results thus:

I Control g Show [@ » S‘Ebgt!?d
- ock:
I roge sel to | Extract
I LE L Table Retrieve from Block Output
I Lists 1 Row Change
I 2t _ Column |
I Hypothesis m—
I Data Preparatio Table
Data Ex i
ploratior Row
I wodeis
Column
I Post-process
5 - m » Pause with:

Figure 97

This takes the values of the means of beta_0 and beta_1 from the model fit, which are then used to
create the differences (stored as predscore) from the base category (social class 3) as shown below:

I Control = | Calculate differences from social class 3 SI zfli_md
Logic 1 1 '

I ot ST outcol AR predscore)

a | I I
I Lists 8 Note numbers hardwired into calculation below! &2 Change
I Tex Setinput | « @A » = | (&) create text with - pred full- {11

Hypothesis ']

| D“t) P tio|= ead

ata Preparatio =
I e :) ; T B

ata cxploratior
I wodess “ e

* !
I Post-process |
I Input S8 O gutdata o8 =10 prediction_datafile 2
I output ' Template DLk »
I variables = :
I Procedures Select dataset | Retrieve [EE38) from Block k2] Output [IEG MG EE
B e = e e e
Figure 98

Finally the plot is constructed before a final model without interactions is constructed for
comparison purposes.

81

Again we suggest you try running the section to satisfy yourself you understand the code and see
how it replicates the section in the LEMMA materials. If you have suitable data you might consider
modifying the code to use your own dataset.

3.7 LEMMA P3.5: Checking model assumptions in multiple regression
In this final short workflow (lemma3_5), the various predictor variables are brought together in one
final model. This model isn’t so easy to show graphically so instead this section focusses on checking
the fit of the model.

Selected
block:

1820

Control
Logic

Math Show | HTML <p=This workflow .is adapted f.

Lists Change
Text Mod3.5 with: '

Hypothesis nopause (2] () to [GETESY with: nopause

Data Preparation GRS nopause - |

Data Exploration @) (7) to [1TEES with: nopause & LSeanut [cols |2 — T do you want to continue?

Models >

Select dataset " leaf lemma
Post-process [

Input > - :
Cutput Setinput [« [A» | = [« EEE?
vanables Set Input (| 6 39 % »
Procedures o ———
e Setinput |« CEETDY Y | = (| «@»
«EBY = «0»

Devel Set Input |
—
Set Input [6€ CVITY | = |66 0 »

I
L
T
L

BT MR iterations EXIMIENENTY 3000 E2)

Set Input | & @ITIE» | = (| « g »

= —
Set Input [L defaultalg EEAESIERIT Yes 1)

Set Input .: (1 makepred LA T Yes |0
Set Input | » = e »
W defaultsy .
Set Input -" " outdata 2/ |~ 4 chains -
RN Regressiont |
Comment .: .1 Here are equations and estimates for the final m__. |-
ST equation tex |
—
Show [& »
ST modeit dta |
L.
Pause with: nopause nopause
(LS We now calculate residuals, standardised residua.. |22

Select dataset | Retrieve ([EE#E from Block [EEEE) Output (R TSIl il
calculate residuals

—
EERTREC outcol

Figure 99

In practice this section very closely resembles the first section only with a more complex model, i.e.
all the calculations and plots are ones we have seen before. We suggest you Run the section to
replicate the LEMMA materials and then consider what you would do with your own dataset.

3.8 What have we covered?
In this section we have demonstrated the use of procedure blocks to group sections of workflow
together which can then be called from elsewhere in the workflow. We have also encountered a
number of new templates, and have more generally demonstrated how we might use the tools of
Stat-JR’s workflow system to replicate the outputs found in the LEMMA training materials. Given
Stat-JR’s ability to interoperate with a wide variety of third-party statistical software packages (R,
MLwiN, Stata, etc.) this workflow could eventually be modified to allow the user to toggle between
packages. In doing so it could expose the scripts (R scripts, .do files, etc.) used to run each execution,
so that the user can cross-reference the script and outputs from those packages, and gain insight
into how the same operation might be achieved by a number of different packages.

At this point you should have the tools to try out other things. For example, you may like to consider
fitting other models to your own dataset, perhaps even using other model-fitting templates (e.g.
1LevelMod, 2LevelMod) which you can always test first using TREE.

82

Section 4 Translating a workflow into an
eBook

In this section we will create a workflow within LEAF and explore exporting it to Stat-JR’s eBook-
reading interface, DEEP.

To start things off we will load up the workflow system which will give us the usual window as
shown:

Stat-JR:LEAF

Selected
block

Control
Logic
Math
Lists Change
Text

Hypothesis

Data Preparation

Data Exploration

Medels

Post-process

Input

Output

Variables

Procedures

Other

Devel

Figure 100

We'll quickly construct a workflow using the Re-edit button: a tool we briefly touched on in Section
1.8. We will start off by producing what we might call a ‘skeleton workflow’: a stripped down
workflow that only contains the Start block, the Select Dataset block and the black Template blocks.

To create this skeleton workflow pick the Start block from the Control menu, the Select dataset
block from the Data Preparation menu and two Template blocks from the Devel menu so that the
workflow looks as follows:

83

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Output
Variables
Procedures
Other

Devel

Figure 101

Selected
block:

Change

Se'lect dataset

Template

Template

Next we will fill in the shadow blocks so that we have the names of the dataset (we’re using the
tutorial dataset we used earlier) and some templates which will allow us to explore aspects of the
dataset (you may recall we encountered these two templates in Section 1):

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Output
Variables
Procedures
Other

Devel

Figure 102

Selected
block:

Change

Select dataset tutorial
Template AverageAndCorrelation

Template Histogram

This is a valid workflow but doesn’t contain any inputs and so, as we saw in Section 1, when input

values are not specified the user will instead be prompted for them when the workflow runs. Note
that in this example, since we haven’t specified how the input values are to be requested (e.g. via a
prompt of our own choosing), the questions will simply be those that we observe in TREE.

If we click on Run we will see the following:

84

Stat-JR:LEAF

Results

Block 1 DatasetSelect(dataset=tutorial)

Block 2 TemplateExecution(template=AverageAndCaorrelation)

-

Input for TemplateExecution(AverageAndCorrelation)

averages \:

school
student
cons
girl
schgend
avsirt
schav
vrband

Operation:

Variables:

normexam
standlrt

Figure 103

Here we see prompts for the input values for the AverageAndCorrelation template, which we can fill
in. Here we have chosen averages as the Operation, and normexam and standirt as the Variables;
after pressing Submit we see the following:

Block 4 TemplateExecution(template=AverageAndCorrelation)

-

Block 5 TemplateExecution(template=Histogram)

-

Input for TemplateExecution(Histogram)

Values: normexam F

Number of bins: 20

Figure 104

So we’re now being prompted for values for the Histogram template inputs; we’ve selected
normexam as the Values to plot, and have typed 20 into the Number of bins. On pressing Submit,
the relevant output from the AverageAndCorrelation template, table, and that from the Histogram
template, histogram.svg, will be created but not displayed until we select them from the pull-down

85

lists associated with each template execution; here first is the output table from the block titled
TemplateExecution(template=AverageAndCorrelation):

Block 4 TemplateExecution(template=AverageAndCorrelation)

table \:‘

name count mean sd
normexam 4059 -0.000113912741654 0.998821
standlirt 4059 0.00151025476195 0.993102

Block 5 Setlnput(bins=20)

_ ‘

Figure 105

...and next the output histogram.svg from the pull-down list associated with the Histogram template

execution:

86

Block 7 TemplateExecution(template=Histogram)

histogram.svg | - |

700

600

500

400

300

200

100

-1 0 4
nermexam

Provenance

Re-edit Save to Ebook

Validate Translate into | json | | xml | provn | turtle | trig | svg

| Show Prov | | Show Bindings

Figure 106

At the bottom of the screen you can see the Re-edit button: as we saw in Section 1.8, this will return
the full workflow including the values for the inputs we specified. So, click on this now and you
should see the following:

87

I ttorial |2

—
|| averages

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

QOutput
Variables
Procedures
Other

Devel

Figure 107

Select dataset

S.et Input |
Sét Input
Template |
Set Input
S.et Input

Template |

Selected
block:

Change
119 op B2 EC
0 vars | = : normexamstandirt | |

T AverageAndCorrelation -/
bins .| | Em

e | = (¢

*vals | nomexam |
- Histogram

So this workflow is a log of the workflow we have just run. If we wish to include the output objects
then we need to add two Show blocks from the Output menu after the respective Template blocks,
as follows:

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Qutput
Variables
Procedures
Other

Devel

Figure 108

Select dataset |

Selected
block:
(o | 1
. [” Change

Set Input

Set Input

Template

Set Input

Set Input

Template

—
" bins |

e
0 op ENISNERT averages)

-
-!“” = | normexam standirt -

» 1% AverageAndCorrelation |22

- R
= «ED»

[pwrs aw | _
S vais EXIE

]—'
[[Histogram .-

histogram_svg

If we were to run this workflow now it would automatically execute to completions, using the input
values we chose earlier, and displaying the two outputs we’ve place in the Show blocks.

Save this workflow as section4_01.xml.

We will next extend our workflow by considering a regression, as we did in Section 1. Here we will
simply add an additional Template block (from the Devel menu) to the end of the workflow and type
Regression1 in the associated shadow block:

88

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Output

Variables
Procedures
Other

Devel

Figure 109

Selected
block:
1
Select dataset | &6 ”»
v . gy o | Changg
Setlnput | « Y | = | « EEELED »”

. — T e
Set Input (GEED» = | ‘ 1% normexam,standirt -2
Template : 1 AverageAndCorrelation ./

Setinput (| « EIY» = « @) » |
1! I

Set Input "¢ vals ‘
I

Template (& »

Show histogram.svg

Template Regression1

If we next press Run then, after the templates has calculated the averages and generated the
histogram, we will need to fill in the many Regression1 inputs that appear in sequential stages thus
(here we're regressing normexam on standirt, and are including the constant of ones (cons) already
in the dataset as a predictor in order to fit an intercept to the model, cf. earlier examples in which
we demonstrated creating a constant anew):

89

0
—4 -3 =2 -1 0 1 2 3 4
normexam

Block 10 TemplateExecution(template=Regression1)

-

Input for TemplateExecution(Regression1)

© Response: normexan t

© Explanatory variables: zchool

student
normexam
girl
schgend
avsirt
schav
vrband

cons
standirt

[Cltreat cons as categorical
treat standirt as categorical

Figure 110

...and (we’re just accepting the defaults here)...

90

Input for TemplateExecution(Regression1)

Number of chains: 3
Random Seed: 1
Length of burnin: 500
© Number of iterations: 2000
Thinning: 1

Use default algorithm settings: @ Yes
No

Figure 111

..and...

Input for TemplateExecution(Regression1)

Generate prediction dataset: (ves
@Mo

Use default starting values: @vyes
No

Figure 112

...and finally...

91

Input for TemplateExecution(Regression1)

Figure 113

© Name of output results:

out

Once we have specified this last value, and clicked Submit, then the template will run. Once it has
finished we can display outputs from the template execution, for example here we have chosen

ModelResults:

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Qutput
Variables
Procedures
Other

Davel

Selected
Select dataset | ¢€ » 1
S op b= averages) Change

AN yars B8 = normexam, standirt e |

AEIIECIE Y AverageAndCorrelation [
Show [¢ [ERE)»?
Set Input (¢ G » GCED» |
Setinput [«E» =

RCLETEE () Histogram 20
L LI T histogram.svg |22

_“gu': _ ' cons,standirt |11
Uy = normexam)
__“”'::_

1 torations |10 |
"< defaultalg 0 |
01 nchains L

Set Input
Set Input
Set Input

Set Input

3 Yes o |
“E» |
L thinning S 1 L

Set Input
Set Input
Set Input
SetInput | ¢¢ VT » = «Em »

(1 makepred LMY No
[defaultsv PRI es |1

[outdata 0= out b
) Regression1 1

Set Input
Set Input

Set Input

Template

Figure 114

If we click on Re-edit we will now get a longer workflow that, if executed, would run all three

templates in order:

92

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

QOutput
Variables
Procedures
Other

Devel

Select dataset

Set Input

Set Input
Template
Show

Set Input

Set Input

Template

Show

Set Input
Set Input
Set Input
Set Input
Set Input
Set Input
Set Input
Set Input
Set Input
Set Input

Set Input
Template

Selected
block:
7 tutorial |2 1
3 op B2 averages) Chang

“vars /| = 1 normexam,standlrt ©/
11 AverageAndCorrelation |/

' table |2

[oins ERE

73 vals

“ »
" histogram svg |-

(9 x 2= 1 cons,standirt |
«@m» = “normexam |-

(1 seed LIS

"< iterations [| — 1 2000)
1 defaultalg [0 ST Yes 1

(% nchains o =0 113

3 thinning LA (4 1 L

" burnin o L 500 1

" makepred [0 — 11 No |-

1 defaultsy 0| Yes |

1 outcata LHENET out |2
1 Regressiont |

71 20 B

Figure 115

We will add a couple of Show blocks to show the ModelResults and beta_0.svg output objects (the

latter consists of six plots of various MCMC diagnostics for the beta_0 (intercept) parameter):

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Qutput
Variables
Procedures
Other

Devel

Figure 116

et Inpu

Set Input
Set Input

Set Input

Template

Show ModelResults

Show

% burnin 4

2 makepred L2 ST No |0
1 defaultsv .. Yes . |

1 outdata LNERERT out £
C ' Regressiont |-

beta_0.svg

Save this workflow as section4_02.xml.

93

Selected
block:

1

Change

Now if we run the workflow the three templates will be executed in order, and the four output
objects will be shown. The sixway plot (beta_0.svg) can be seen in the window below:

pD 2.978659

DIiC 9766.467188

Block 23 OutputObject(beta_0.svg)

beta_0
30
L 25 R
[=
& @ 20} _
(] Q
£ T 15
o @
g g 10} R
= 5
. . o .
0 500 1000 1500 2000 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06
stored update parameter value
1.0 . : : 1.0
0.8 1 [X:13 R
0.6 w 0.6
G <
< g4 J a o4l]
0.2 1 0.2t R
0.0 i et dewa - 0.0 . .
20 40 60 80 100 120 1] 2 4 [g 10 12
Lag Lag
0.00025 . - - 1.0 ~
0.00020 | 1 0.8
W 0.00015 0 06
Ty} o
= (b
= 0.00010 F 1 @ 0.4
0.00005 |- 1 0.2
0.00000 L L L 0.0 L L
0 2000040000 60000 B000010000020000 0 200 400 600 BOO 1000
updates start iteration
Provenance

Re-edit Save to Ebook

Validate | Translate into | json | | xml | | provn || turtle || trig sVg

show Prov | [Snow Bindings

Figure 117

As you might imagine, if we were to press Re-edit again we should get exactly the workflow we just
ran, however we will instead click on the Save to Ebook button.

When we do this a popup appears for which we will specify the requested information as follows:

94

Save to Ebook

Title LEAF section 4 example eBook

Authors William Browne

Description This is an example eBook from section 4 of the LEAF manual

Filename LEAF_manual_section_4 zip

Figure 118

Clicking Save then gives a standard Save As window in which we then need to save the zip file to a
directory from which we can retrieve it from within Stat-JR’s DEEP interface.

The DEEP interface is Stat-JR’s eBook interface and can be accessed by selecting All programs >
Centre for Multilevel Modelling > StatJR — DEEP. As with the LEAF interface, a console window will
pop-up and after a few moments the DEEP front-end will be displayed in a web browser, as shown
below:

95

Your E-Books: About:
Author
Created at
Description

Continue reading: OR Start a new reading:

New reading process name:

Brief description:

Start reading

Figure 119

To select the eBook you have created you will need to click on the Import button (in the black bar at
the top):

Import E-Book

=+ Select an E-Book file

or Find E-Books on experiment

Figure 120

Next choose to Select an E-book file and select the file you saved from the workflow system, and
when prompted click Continue Uploading:

96

Import E-Book

eBook structure checking result

Errors:

No error

Warnings:

No warning

HTML checking result

Errors:

No error

Warnings:

No warning

Continue Uploading Cancel Upload

Figure 121

...after which we (hopefully) receive confirmation our eBook has been successfully imported:

Import E-Book

Success! Your eBook has been Imported.

Figure 122

It now appears in the list of Your E-Books in the top left pane; select this eBook in the list so that it is
highlighted (associated meta-information, such as the Author and Description, will then appear
under About). Then, under Start a new reading, type a New reading process name (we have chosen
test, althought it doesn’t really matter what name you choose):

97

Your E-Books: About:
I Author William Browne

Created at 2016-06-17T13:03:00.955000
Description This is an example eBook

from section 4 of the LEAF
manual

il Delete ebook

Continue reading: OR Start a new reading:

New reading process name:

test

Brief description:

g—
Start reading

Figure 123

Clicking on Start reading will fire up the eBook and we will get a largely blank page with the progress
gauge in the top-left corner stating “Running Workflow”. Soon this will indicated it has “Finished”
and we will be left with the following:

98

LEAF section 4 example eBook

Finished

Go o page

=
Resulls name count mean sd
tParamglsrs
Model normexam 4059 -0.000113907102786 0.998821
standirt 4059 0.00181025476185 0.983102
about
700
600
500
400
300
200
100
-4 -1 0 4
normexam
about
Results
Parameters:
parameter mean sd ESS variable
tau 1.541610 0.034007 5799
beta_0 -0.001278 0.012577 5960 cons
beta_1 0594859 0.012745 6129 standirt
sigma2 0.648988 0.014307 5784
sigma 0.805549 0.008880 &788
deviance 9763.438488 2433024 6061
Model:
Statistic Value
Dbar 9763.488488
D{thetabar) 9760.508789
pD 2.978699
pic 9766.467188
about
beta_0
30
0.04
22
5 0.0z F 20
g H
E 000 =15
5 Em
g -0.02 £
5
-0.04
0 500 1000 1500 2000 L0.56 —0.04 ~0.02 5:00 002 004 006
stored update parameter value
10 10
0.8 08
0.6 w 06
w
5 g
< 04 EXT
02 02
0.0 0.0
0 20 40 60 80 100 120 o 2z a4 10 12
Lag Lag
0.00025 10 ==
0.00020 08
w 0.00015 ook
0 &
¥ @
= 0.00010 @ 04
0.00005 02
0.00000 0.0
© 20000 40000 60000 B0000100000.20000 0 200 400 600 800 1000
updates start iteration
about

Figure 124

99

Essentially we have a rather skeleton-like eBook where the outputs from the Show blocks in the
workflow appear as objects in boxes in a one-page eBook.

Currently the LEAF system will simply create this skeleton eBook, but we can then consider adding to
the eBook structure etc.; see the Stat-JR DEEP eBook Reader & Authoring Guide for more

information.

4.1 What have we covered?
In this section we have demonstrated how to create a workflow by starting with a ‘skeleton’ and
filling in the template inputs ourselves when prompted, before selecting Re-edit to ‘complete the
loop’ and construct the workflow corresponding to our choices.

Then we have investigated exporting this as a Stat-JR eBook, to be opened and read in the Stat-
JR:DEEP interface.

100

Section 5 Appendix

From Section 1.12, here’s the end of the workflow with our prediction-plotting blocks added to it;
remember to save the workflow as section1_12.xml.

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Output
Variables
Procedures
Other

Devel

Figure 125

Selected
block:

Set Input

Simple_

Set Input

Change

Select dataset || GOGETY Jast + BielEIH Y Simple_linear_regression felli '3 prediction_datafile

Set Input = [(&) create text with -1‘ 1 pred_full, -2
| |

Set Input xaxis standlrt

Template XYPlot

Show graphxy.svg

From Section 2.3, here’s how we set-up our loop plotting the response against each of the predictors
inturn:

Control

Logic

Math

Lists

Text

Hypothesis

Data Preparation
Data Exploration
Models
Post-process
Input

Output
Variables
Procedures
Other

Devel

Figure 126

Selected
290
Select dataset ik Please choose the dataset to be used

58 resp v RS ERETEEY Please choose your response variable

set TG ERTENELI SN Please choose your list of candidate predictor v...

Set Input

Change

Template Histogram

for each item (KB in list (HT2ED

Template XYPlot

Show graphxy.svg
—

So for each predictor variable in preds, the four blocks in the “do” section of the for-do block will be
run. The first block assigns the user-nominated variable response as the variable to be plotted on the
y-axis, whilst the second block sets the variable currently indexed in our list of predictors (preds) as

101

the variable to be the plotted on the x-axis. Finally, the XYPlot template is run (with these two
inputs), and the output object of interest is plotted.

Save this workflow as section2_03.xml.

102

