

1

Stat-JR LEAF Workflow Guide

(1.0.4 beta release)

This documentation was written by William Browne*,

Richard Parker*, Chris Charlton*, Danius Michaelides** and

Luc Moreau**

*Centre for Multilevel Modelling, University of Bristol, UK

** Electronics and Computer Science, University of

Southampton, UK.

June 2016

Citing Stat-JR:

Please cite Stat-JR as:

Charlton, C.M.J., Michaelides, D.T., Parker, R.M.A., Cameron,

B., Szmaragd, C., Yang, H., Zhang, Z., Frazer, A.J., Goldstein,

H., Jones, K., Leckie, G., Moreau, L. and Browne, W.J. (2016).

Stat-JR version 1.0.4. Centre for Multilevel Modelling,

University of Bristol & Electronics and Computer Science,

University of Southampton, UK.

2

Stat-JR LEAF Workflow Guide (1.0.4 beta release)

© 2016. William J. Browne, Richard M.A. Parker, Christopher M.J. Charlton, Danius T.

Michaelides and Luc Moreau.

No part of this document may be reproduced or transmitted in any form or by

any means, electronic or mechanical, including photocopying, for any

purpose other than the owner's personal use, without the prior written

permission of one of the copyright holders.

ISBN: To be confirmed

Printed in the United Kingdom

3

Contents

Section 1 Getting Started with Stat-JR workflows .. 6

1.1 Overview ... 6

1.2 Starting up TREE .. 6

1.3 Using your own dataset .. 9

1.3.1 If your dataset is already in .dta format ... 9

1.3.2 If your dataset is in .txt format ... 9

1.3.3 Converting your dataset to .dta format .. 9

1.4 Viewing the dataset .. 9

1.5 Opening Stat-JR:LEAF .. 16

1.6 Making our workflow interactive .. 21

1.7 Adding question blocks ... 24

1.8 Plotting a histogram .. 26

1.9 Connecting up the operations .. 30

1.10 Using variables in a workflow ... 32

1.11 Running a statistical regression model and showing predictions ... 36

1.12 Adding predictions to the workflow ... 43

1.13 What have we covered? ... 45

1.14 What’s next? ... 46

Section 2 A statistical analysis assistant for conducting regression type models 47

2.1 Overview ... 47

2.2 Questions and a histogram ... 47

2.3 Introducing the “for-do” block .. 48

2.4 Univariable models – creating an intercept .. 51

2.5 Univariable Models – running the models .. 54

2.6 Interrogating the outputs ... 59

2.7 Templates that do their own interrogation .. 67

2.8 Checking for skewness .. 67

2.9 MCMC Explanation template .. 69

2.10 What have we covered? ... 72

Section 3 Making workflows to support the LEMMA training materials.. 73

3.1 Overview ... 73

3.2 Introducing procedures... 73

3.3 LEMMA P3.1: Regression with a single continuous explanatory variable 76

3.4 LEMMA P3.2: Comparing groups: regression with a single categorical explanatory variable

 78

4

3.5 LEMMA P3.3: Regression with more than one explanatory variable (multiple regression) . 79

3.6 LEMMA P3.4: Interaction effects .. 80

3.7 LEMMA P3.5: Checking model assumptions in multiple regression 82

3.8 What have we covered? ... 82

Section 4 Translating a workflow into an eBook .. 83

4.1 What have we covered? ... 100

Section 5 Appendix ... 101

The Stat-JR:LEAF workflow system: beta release

The Stat-JR software package was first released in 2012 as a beta version and in September

2013 as a fully-released piece of software (version 1.0.0). Since then there have been a

number of updates and 2016 sees the release of Stat-JR 1.0.4: this features an additional

workflow interface, LEAF (which stands for Logging and Execution of Analysis Flows), that is

being distributed for the first time in beta form. This has been developed as part of our

ESRC-funded project “The use of interactive electronic-books in the teaching and application

of modern quantitative methods in the social sciences” (see

http://www.bristol.ac.uk/cmm/research/ebooks/ for more information).

The Stat-JR:LEAF workflow system was primarily developed by Danius Michaelides**, with

additional input from Luc Moreau**, Chris Charlton*, Richard Parker* and William

Browne*.

To support the beta release of LEAF we have written this additional manual (to complement

the existing Beginner’s Guide to Stat-JR’s TREE interface, the Quick-start guide to the Stat-JR

1.0.4 TREE interface, the Advanced User’s Guide to Stat-JR and the DEEP eBook Reader and

Authoring Guide). This guide is self-contained and does not assume that the reader is

familiar with any of the other supporting guides, although each of those will provide further

information regarding their corresponding topics.

This manual contains four main sections:

 In Section 1 we will introduce the TREE interface into Stat-JR and use the information

we glean from that to create a simple workflow in the new workflow system.

 In Section 2 we will introduce some of the other work in our ESRC grant: namely

investigating the development of a statistical analysis assistant.

 In Section 3 we will look at linking the workflow system to the training materials

available in the LEMMA Multilevel Modelling Online Course

(http://www.bristol.ac.uk/cmm/learning/online-course/).

 In Section 4 we will look at how we can export workflows into an eBook so that we

can link the workflow system with the DEEP eBook interface, and also investigate, in

greater depth, the system’s logging features to “complete the loop” and produce a

workflow from user interactions.

The materials in Section 1 to Section 3 are based on those used in teaching workshops and

we are grateful to attendees at these workshops for their helpful comments that have

greatly improved the final system.

* Centre for Multilevel Modelling, University of Bristol, UK

** Electronics and Computer Science, University of Southampton, UK.

http://www.bristol.ac.uk/cmm/research/ebooks/
http://www.bristol.ac.uk/cmm/learning/online-course/

Section 1 Getting Started with Stat-JR

workflows
1.1 Overview

This manual is designed to introduce new users to Stat-JR and in particular to its new workflow

interface LEAF (Logging and Execution of Analysis Flows). In order to introduce the workflow

interface, we will first provide an overview of how to use the TREE (Template Reading and Execution

Environment)1 interface to Stat-JR and will briefly touch on certain aspects of the Python language

(https://www.python.org/) in which large portions of Stat-JR is written.

The main building block in Stat-JR is the template: a piece of code that performs operations one

might associate with a (statistical) software package. For example, one template might draw a

certain type of graph, whilst another might fit a particular statistical model, and so on. Templates are

the common currency shared by the various Stat-JR interfaces – i.e. they are used in LEAF, TREE and

DEEP (Documents with Embedded Execution and Provenance: Stat-JR’s eBook-reading interface) – so

it is important to have an understanding of how they work in order to use Stat-JR.

In order to perform its function appropriately, a template requires inputs from the user (just like a

function call in R or Stata, for instance): for example they typically need to know which variables to

use, and might need input concerning estimation options (for a model fit), plotting options (for a

chart), etc. We will begin by illustrating this using the TREE interface.

1.2 Starting up TREE
To start we will fire-up Stat-JR TREE which we do via All programs > Centre for Multilevel Modelling

> StatJR - TREE. When we do this we will find a command window appears which looks something

like the following:

1 For a more detailed introduction to TREE, see the Beginner’s Guide to Stat-JR’s TREE interface.

https://www.python.org/

7

Figure 1

This command window will be where the software is actually running from and will contain

debugging information, but the user interacts with the software via a web browser (although often

Stat-JR will be running locally on the user’s machine); this should open automatically after a few

seconds, as follows2:

2 Stat-JR works best with either Chrome or Firefox, so if the default browser on your machine is Internet

Explorer it is best to open a different browser and copy the html path to it; this will be something like

localhost:52228 (although the number will likely differ each time you run Stat-JR). You can change your default

browser via Settings in the Chrome menu, or via Options > General in the Firefox menu (both menus are

found in top-right of their respective browser windows).

8

Figure 2

Now clicking on the Begin button will allow you to run the Stat-JR TREE software and the main

screen will look as follows:

Figure 3

The TREE interface allows the user to try out one template at a time, pairing it with one dataset, and

you can see at the top of the screen pull-down menus headed Dataset and Template, and the names

of the template and dataset currently selected by default (tutorial and Regression1). These pull-

down menus allow you to change the template and dataset you are using (and also to view, edit and

summarise the current dataset).

Below the black bar, in the central area of the window, you can see some of the inputs required for

the currently selected template (Regression1), namely the Response and Explanatory variables, and

9

you can further see that you are being offered variables from the default dataset (the tutorial

dataset) as possible values for some of these inputs.

1.3 Using your own dataset
Below we will be working with one of the sample datasets provided with the Stat-JR package (one

which you may be familiar with from MLwiN, namely the tutorial dataset). However, you might like

to use your own dataset in certain sections (or try out both). The remainder of this section details

how to import your dataset; if you don’t have your own dataset, you can move onto Section 1.4.

Stat-JR works with datasets saved in Stata format, i.e. with a .dta extension. It looks for these in

the...\datasets folder of the Stat-JR install, and also in a folder saved, by default, under your user

name, e.g. C:\Users\YourName\.statjr\datasets (you can change the path via Settings in the black

bar at the top of the browser window in the TREE interface).

1.3.1 If your dataset is already in .dta format
If your dataset is already in .dta format (see below), then you can upload it, in TREE, via (i) Dataset >

Upload (menu options in the black bar at the top of the browser window), which will upload it into

the temporary memory cache, or by (ii) saving your dataset in one of the datasets folders (as

discussed above), and then selecting Debug > Reload datasets (again, accessible via the black bar at

the top of the browser window).

In the case of option (i), the dataset will be available for use in the current session, but you then

need to download it (as a .dta file) via Dataset > Download (e.g. saving it into the

C:\StatJR\datasets or C:\Users\YourName\.statjr\datasets folders) for use in the future sessions too.

In the case of option (ii), the dataset will be available in future sessions since it has been saved in

one of the folders in which Stat-JR searches for datasets on start-up.

1.3.2 If your dataset is in .txt format
If, instead, you have your dataset saved as a .txt file, you can use Stat-JR's LoadTextFile template to

save it into the temporary memory cache (the template LoadTextFileMoreOptions allows the user to

specify more particulars, and can also handle string variables).

This dataset will be available for use in the current session, but you then need to download it (as

a .dta file) via Dataset > Download (e.g. saving it into the C:\StatJR\datasets or

C:\Users\YourName\.statjr\datasets folders) for use in the future sessions too.

1.3.3 Converting your dataset to .dta format
Via the procedure described in Section 1.3.2 (and downloading), Stat-JR will save your .txt dataset as

a .dta file, but you can also create .dta files via Stata, MLwiN and R (e.g. the foreign package in R).

1.4 Viewing the dataset
You can select your dataset of choice via Dataset > Choose, remembering to press the Use button

once you have selected it from the list.

Once the dataset is selected, if we click on the Dataset menu and click on View we will get a second

tab in our browser as shown:

10

Figure 4

You can see the top few rows of the tutorial dataset, together with several tabs one could then click

on. Clicking on Summary, for example, produces the following:

Figure 5

11

This gives us, for each of our ten columns in the tutorial dataset, some basic statistics including the

minimum, maximum, mean and standard deviation. In fact one of the first things one might do when

presented with a dataset might be to produce summary statistics. The summary statistics we’ve just

viewed are not actually produced via a template: this dataset summary table is just an in-house

widget the TREE interface has to assist users with their exploratory data analysis. However, various

summary statistics can be produced via templates, and we will do this ourselves as a means of

illustrating both the TREE and workflow interfaces to Stat-JR.

Click on the first tab in the browser to return to the screen with the Regression1 inputs showing. If

you now choose the Template menu and click on Choose, a new window will appear that contains a

list of templates (and a cloud of key terms to help pare down the list to those most relevant).

Scroll down and select AverageAndCorrelation from the list and the screen will look as follows:

Figure 6

If we next click on Use then the main screen will reappear, but this time asking for the inputs specific

to this template. We can fill these in as follows (Operation: averages; Variables: normexam, girl; or

variables from your own dataset if not using tutorial):

12

Figure 7

Here we have selected averages (as opposed to calculating correlations) and chosen two variables to

work out averages for. If we then click on Next to confirm the inputs and Run to run the template,

the screen will look as follows:

13

Figure 8

At the bottom of the screen there is a results pane which displays whatever output object is selected

in the pull-down list just above it. Here we see the Python script (script.py) that has been run to

execute the template. If instead we pick the object table from the pull-down list of outputs then the

screen looks as follows:

Figure 9

So here we have done something really rather simple which is to execute a template that has taken

the two variables we chose and worked out their means and standard deviations; these should

correspond to those we have already seen in the Dataset Summary screen we looked at earlier.

14

We will shortly use this template in the workflow version of Stat-JR to create a workflow that

performs the same averaging operation. For this we need to pay attention to the names of the

inputs, which you can see in the grey Current input string3 box and again in the Command box below

(which is how one would run this template with these inputs in the Python command driven version

of Stat-JR).

As this implies, the templates are written such that the input questions asked of the user in the

browser window (in this example, Operation and Variables) might be different to the name the

template actually assigns to those input objects in the background (in this example, op and vars,

respectively). This simply allows the input questions posed of the user to be more expansive than

the underlying assigned names, which may be shorter to spare the coder’s fingers and allow for

coding efficiency. We’ll have a look at the template itself in a moment to illustrate how this

distinction is realised in its code.

So using TREE is a useful way to test out a template and find the names of the inputs it requires, and

the names of the output objects too (via the pull-down list above the results pane); i.e. we now

know:

 The name of the template: AverageAndCorrelation

 The inputs it requires:

o op, which we assigned the value averages

o vars, which we assigned the value normexam, girl

 The name of the template’s output most relevant to us: table

As well as gleaning a template’s required inputs by running the template in TREE, however, you can

also retrieve that information by looking at the code in the template file itself. In the Stat-JR

directory from which you ran TREE, you will see there is a subdirectory called templates. In this

subdirectory there will be a Python file for each template; for example AverageAndCorrelation.py

contains the Python code for the template we’ve just run. If you open this file you will see the

Python code as shown below:

Copyright (c) 2013, University of Bristol and University of Southampton.

from EStat.Templating import Template

class TemplateAverages(Template):

 'Choose to either calculate mean averages and standard deviations, or correlations, for

selected variables.'

 __version__ = '1.0.0'

 tags = ['Summary stats', 'Correlation', 'Averages', 'Standard deviation']

 engines = ['Python_script']

 inputs = '''

op = Text('Operation: ', ['averages', 'correlation'])

vars = DataMatrix('Variables: ')

'''

 pythonscript = '''

3 The input string allows the user to specify all the inputs directly, via the Set Inputs option in the Template
pull down list, without having to point-and-click through the list as we have done. If you click on Template >
Set Inputs you will see this input string reproduced in the Input string box; clicking on the Use button
populates the inputs with these values, which obviously will have no effect here, but it would if you first
changed a value, or indeed used the inputs from a previously-run template execution, as selected from the
History box above.

15

import numpy

import numpy.ma

import EStat

from EStat.Templating import *

tabout = TabularOutput()

if op == 'averages':

 tabout.column_headings = ['name', 'count', 'mean', 'sd']

 for i in range(0, len(vars)):

 var = datafile.variables[vars[i]]['data']

 tabout.add_row(vars[i], [len(var), var.mean(), var.std()])

if op == 'correlation':

 invars = numpy.ma.row_stack([datafile.variables[var]['data'] for var in vars])

 corrs = numpy.corrcoef(invars)

 tabout.column_headings = ['name']

 for j in range(0, len(vars)):

 tabout.column_headings.append(vars[j])

 for i in range(0, len(vars)):

 row = []

 for j in range(0, len(vars)):

 row.append(corrs[i, j])

 tabout.add_row(vars[i], row)

outputs['table'] = tabout

'''

Here you can see that the template code is structured such that it includes an inputs section where

you can see both the prompts asked of the user (Operation and Variables) and, importantly, the

names the template assigns to the values provided by the user to those prompts (op and vars,

respectively; all highlighted in yellow); i.e. the latter names are the same as those appearing in the

Current input string box in TREE. You can also see why we were offered a choice of averages or

correlation as values for op, since these are coded as the options to be presented to the user.

Below that you will find a section of the code called pythonscript; this contains the Python code

executed once the inputs defined in the section above have all been completed (i.e. had values

assigned to them) by the user (you can see that the objects op and vars are used in this section, so

the template cannot run to completion unless the user has provided values for them). On the last

line of this section you can see the output name of interest (table; again highlighted in yellow),

which is one of the outputs which appeared in TREE.

So either of these methods (via TREE, and via the template code itself) can be used to uncover the

information needed by a workflow in order for it to execute the operation we have just performed in

TREE. Having gleaned this information, we could ‘manually’ start building up such a workflow from

scratch in the LEAF (workflow) interface, but TREE can help us make a start by providing blocks

corresponding to our choice of input values, dataset and template. Back in the browser window you

will see a Make workflow button just below where you specified the inputs, above the Current input

string grey box. If you press this button a box will open entitled Save history. If the template

execution described above is the only one you’ve conducted in the current Stat-JR session then the

Only include last run box can remain unticked (otherwise tick as appropriate if you have run other

template executions beforehand).

Press the Workflow button; you now have a few options with regard to the choice of directory in

which to save it. You can simply choose any directory of your choice and then request LEAF upload it

from wherever you have saved it, or you can save it into one of the two directories in which LEAF

automatically looks for workflows. By default these two directories are (a) a folder under your user

16

name, e.g. C:\Users\YourName\.statjr\workflows, and (b) a folder under the Stat-JR install, e.g.

C:\StatJR\workflows4. To complicate matters a little further, workflows need to be saved in a

subdirectory of these root folders to be automatically accessible from LEAF: e.g. if the workflow you

are saving is called my_workflow.xml, then:

C:\Users\YourName\.statjr\workflows\my_workflow.xml

C:\StatJR\workflows\my_workflow.xml

…won’t work (i.e. your workflow will not be automatically accessible from LEAF), whereas:

C:\Users\YourName\.statjr\workflows\My new workflows\my_workflow.xml

C:\StatJR\workflows\My new workflows \my_workflow.xml

…will work (i.e. your workflow will appear be automatically accessible from LEAF, and will appear

under “My new workflows”).

1.5 Opening Stat-JR:LEAF
We will now open LEAF: the workflow interface to Stat-JR; you can open this via All programs >

Centre for Multilevel Modelling > StatJR - LEAF. This will fire-up another command window which

will contain debugging commands and another web browser window for the workflow version of

Stat-JR, as shown below:

Figure 10

Stat-JR’s LEAF system is still using Python as the code in the background but the web interface is

using a program called Blockly (developed by Google; https://developers.google.com/blockly/;

https://blockly-games.appspot.com/); this is a visual programming system that involves using blocks

to represent operations, and has been used by a variety of applications as an aid to help people

learn to code.

We will first open the workflow we have just made in TREE. Depending on where you saved it you

can either do this via the Upload link in the black bar at the top of the LEAF interface, or – if you

4 The distinction between these folders is that workflows saved in the Stat-JR install directory (e.g.
C:\StatJR\workflows) will (usually) be available to all users, whereas those saved under your own user name
(e.g. C:\Users\YourName\.statjr\workflows) will be available just to you.

https://developers.google.com/blockly/
https://blockly-games.appspot.com/

17

have saved it to one of the directories in which LEAF automatically looks for workflows on start-up –

via the Workflows pull-down list.5 Note that, whichever method you choose, you are asked to make

a choice as to whether you would like to (Up)Load or Import the workflow.

If you (Up)Load a workflow, this will clear any workflow currently displayed in the LEAF interface,

replacing it by the workflow you are bringing in.

If instead you choose to Import a workflow, this will keep the workflow currently displayed in the

LEAF interface and bring the imported workflow into the same workspace (you may need to move

blocks around to see them both). This can be useful if you want to add blocks from one to the other.

Having opened the workflow we saved in TREE, our screen will look as follows (to make things a little

clearer we’ve increased the size of the blocks here by pressing the + button just above the bin

symbol towards the bottom-right corner):

Figure 11

These blocks represent our earlier choices in the TREE interface as a workflow, and we could have

instead constructed it by choosing blocks from the menu on the left-hand side and dragging them

into the central area.

First we have a Start block, whose simple purpose is to indicate the start of the workflow (you will

find this in the Control menu). Then we have a Select dataset block (Data Preparation menu), with a

text block (Text menu) attached to the right of it indicating we wish to select the tutorial dataset.

Next we have two Set Input blocks (Models menu) which specify that the inputs “vars” and “op”

have the values “normexam,girl” and “averages”, respectively. As we saw earlier, “vars” and “op”

are the inputs for which the AverageAndCorrelation template needs values in order to run to

completion. Finally we have a Template block (Devel menu) with a text block to the right of it

indicating we wish to run the AverageAndCorrelation template.

If you press the Run button, towards the top right-hand corner, a new tab will open in the browser,

and after a short time the following content will appear:

5 NB If you have saved it to one of these folders during a session of LEAF, then you can refresh the list
accessible via the Workflows pull-down by pressing Debug > Reload workflows.

18

Figure 12

The current output from workflows is a little crude: essentially we get a list starting with “Block 1”

and numbered through to “Block 4”, corresponding to the four blocks (counting vertically,

downstream from the Start block) in the workflow. If we click on the pull-down list just below Block

4 (the Template block) we can see the outputs from the template execution; e.g. selecting table

displays the output we saw earlier in the TREE interface, containing selected summary statistics for

the variables normexam and girl.

Returning to the browser tab containing the workflow blocks, we can request that this table is

displayed automatically by using a Show block from the Output menu. We need to do this manually

as the Make workflow tool in the TREE interface currently does not have the facility to specify which

output to show. So, click on Output in the left-hand menu to find the Show block:

19

Figure 13

Having located the Show block, place your cursor over it and, holding down the left mouse button,

drag it into the central workflow area. You will see there is a groove into which it can fit under the

Template block: if you attach it, it should join to it with a satisfying clicking noise (if your speakers

are on), and visually ‘snap’ into place to look as follows:

Figure 14

Here you can see, in a hollow towards the right of the Show block, a faint ‘shadow block’: this is a

prompt, or placeholder, to save the user pulling in a block separately from the palette of blocks on

20

the left-hand side. It’s not actually an active block until we decide to type something in it, so let’s go

ahead and type the output we want to display, table, as follows:

Figure 15

At this point it would be good to save our modified workflow, so click on Save and specify a name

(we will name it after this section of the manual, and choose section1_05.xml) thus:

Figure 16

You will be asked for a directory, so store this file somewhere you know where to find it!

If you press Run, a separate tab will again open, but this time displaying the table towards the end:

21

Figure 17

1.6 Making our workflow interactive
As things stand we have what is effectively a log of what we did in TREE and for which there is no

interactivity. Next we will show how we can make the workflow interactive by asking the user which

variables they want to use to calculate the averages.

We will firstly do this rather crudely: click on the first tab to return to the workflow creation screen.

Next we will remove the Set Input block for “vars” from the workflow; there’s no need to delete it:

we can simply set it to one side of the workflow as shown below. The workflow system doesn’t

currently have a separate place to store fragments of workflow; however, only those blocks that are

contiguous with the Start block will be executed by the Run button, so effectively we’ve rendered

these inactive by removing them from the workflow stream: i.e. we’re simply storing them to the

side for now:

22

Figure 18

This time, after we click on Run, two aspects of the output are notable. Firstly there is a statement at

the top indicating “Extra code ignored”. This simply means that it has detected the Set Input block

we removed from the workflow and set to one side. Secondly, we are prompted for the outstanding

input values the template needs before it can run to completion:

23

Figure 19

If we click on standlrt and schgend (or variables of your choice) and then Submit then the workflow

will execute and look as follows:

24

Figure 20

And thus we have created a workflow that will ask the user for variables (from the tutorial dataset,

in our example) and then produce their means and standard deviations.

1.7 Adding question blocks
If we want to change how we ask for an input – i.e. the prompt presented to the user – from within

the workflow (cf. changing the code in the template itself) then instead of removing the Set Input

block from the workflow, we can instead reinstate it but this time with the addition of a question

block. So, move the Set Input block back in, and remove the text block in which the input values

were ‘hard-wired’ (you can select it and press the Delete button on your keyboard, or right-click and

select ‘Delete Block’, or finally you can drag it to the bin in the bottom right corner - the bin will

open and if you let go of the mouse button it will swallow the blocks!)

25

Then, from the Input list of blocks select the Ask multiple variables6 block from the list and drag it to

fill the hole we left in the Set Input block. You will see that the Ask multiple variables block has a

blank box in which you can type your question (truncated here, but we asked “Which variables do

you want to calculate an average of?”):

Figure 21

Running the workflow will then prompt the user with this question, as we see below:

Figure 22

Here if we answer the question we will once again get output showing the means and standard

deviations for the selected variables. Let’s overwrite the workflow we saved earlier with this version,

so save it as section1_05.xml.

6 We’re using the Ask multiple variables block here as it allows the user to select more than one variable in

their answer; the Ask single variable block only allows the user to select one variable.

26

1.8 Plotting a histogram
We will now move on from working with the AverageAndCorrelation template and turn our

attention to trying a second template and placing it in a workflow. This will be another operation

one might do when beginning to look at a dataset, namely plotting a histogram of a variable to

assess the shape of its distribution.

We can go back to TREE to identify the template we will need. If you don’t still have TREE active you

will need to restart it. Once you’re back on the main TREE window, select the Template list and click

on Choose. If you select Plots in the cloud of terms, you will see the list reduces to those templates

which generate charts, including one called Histogram, which we can use.

Figure 23

In an earlier section we chose to run our template of interest in TREE and then export a workflow

reflecting our choice of template, dataset and inputs via the Make workflow button. This time we’ll

try a different method.

Returning to the LEAF interface, make sure you have saved the previous workflow we were working

on (section1_05). Then, delete the blocks specifically relating to our execution of the

AverageAndCorrelation template (so that’s the Set Input, Template and Show blocks) as shown

below:

27

Figure 24

As an aside – whilst we’ve got this small set of blocks – it’s worth noting that one of the features of

using Blockly to realise Stat-JR’s workflow system is that many of the syntactical rules are inherent in

the shape of the blocks, and their readiness to fit together. As you can see, the Select dataset block

has a slot on its right-hand side, like the side of a jigsaw piece. As you might imagine, this can only

take another block which is appropriately shaped to fit into that slot. However, it can’t take any such

block: for example if you were to try to replace the current text block with a not block (from the

Logic menu), you’ll see it resists, like trying to join like poles of two magnets:

Figure 25

Clearly, this is the wrong sort of block (we can just delete it, as were only trying it out to prove a

point!) In this instance, of course, the shadow block is suggesting an appropriate choice of block: a

‘text’ block, which is exactly what we had anyway, so we can just re-attach our “tutorial” text block,

and we’re back where we were.

28

Next we’ll add a Template block indicating we wish to run the Histogram template we identified in

TREE; to do this, pull in a Template block from the Devel menu on the left-hand side (alternatively

we could, of course, have edited the Template block we just deleted) and write Histogram in the text

block attached to the right of it, as shown below:

Figure 26

Now, if we press Run, it will prompt us for the inputs the template needs. In this example we’ve

chosen to plot the variable normexam in a histogram with 15 bins:

Figure 27

29

Once you have pressed the Submit button, you will see that a final block appears (Block 4) pertaining

to the template execution; from the pull-down underneath it select histogram.svg:

Figure 28

30

So, we’ve been prompted for the input values the Histogram template needs, and have identified

the relevant output object (histogram.svg). If we now press the Re-edit button, towards the bottom-

left of the screen, we will see that a workflow appears containing the Histogram template’s inputs

(bins and vals) and the values we just assigned to them (15 and normexam, respectively). What this

workflow doesn’t have is the output object (it’s currently not possible to add that to a workflow via

the Re-edit button), so let’s add that ourselves by pulling in a Show block from the left-hand menu:

Figure 29

Now, if you Run this workflow, you see that the plot appears towards the bottom of the output.

Save this workflow as section1_08.xml.

1.9 Connecting up the operations
We have now created two workflows and an obvious next step is to join them together; to do this

we can import the earlier workflow we produced and then append them. With the last workflow we

constructed (section1_08.xml) still on the screen, select Upload from the black bar at the top, and

navigate to the workflow we earlier saved as section1_05.xml. Having selected it and pressed Open,

next choose Import file when prompted: this will bring that workflow into the same workspace as

the current workflow (rather than first clearing the workspace).

The two workflows may appear alongside each other, or perhaps one may be overlaying the other; if

the latter you can just move one aside so you can clearly see them both:

31

Figure 30

We now need to append the blocks pertaining to the histogram below those generating our

summary statistics of interest; remember we only need one Start block and one Select dataset block

(since both template executions use the same dataset):

Figure 31

If we press Run, and then answer the question when prompted (here we have chosen just

normexam) we will see that both operations are done thus:

32

Figure 32

1.10 Using variables in a workflow
So we have now seen how we can join up two template executions in one workflow and it is easy to

continue this with further operations to create a logfile-style workflow, either by appending blocks in

LEAF or via the Make workflow button in TREE.

We have investigated how to ask questions to replace hard-wired inputs and add an element of

interoperability. A natural extension of this is to ask a question where the answer is shared by

several templates downstream. To do this we will introduce the concept of variables within a

workflow and illustrate it by constructing a workflow that asks for a single input and then produces

its average and its histogram.

You will see in the list to the left there is a menu entitled Variables and in this list is a red set <item>

to block. Grab a copy of this block and place it in your workflow under the Select dataset block (if

you place it in the approximate area and let go of the mouse button it should be added into the

workflow thus):

33

Figure 33

By default the variable is called item but we can change this by clicking on the pull-down arrow to

the side of it and selecting New variable… A window appears where we can enter a name; we will

choose response:

Figure 34

Clicking on OK will select response as our variable name. We now need to assign it a value (in this

case the answer to a question), and so from the Input list select Ask single variable and move it to

the right of response. We can then add the question text (“What is your variable of interest?”) as

shown below:

34

Figure 35

This has created a variable (called response), the value of which will be whatever the user chooses

when prompted by the question “What is your variable of interest?” However, before running this

workflow, we first need to slot this variable (response) into places in the workflow where it is to be

used (as the values for inputs vars and vals, for example). Have a go at doing this yourself (you’ll

need a new type of block from this list on the left). Note that, as well as pulling multiple instances of

the same block in from the left-hand menu, if you right-click on a block you can choose Duplicate

from the resulting menu and a copy of the block appears (alternatively you can select the block(s)

you wish to duplicate and press Ctrl-C then Ctrl-V to copy and paste). The completed workflow looks

as follows:

Figure 36

35

Hopefully you managed to find the block you needed.7 We can now save this workflow as

section1_10.xml before clicking on the Run button to run the workflow. In our example we’ve

chosen avslrt in answer to the question:

Figure 37

7 Look under the Variables list. Once you’ve chosen the correct block, you can change the name away from

item by selecting response from the drop-down list in the block.

36

Here we see the mean and then a histogram for the avslrt variable; i.e. it’s taken our answer and

used it as input for two template executions.

1.11 Running a statistical regression model and showing predictions
We will now move on to actually fitting a statistical model in Stat-JR. We will continue our approach

of adding to our current workflow. We have so far seen how we can put together a sequence of

operations in one workflow but up to now outputs from one template execution have not yet been

used as inputs for the next template execution. We will remedy that by illustrating how to create

predictions for our regression model based on the model fit.

We will begin by returning to TREE to fit a model using Stat-JR’s built-in eStat MCMC engine. This

time we’re going to export the template executions we make in TREE as a workflow. We don’t want

to export earlier template executions, so it’s probably easier to open a new TREE session and work

with that.8

To do this we will use the Regression1 template to fit a simple regression. The Regression1 template

requires the user to include a constant in their list of predictors if they want to fit an intercept. As it

happens, the tutorial dataset we have been using has a constant of ones (the variable cons) which

we could use, but since you may be using your own dataset which might not have a constant already

in it, we’ll show how to add a constant to the dataset using the template Generate.

Here, having selected the template Generate in TREE, we request our constant of ones as follows:

Figure 38

On pressing Run we create a variable consisting solely of ones called intercept in a new dataset

called my_dataset (which is exactly the same as our original dataset, but with the new variable

appended to the end). Selecting this modified dataset (my_dataset) from the list of datasets, and

Regression1 from the list of templates, we can now include this new variable as one of our

predictors, setting up the inputs as follows:

8 If you want to close the current TREE session to avoid possible confusion, then remember to close the
browser tabs related your current TREE session and the associated command line window: this will be the one
with TREE in the title bar. An alternative, of course, would be to work within the current TREE session, and
then just delete any superfluous blocks we export as part of our workflow.

37

Figure 39

Here we are using the default settings for our MCMC estimation procedure9, although we answer

Yes to the prompt Generate a prediction dataset. Clicking on Next and Run will run the model and

choosing ModelResults gives a summary of the model we have fitted thus:

Figure 40

9 This particular template can only use this estimation engine, although many others can use a wide variety of
third-party software, including R, Stata, MLwiN, etc.

38

Now click on the Make workflow button and then, within the resulting box, the Workflow button,

and save it somewhere you can access from within LEAF.

Return to the LEAF interface and then Upload the workflow you have just saved during your TREE

session, again choosing to Import file so that your current workflow remains in the workspace.

Again, once you have done so, one workflow might be partially overlaying the other, so if so just

move one aside to clearly see them both:

Figure 41

We can attach this imported workflow (after first discarding the Start and Select dataset blocks at

the top of it) to our existing one, as follows:

39

Figure 42

We’re almost there, but there are a couple of changes we first need to make. Firstly, it is better

practice within the LEAF system to explicitly extract the modified dataset we need from the relevant

template execution, rather than rely on it being there in the global cache of datasets. So, remove the

Text block to the right of the Select dataset block midway down the workflow (the one containing

the text “my_dataset”), and replace it with a Retrieve block (found in the Other menu). The Retrieve

block retrieves a named object from whatever stage of the workflow execution is cited in the block.

Thus we have to give the object name we want (my_dataset)10 and tell it which block to take this

from. We perform the latter by referencing a unique ID code each block is assigned – it’s the black

Template block we need to reference (the one to which “Generate” is appended). If you select this

block you will see the corresponding reference ID appears in the “Selected block” box towards the

top right-hand side of the screen. In the example in the screenshot this is 16, but the unique block

IDs don’t always take this form: sometimes they are assigned long alphanumeric IDs (e.g.

pofzefaivnqbos0n3x7h) – it just depends on the history of the workflow (e.g. whether it was created

10 Note we could type this in the gap to the right of “Output”, as we have done in the screenshot, or if you still
have the text block we just removed you can attach it to the end of the Retrieve block, to the same effect.

40

via the Re-edit button, etc.) You will also note that we’ve copied this block ID and pasted it in our

Retrieve block (between “Block” and “Output”), as shown below:

Figure 43

Actually, let’s change this block ID to something more meaningful: making sure the relevant

Template block is still highlighted, type “Generate_constant” in the “Selected block” box and press

the Change button. You’ll see that the reference to it in the Retrieve block is also automatically

modified to reflect this change:

Figure 44

Note our choice of last in the Retrieve block simply tells the workflow to take the version of the

object created the last time this block was executed (this becomes important within loops where the

same block is called more than once).

41

Next, rather than hard-wiring our choice of response (y) variable in the subsequent model fit, we

need to feed in the variable (response) defined above, so the value for the input “y” to the variable

response as shown below:

Figure 45

Finally, append a Show block to the end of the workflow requesting the output ModelResults be

displayed:

Figure 46

We will Save this workflow as section1_11.xml and then Run it (in this example choosing normexam

as our variable of interest). Note that it will take a little longer for this workflow to finish its

execution, and nothing will appear until the workflow has finished. If you scroll down to the bottom

of the window after running it, it will look as follows:

42

Figure 47

So we see the results that we saw within TREE, from our model fit, appearing in the final block of the

output.

As we saw earlier, the Show block is not the only way to see outputs; we can view any of the output

objects from the regression model fit via the pull-down list under the block above (Block 27 in this

example) which represents the Regression1 template run. For example if we choose equation.tex we

get the following output:

43

Figure 48

The only difference with this and the Show block is that the pull-down list is interactive, but it can

only display one object at a time (whereas you could append several Show blocks on top of each

other).

1.12 Adding predictions to the workflow
Going back to the TREE interface, since we selected the option to generate a prediction dataset we

can look at the predictions graphically. The Regression1 template has created a dataset object called

prediction_datafile which we can select from the list of datasets in TREE (it will be in darker font to

indicate it has been generated by the software and is loaded in the current session). Having chosen

this as our dataset in TREE (it should appear in the black bar at the top once you have selected it) we

can perform operations on it – e.g. plot predictions – by choosing an appropriate template (we will

choose XYPlot) via the usual means.

Having chosen XYPlot, we can now set Y values to plot both the prediction and the original response

variable (pred_full and normexam, in our example) and the X values to be our predictor variable of

interest (standlrt, in this example). Clicking on Next and Run will give the following (if we select

graphxy.svg from the list):

44

Figure 49

Here we see the data in green and the regression line in blue.

So, to add this to the workflow we will need to change dataset (to the prediction_datafile generated

by the template). Let’s return to the workflow interface and add the following to our existing

workflow; note that we’ve changed the Block ID of the Template block for the Regression1 template

to “Simple_linear_regression” (by selecting the relevant Template block and changing its block ID via

the “Selected block” box towards the top right-hand corner):

Figure 50

45

As before, then, we change the dataset name via the Select dataset block, appending a Retrieve

block to the end of it, and specifying in that block that we want to use the output object called

prediction_datafile from the relevant template execution (the black Template block which runs the

Regression1 template).

For the graph, the input names and output objects are those we saw in TREE (although we can

create these dynamically, based on the user’s earlier choices: see Figure 125 in the Appendix for an

example of how to do so) – we will leave these to you to add (e.g. see Section 1.4; remember to

choose the corresponding template too; if in doubt, see Figure 125 in the Appendix). Save the

resulting workflow as section1_12.xml and then click on Run to see what happens (in our example

we again choose normexam when prompted). At the end of the run output you will see the

prediction plot thus:

Figure 51

So here we have demonstrated how we can link together output (via an outputted dataset) from

one template as input for another template.

1.13 What have we covered?
From this first session you should now be comfortable with using Stat-JR TREE: selecting a dataset

and template, entering inputs, running it and inspecting the outputs. We’ve investigated how to use

this information (the dataset, template, inputs and outputs of interest) to replicate the same

operations in the Stat-JR workflow system, either doing so manually in LEAF, via TREE’s Make

workflow button, or via the Re-edit button in LEAF. In doing so we have covered:

 how to find and append blocks;

46

 duplicating and deleting blocks;

 saving workflows;

 including questions in workflows;

 using the same variable more than once in a workflow;

 retrieving output from one template execution for use in a later template execution;

 the functional relevance of the Start block.

1.14 What’s next?
In the next section we will build on what we have covered and think about creating more interactive,

generalised workflows for fitting regression models and also introduce the idea of a statistical

analysis assistant. In doing so, we will also explore more of the workflow system’s functionality.

47

Section 2 A statistical analysis assistant for

conducting regression type models

2.1 Overview
In the first section we introduced Stat-JR’s TREE interface and its workflow system. By the end of

that section we had become familiar with blocks within a workflow that allow us to ask questions of

the user, to perform some statistical operations via Stat-JR’s template system, to output objects and

to use outputs from one operation as inputs for another operation.

In this second section we will introduce further blocks that will allow us to influence the route

through a workflow, and also additional templates that contain some textual output conditional on

the results. As well as covering the workflow system in more detail, our parallel aim in this section is

to think more about what people do when they want to fit models to a continuous response variable

when they have an independent sample from the population, i.e. we are focussing here on linear

modelling and the associated operations that go with it. As part of the eBook research grant we

would like to create an automated system (a statistical analysis assistant) that will take a user’s

dataset and by asking him/her questions perform an appropriate statistical analysis of it (or at least

offer the user useful help and guidance along the way). This section will make a modest start in

building one; we’ll be some distance from achieving a generalisable statistical analysis assistant, but

it will facilitate discussion about some of the possibilities and challenges one might encounter when

trying to undertake such an endeavour, and it will also allow us to investigate further functionality in

the workflow system.

2.2 Questions and a histogram
We will begin by simply creating a workflow that asks for some inputs and produces one plot. We

have already encountered blocks that ask for a single and multiple variable input, and we will use

those again here, but also introduce a third question block which asks for a dataset (this block is

available from the Input menu). So either start up Stat-JR:LEAF afresh or click on the Clear button to

clear the current workflow, and set up the workflow using the palette of blocks accessible from the

left-hand menu, as follows:

Figure 52

48

So here we have constructed blocks which first ask the user which dataset they would like to use,

and then asks them to nominate their response and predictor variables (truncated here) of interest

(assigning these to the variables resp and preds, respectively). We then plug in their response

variable as the values (vals) the Histogram template will plot (with 15 bins), and finally run the

template and show the graph (histogram.svg). You’ll notice that whilst we ask the user to nominate

their predictor variables, we don’t actually use these yet, but will do soon.

Save this workflow as section2_02.xml and then Run it. In this example we are still using the tutorial

dataset but you may like to try a different dataset yourself. Here is an example of the output:

Figure 53

In this example we have chosen normexam as our response from the tutorial dataset and hence a

histogram of normexam is returned.

2.3 Introducing the “for-do” block
We also asked for predictor variables, so we can do something with those as well: for example let’s

plot the response against each of them in turn. Here we face a situation we haven’t previously

encountered in that there are (likely to be) multiple predictors, so we need to introduce a new block

which performs the same operation for each one. Such blocks are found in the Control list on the

left hand side, and in this example the for-do block is a good choice:

49

Figure 54

The for-do block has slots for two attached blocks (or sets of blocks) – the uppermost slot (to the

right of “…list”) requires a list containing elements to loop through, whilst the other slot, beneath,

requires blocks defining what to do to each element of that list. The variable i will contain the value

from the list at each pass through the for loop, and so can be used as an index to reference within

the instructions.11

So what we want to do is to loop through the variables the user nominates as predictors, and for

each one plot it against the user-nominated response variable (we can use the XYPlot template we

used in the last section), showing the relevant output (graph) for each. Have a go at doing this

yourself, and then compare it to our worked example in Figure 126 of the Appendix.

How did you get on? Save your workflow as section2_03.xml, and then Run it. In our example,

below, we have chosen normexam as our response and the predictors standlrt and avslrt:

11 Conventionally, i (perhaps an abbreviation of index, iteration, or integer) is used as the default counter in a
control structure such as this, but you can change it to whatever name you like (although some care is needed
if names have been used elsewhere).

50

Figure 55

51

Here we see that both of the predictor variables we chose appear to have a positive relationship

with the response (normexam), with avslrt plotted as discrete bands of points as this variable is

constant for each school in our two level dataset.

2.4 Univariable models – creating an intercept
So we’ve started to visually investigate relationships in these plots and, as well as perhaps giving the

user the option of different plot types (or of different settings for the plots we’ve used) we might

want to allow them to explore cross-tabulations, or to examine the effect of transforming variables

on their plotted distributions and relationships, and so on. We don’t have time to explore all these

options in this short example, other than to acknowledge they’re all viable choices at this stage of an

exploratory data analysis (and there may be many more options we have left out too; e.g. what

would you do?) Instead, we’ll jump into some models and run analyses with each predictor in turn,

in what epidemiologists call univariable models. We can use the Regression1 template that we used

in the first section. You will recall that it requires an intercept to be explicitly added as a constant in

the list of predictors, and so as before we can generate a constant again, using the Generate

template.

As we found in Section 1, we will need a few blocks to generate a constant: four for the inputs, one

to run the template, and another to extract the output of interest (the dataset with the new variable

in it). In fact, to help further organise our workflow we can nest these into a grouping block (see the

green block with group description written on it in the Other list on the left-hand side). This block

helps us to visually structure our workflow (identifying contiguous blocks all concerned with the

same function), can be collapsed for brevity (by right-clicking on the grouping block and selecting

Collapse Block), and allows easy duplication of all the blocks inside it (just by right-clicking the

grouping block and choosing Duplicate), although it can’t be called from elsewhere in the workflow

(unlike procedures, which can; we will investigate these in Section 3).

Here we’ve nested our completed Set Input blocks and a black (run) Template block all inside a

grouping block, together with a Retrieve block. As you can see, we have given the grouping block an

appropriate name (“Generate intercept”) to describe the function of the blocks within. Instead of

plugging the Retrieve block straight into a Select Dataset block, we assign it to a variable (which we

happen to call modeldata), and then, outside the grouping block, we plug this into the Select dataset

block. We’ve also changed the default block ID for the black Template block associated with the

Generate template to “Generate_constant” and used this to reference that block in the Retrieve

block. Here we constructed this section of the workflow afresh, but as we’ve seen in earlier sections

we could instead have (a) imported another workflow and taken our blocks of interest from that,

deleting the rest (e.g. section1_11, which we made earlier: if you do this make sure you select

Import, otherwise you will over-write the current workflow), (b) run the Generate template in TREE

and imported the resulting workflow, or (c) used the Re-edit button to populate input values for the

Generate template.

52

Figure 56

Here we’ve collapsed the block, helping to simplify what is becoming a busy workflow:

Figure 57

In fact we can further add grouping blocks around those generating the histogram of the response

variable, and another around our for-do loop, as follows:

53

Figure 58

Collapsing those blocks effectively shows the workflow at a higher level of information:

Figure 59

To complete the operation we will use a block we haven’t yet investigated, namely the Summary

Statistics block available in the Data Exploration block list. This block will produce summary statistics

for the dataset and we can pull these out for display by adding a Show block for the “table” output,

as shown below. In fact, the Summary Statistics block hard-wires the execution of a template called

SummaryStats, with the inputs that template requires hardwired too (to include all the variables

contained in the current dataset); i.e. the same effect could be achieved by using Set input and

Template blocks, as we’ve done previously.

54

Figure 60

Running the workflow should still produce plots and finally the summary table thus (for tutorial):

Figure 61

You will see that at the end we have the new column labelled intercept. (You may also notice that

the Summary Statistics block (via the SummaryStats template) produces a table with some rows

which are better suited to an MCMC chain (such as the ESS (effective sample size) and BD (Brooks-

Draper) diagnostics).

Save your workflow as section2_04.xml.

2.5 Univariable Models – running the models
We will next perform the actual model fitting by looping through the list of predictors. Note, in this

short example, we are assuming that all predictors will be treated as continuous rather than

55

categorical variables and thus be included in the model in their current form rather than as a series

of dummy variables. Recall that in the first section we fitted a regression model and so many of the

input blocks will be the same as we used there. To begin we will take the current workflow and bin

the last two blocks (for Summary Statistics). We will add a grouping block which we will label as

“univariate model fitting” thus:

Figure 62

We will now need to loop over the predictors and so we will add a for-do loop block inside the

grouping block and begin filling in the inputs required for a regression as shown below:

56

Figure 63

These inputs are just a reiteration of what we chose in the last section for this template, although we

need to add the y and x variables. For y we simply choose the resp variable nominated (by the user)

earlier in the workflow but for x we need to introduce a new block, namely the create list block

(available from the Lists menu to the left). We will use this block to create a list of names for the x

variables. Here you can reduce the number of items that the create list block expects by clicking on

the blue button in the create list block and dragging out one of the items from within the block as

illustrated below:

57

Figure 64

You’ll see we are creating a list that includes the variable intercept and whatever is the current

predictor (as indexed by j) as we loop through the list. We next need to add the template block and

we will also add a Show block for the ModelResults thus:

58

Figure 65

If we now save this workflow as section2_05.xml we can then run it. Note we will be fitting an MCMC

model for each predictor so it may take a while to run. Below are the last outputs for the tutorial

dataset with response normexam and predictors standlrt and girl.

59

Figure 66

Here we see the results for a model with just girl as the predictor (normexam is the response

variable), and higher up were the results for a model with standlrt as the sole predictor instead. By

viewing the beta_1 parameters in the model fit with girl we can see that the mean estimate of its

effect is far larger than its standard deviation (sd) and so there is a significant effect of gender on

exam score.

2.6 Interrogating the outputs
It would be good to automate this description (of significance) or even simply to construct a table

from the model results that includes the significance of the predictors. Looking down the list of

outputted objects (e.g. via the pull-down list in the penultimate block of the workflow output

window), we can see that the model parameter estimates are also returned as a .dta file, with the

name modelparameters.dta, and so we can work with this dataset.

To do this we can add to the workflow within the for-do loop:

60

Figure 67

Here we’ve included another Retrieve statement, this time to pluck out the modelparameters.dta

dataset, and have changed the block ID for the Template block associated with the Regression1

template to “Simple_linear_regression”.

We will next append an additional column to this dataset that contains the ratio of the mean

estimate to its standard deviation which we will give the name zscore (since, for the fixed

parameters, this will have an approximate normal distribution). To do this we will use the Calculate

template which adds a variable to the working dataset based on an expression defined by the user.12

Going back to TREE (or opening it, if it is closed), your last execution may still be the model run via

the Regression1 template, but if not you can run one (the specifics of the model you fit don’t matter

so much here, we’re just running one to demonstrate use of the Calculate template in post-

processing the results). Having run a model, change the working dataset to modelparameters.dta,

and the template to Calculate. You’ll see from the template description that the expression it

evaluates is based on numexpr syntax. numexpr is a Python package “for the fast evaluation of array

expressions elementwise” – there’s a hyperlink in the template description which takes you to a

supporting website describing the operators and functions it supports. We need to ensure that the z-

score is positive, so can use the abs function to return the absolute value of the expression mean/sd

(dividing the columns of interest from our selected dataset); our whole expression therefore is

abs(mean/sd). The screenshot below shows our inputs, and also the outputted dataset (which we’ve

chosen to call zscore_table) in the results pane at the bottom:

12 NB: there is also an in-built Calculate block in the workflow system which simply calls the Calculate
template, although it currently outputs a dataset with the name a which is perhaps a little opaque for the
user, so here we use the template directly instead.

61

Figure 68

So let’s now convert this into workflow blocks; of course we could save this as a workflow in TREE

and export, but given it involves just a few blocks it’s just as quick in this instance to assemble the

blocks ourselves in LEAF:

Figure 69

Press Run to check we’ve set this up correctly. Does the output make sense? In our example we

chose standlrt, girl as our predictor variables; once it had been running for a few seconds it strangely

asked us to nominate our Response and Explanatory variables for the Regression1 template –

behaviour we weren’t expecting:

62

Figure 70

So it’s behaving as if it doesn’t have the inputs it needs to run the Regression1 template (hence it’s

asking the user for them). Let’s look back at the workflow; can you work out what might have

happened?

Figure 71

Inspecting our workflow indicates that before the group of univariate model fitting blocks start, we

select our working dataset (modeldata): this is the dataset from which the inputs for the Regression1

template are to be drawn. However, within the model-fitting loop we change the working dataset

away from this one, and instead select one of the datasets outputted by the Regression1 template,

modelparameters.dta, as the working dataset to use when calculating the z-scores. When the loop

starts over with the second predictor variable, then (assuming the user has chosen >1 predictor), the

63

working dataset is modelparameters.dta, which has a whole different set of columns from the one

our inputs (as written by us) within the loop are expecting. Looking back at the workflow outputs

tab, this makes sense: it’s asking us to choose variables for the Response and Explanatory variables

which are from the outputted modelparameters.dta dataset, and further up we can see that it has

actually fitted one model successfully: when it first passed through the loop; the problems began

when it swept through for a second time.

Let’s remedy this by moving the Select dataset: modeldata blocks so that they appear within the

loop. That way, the working dataset will be changed to the one the Regression1 template inputs are

expecting each time the loop begins again:

Figure 72

Pressing Run this time results in the workflow working as anticipated, as the end of the outputs

window indicates:

Figure 73

64

As all our ‘univariable’ models are just fitting the intercept and one predictor during each run

through the loop, then we know that the important number in the table indicating whether we have

a significant predictor is in row 3 of the last column. We can interrogate individual entries in a table

by extracting them into variables. We will do this here as indicated in the bottom of the workflow

below:

Figure 74

So here we’ve defined an item called zscore as comprising the value of whatever is in row 3 of the

column headed “zscore” of the table we constructed with the z-scores in it (zscore_table).13

We now want to make some form of decision based on the value of our zscore item and for the

purposes of this example we will do something simple, namely indicate in the output that the

predictor is significant if the zscore is greater than 1.96. We can do this by using some further new

blocks – an if block that is available from the Control block list, a light blue comparison block

available from the Logic block list and Comment blocks available from the Output block list.

We will begin by simply grabbing the three blocks and arranging thus:

13 NB: the blue block is retrieved from the Math block list, and the Extract block is from the Other block list.

65

Figure 75

By default, the if-do block can do something if the if statement is evaluated as true, but it isn’t giving

us the opportunity to state what we wish to happen if the if statement is evaluated as false.

However, we can modify the block to suit our requirements by clicking on the blue symbol on the if

block to expose structural changes one can make thus:

Figure 76

If you drag the else into the if then we can add an alternative if the condition tested is evaluated as

false:

66

Figure 77

As you do so you can see the if-do block turning into an if-do-else block. Clicking on the blue symbol

will return control to the main workflow and now we can fill in the gaps in the blocks. Firstly we need

to define our conditional statement as zscore > 1.96 by using an appropriate combination of blocks,

and then instruct the if-do-else block what to do when it returns ‘true’, and what to do when it

returns ‘false’. The Comment blocks are simply used to send a string to the output. We could use

these to simply say this variable is significant or not depending on the result of the evaluated

expression, but it’s helpful to the user if we include the predictor’s name as well; to do this we can

use the create text block to create a text string that contains the current predictor name used in this

iteration of the loop (remember to include a space at the end of “…variable ” and the start of “ does

not…”):

Figure 78

If we save this workflow as section2_06.xml and then run it we can see it in action. Here again I am

using the tutorial dataset with response normexam and predictors standlrt and girl:

67

Figure 79

So here we see the textual output indicating that girl has a significant effect on normexam14. We can

use the if-do block to perform more advanced operations like running different templates depending

on the result of the evaluated statement, and we can also nest if statements to create more complex

structures too.

You should now hopefully have an idea of how, through conditional blocks and comment blocks, we

can produce a system that can give feedback and take the user through the workflow in different

ways.

2.7 Templates that do their own interrogation
We will finish this section by introducing a couple of templates that have some built-in interrogation

of their outputs. Firstly we will replace the Histogram template that we used towards the start of our

workflow with a template by the name of HistSkew which gives textual feedback about the shape of

the variable.

In addition, whilst we haven’t greatly dwelt on the fact that we are fitting our model using MCMC

estimation, we can pay our choice of method a little more attention here by checking whether we

have run our MCMC chains for long enough. Indeed, we have created a template called

MCMCExplanation which aims to do precisely that.

2.8 Checking for skewness
Let’s begin by replacing the current Histogram template in the workflow. If we continue from the

workflow as stands we will need to Expand the block entitled response histogram (to make life

easier we can also Collapse the univariate model fitting block). The workflow will then look as

follows:

14 Obviously this is quite a crude way of evaluating evidence for an effect (one would typically wish to look
beyond simply considering whether a test statistic has an associated p-value below 0.05 or not), but this
example nevertheless illustrates the functionality of the if-do-else block, using it to return conditional textual
output.

68

Figure 80

The HistSkew template actually has the same inputs as the Histogram template, so we only need to

change the name in the Template block and then add the additional outputs as follows:

Figure 81

Of course, we could have discovered the names of the outputs we required by running the Histskew

template in TREE or LEAF, but for brevity we’ve done that for you. We’ve also detached (but not

deleted) the section of workflow downstream of the response histogram group of blocks; this is

simply so our outputs of interest are returned more quickly without having to first wait for all the

models to fit. Running this workflow we see the following outputs:

69

Figure 82

So the HistSkew template simply works out the skewness of the column of numbers (given in the

table along with its significance) and based on this statistic provides a textual output providing some

(hopefully appropriate) information about the distribution. We could use this in a statistical analysis

assistant to potentially suggest fitting a transformed response variable to make normality of the

residuals more likely if the data are very skewed (whilst remembering it is the residuals not the

response that is assumed normally distributed).

Attach the latter part of the workflow back onto the former part of it, and save it as section2_08.xml

before continuing.

2.9 MCMC Explanation template
We will next add some extra blocks to the univariate model fitting group of blocks and so let’s

expand this group, and collapse the response histogram group. To provide feedback on the MCMC

chains, we need to select them from amongst the output of the Regression1 template and then feed

them into an appropriate operation. The Regression1 template produces an output object called

modelchains. To illustrate its structure we’ve selected it from the pull-down list of outputs after

running the workflow in the screenshot below:

70

Figure 83

As you can see, there is a column for each parameter, with rows corresponding to the value at each

iteration of each chain (chains 2 and 3 appear further down), so here we have our chains.

We will add some MCMC explanations after the model fit, so let’s insert some blocks under the

Show: ModelResults block, changing our working dataset to modelchains. We will run the template

MCMCExplanation which requires one input only (incol), namely an MCMC chain. The output we are

interested in is called mcmctext:

71

Figure 84

So here we have changed the dataset (to modelchains) and then repeated three steps of setting the

incol input, running the MCMCExplanation template and showing the resulting object of interest

(mcmctext). We do this for the intercept (beta_0) the slope (beta_1) and the residual variance

(sigma2; as an exercise, perhaps at the end of the section, you may like to try converting this to a

loop). Save this workflow as section2_09.xml.

If we Run it you will see it creates lots of output, including the mcmctext object we have just added,

e.g.:

72

Figure 85

Within this template we have written code to interrogate the chains that come out of the MCMC

algorithm, and have used the results to tailor output in the style of a short report. The hard work’s

done in the template here, and this is an alternative to coding such interrogations within a workflow,

albeit one which is somewhat less transparent since the user would need to go into the template

code if they wished to change what is written, or query the algorithms. We might also like to allow

the user to decide whether to run the chain for longer based on the diagnostics, and so this would

require interaction within the workflow.

2.10 What have we covered?
In this section we have made a tentative start to building a ‘statistical analysis assistant’, in doing so

encountering some new functionality, such as:

 grouping blocks;

 control structures, such as if-do blocks;

 modifying the functionality of blocks (e.g. changing if-do to if-do-else);

 selecting elements from tables;

 returning textual output from a workflow;

 investigating templates which have their own textual outputs.

In the third section we will return to teaching-focussed examples and show how we are updating the

LEMMA training materials to be used within a workflow format.

73

Section 3 Making workflows to support the

LEMMA training materials

3.1 Overview
This section is somewhat different to the previous sections in that all the workflows have been

written for you and the idea is simply that you follow them and learn some further features of the

workflow system as you go. We will be using workflows that aim to produce the equivalent analyses

presented in the MLwiN practical for Module 3 of the LEMMA training materials (written by Fiona

Steele). It is therefore best to have a copy of the practical with you as you run through the workflow

(the website supporting the online LEMMA training materials can be found here:

http://www.bristol.ac.uk/cmm/learning/online-course/index.html).

3.2 Introducing procedures
To begin you will need to start up Stat-JR:LEAF, or return to the workflow screen if it’s already open,

and press Clear. The screen will look as follows:

Figure 86

The workflows we will use can be opened from Workflows > LEAF_Guide (via the black bar at the

top of the LEAF interface); there’s one for each of the five sections of the LEMMA Module 3

practical, and you will find them saved as lemma3_1 … lemma3_5. Let’s open the first of these,

lemma3_1:

http://www.bristol.ac.uk/cmm/learning/online-course/index.html

74

Figure 87

This looks somewhat different to the workflows you have seen previously. There appears to be a

rather short workflow contiguous to the Start block consisting of a Show block, one set <variable>

block and a purple block that we haven’t yet come across. There are then some other blocks

elsewhere in the workspace, which do not appear to be connected to the main workflow.

The purple blocks relate to procedures; these are available from the Procedures menu which, if you

click on it, looks as follows:

Figure 88

The top three blocks are always found in this list, whilst the others appeared in the list as we added

procedure blocks when building our workflow – we describe this further below. We used the top

block to create the procedures in this workflow. It looks similar to the grouping block we used in

75

Section 2 – we can change the name away from “do something” and place some blocks within the

‘mouth’ of the procedure block which will be executed when the workflow reaches it – but one

important difference is that it’s call-able: we’ve been able to place it away from the main workflow

because we can call it from there.

To demonstrate, if we bring another of these onto the central workflow pane, and give it a name in

place of the default “do something” (we’ve chosen “run a model” in this example), another purple

block (with “run a model” written on it) has now appeared at the bottom of the Procedures list:

Figure 89

If we next click on the blue button on the procedure block we have just introduced, we can modify

the procedure block, requesting that it accept a named input when called – here, in keeping with a

number of the other procedures we produced when originally writing this workflow, we’ve called

the named input “nopause”:

Figure 90

76

Now if we look again at the list of blocks under the Procedures list we see the block at the bottom

has been modified, and now looks just like the ones immediately above it:

Figure 91

This new block (the one which has appeared at the bottom of the left-hand list) is the block we

would use if we wished to call the procedure we’ve just defined (although we’ve not defined it fully:

we haven’t added any blocks in the procedure itself in this simple example). Since we’ve modified it

such that it takes an input (called “nopause”), we can use this input to control internal aspects of the

procedure.

Let’s bin the procedure we’ve just made (you’ll notice the Procedures list is modified appropriately)

and turn our attention back to the original workflow. It has two procedures defined: one named

Pause and another named Mod3.1; this latter procedure carries out all the instructions in section 1

of the LEMMA Module 3 practical. The procedure called Pause is a lot shorter; like the dummy

procedure we produced for illustration a moment ago, it takes an input called nopause. Looking

inside the Pause procedure we can see that it evaluates this input via an if-do block (as used in

Section 2). The use of not when evaluating the nopause item means that if nopause is ‘false’ then it

will set an input called “cols” (the name we’ve given it here is incidental) to be a Boolean yes/no

question asking the user whether they wish to continue or not.

The calls to the Pause procedure are within the large Mod3.1 procedure, whilst the nopause input it

uses is defined in the main workflow, just three blocks below the Start block. It’s currently set to

‘true’, which means that the whole workflow would run without pausing when you click Run; if it

were instead set to ‘false’ the user would be prompted with the question “do you want to

continue?” whenever the pause procedure was called.

So here a procedure is being used not for data analytical purposes, but to simply modify the

interface for the user; cf. the other procedure, Mod3.1, which is used for data analytical purposes.

Below we run through each of the five workflows (lemma3_1 … lemma3_5) in turn.

3.3 LEMMA P3.1: Regression with a single continuous explanatory variable
So let’s now look at the first section of LEMMA Module 3.

77

If you press Run, the workflow will execute; this will take some time (you may see a flurry of activity

in the command line window running in the background), so whilst its running we can look at the

workflow blocks themselves.

You will see that the procedure consists of green grouping blocks identifying what each section of

code does, with occasional Comment blocks. These Comment blocks link the workflow to the page

numbers in the LEMMA documentation, and the text in the Comment blocks will be printed out in

the output. The workflow is also punctuated by calls to the Pause procedure which, as described

above, if set to ‘false’ would pause the workflow and present the user with a prompt asking whether

they would like it to continue or not. Otherwise, the functional structure of the workflow is much

like that encountered in the last two sections: Set Input blocks specifying the inputs for subsequent

Template executions, and Show blocks displaying certain outputs from those executions.

Once it’s run to completion you will see the following output if you scroll down:

Figure 92

Here is the histogram from page 24 of the MLwiN practical. If you have two screens (or two

windows) you can have the workflow-code window and the workflow-results window up together to

see their correspondence.

In this first section, whilst a number of the blocks are familiar to us from the first two sections, some

of templates aren’t. We make use of the Tabulate template that can produce quite a wide range of

summary statistics in tabular form and is designed to mimic the MLwiN tabulate window. We also

use a RecodeValues template for recoding the values of a categorical variable, again mimicking the

MLwiN window for recoding values.

Scrolling down the workflow reveals some other new templates we have used:

78

Figure 93

Here we use the XYLinePlot template which is simply a variant of the XYPlot that plots lines rather

than points. Then, having switched dataset to the prediction_datafile generated from the model fit,

we use in quick succession: Calculate (which you have encountered before) to create residuals from

responses and fitted values; Standardise, to create standardised residuals from raw residuals and

their standard errors; and Zscore, to create normalised scores from the (standardised) residuals.

Each of these templates adds a column to a dataset, each of which we save using the same name,

ensuring we are using the correct (latest) version by appending the Retrieve block onto a Select

dataset block.

As an exercise you might take your own dataset and see if you can, by choosing one response and

one predictor, replicate this exploratory analysis on your dataset: which aspects of the workflow

would you need to modify to accommodate your own dataset, and how?

3.4 LEMMA P3.2: Comparing groups: regression with a single categorical

explanatory variable
We can now look at the next workflow, lemma3_2 (accessible via Workflows > LEAF_Guide):

79

Figure 94

Section 3.2 of the LEMMA MLwiN practical covers some basic modelling of categorical predictor

variables. The workflow here consists of some tabulations of the response variable (score) for

different categorical variables using the Tabulate template, several calls to the Regression1 template

for model fitting and much use of the Calculate template to create dummy variables for the different

categories of social class and the different cohorts, primarily because the models fitted have

differing base categories.

There are no really new templates or blocks here so we suggest you simply Run the section and

cross-reference it with the relevant LEMMA materials. If you have your own data and it contains

categorical predictors you might like to adapt the code to your dataset.

3.5 LEMMA P3.3: Regression with more than one explanatory variable (multiple

regression)
We can now look at the next workflow, lemma3_3:

80

Figure 95

This workflow is actually quite short as this section of the LEMMA 3 MLwiN practical simply

introduces the concept of multiple regression by placing the three predictor variables, investigated

separately up to that point, into the same model. It does this using the Regression1 template, with

which we are familiar. It then also displays a tabulation of two categorical variables to show how

social class has changed over time.

Again we suggest you Run the code and investigate whether it replicates the LEMMA materials, and

if it relates to your own dataset try modifying it accordingly before moving onto the next section.

3.6 LEMMA P3.4: Interaction effects
This section is quite a long one in the training materials. Here is workflow lemma3_4:

Figure 96

In this section of the LEMMA materials the concept of interactions is introduced, and several

regressions are fitted. To start with a multiple regression of cohort and gender on the hedonism

81

score is fitted. The resulting model fit is plotted using a template we haven’t come across previously,

XYGroupPlotLine, which plots separate lines for each group. Another new template, Choose, is then

used to select subsets of the data, firstly all boys and secondly all girls, and separate regressions of

the hedonism score on cohort are performed for each subset. To illustrate interactions, the

Calculate template is used to create the interaction term and a model including it is fitted. The

XYGroupPlotLine template is used again, plotting separate lines that are not parallel for the two

genders.

Attention then moves from gender to social class, which has more categories. The Calculate

template is used to create interactions before the Regression1 template is used to fit a model

including these interactions. The fit of the model is illustrated in two ways using the XYGroupPlotLine

template. Firstly a straightforward predicted line plot with a line for each social class and then a plot

of the differences for each social class from a base category. Here the workflow illustrates how to

extract values from a table of results thus:

Figure 97

This takes the values of the means of beta_0 and beta_1 from the model fit, which are then used to

create the differences (stored as predscore) from the base category (social class 3) as shown below:

Figure 98

Finally the plot is constructed before a final model without interactions is constructed for

comparison purposes.

82

Again we suggest you try running the section to satisfy yourself you understand the code and see

how it replicates the section in the LEMMA materials. If you have suitable data you might consider

modifying the code to use your own dataset.

3.7 LEMMA P3.5: Checking model assumptions in multiple regression
In this final short workflow (lemma3_5), the various predictor variables are brought together in one

final model. This model isn’t so easy to show graphically so instead this section focusses on checking

the fit of the model.

Figure 99

In practice this section very closely resembles the first section only with a more complex model, i.e.

all the calculations and plots are ones we have seen before. We suggest you Run the section to

replicate the LEMMA materials and then consider what you would do with your own dataset.

3.8 What have we covered?
In this section we have demonstrated the use of procedure blocks to group sections of workflow

together which can then be called from elsewhere in the workflow. We have also encountered a

number of new templates, and have more generally demonstrated how we might use the tools of

Stat-JR’s workflow system to replicate the outputs found in the LEMMA training materials. Given

Stat-JR’s ability to interoperate with a wide variety of third-party statistical software packages (R,

MLwiN, Stata, etc.) this workflow could eventually be modified to allow the user to toggle between

packages. In doing so it could expose the scripts (R scripts, .do files, etc.) used to run each execution,

so that the user can cross-reference the script and outputs from those packages, and gain insight

into how the same operation might be achieved by a number of different packages.

At this point you should have the tools to try out other things. For example, you may like to consider

fitting other models to your own dataset, perhaps even using other model-fitting templates (e.g.

1LevelMod, 2LevelMod) which you can always test first using TREE.

83

Section 4 Translating a workflow into an

eBook
In this section we will create a workflow within LEAF and explore exporting it to Stat-JR’s eBook-

reading interface, DEEP.

To start things off we will load up the workflow system which will give us the usual window as

shown:

Figure 100

We’ll quickly construct a workflow using the Re-edit button: a tool we briefly touched on in Section

1.8. We will start off by producing what we might call a ‘skeleton workflow’: a stripped down

workflow that only contains the Start block, the Select Dataset block and the black Template blocks.

To create this skeleton workflow pick the Start block from the Control menu, the Select dataset

block from the Data Preparation menu and two Template blocks from the Devel menu so that the

workflow looks as follows:

84

Figure 101

Next we will fill in the shadow blocks so that we have the names of the dataset (we’re using the

tutorial dataset we used earlier) and some templates which will allow us to explore aspects of the

dataset (you may recall we encountered these two templates in Section 1):

Figure 102

This is a valid workflow but doesn’t contain any inputs and so, as we saw in Section 1, when input

values are not specified the user will instead be prompted for them when the workflow runs. Note

that in this example, since we haven’t specified how the input values are to be requested (e.g. via a

prompt of our own choosing), the questions will simply be those that we observe in TREE.

If we click on Run we will see the following:

85

Figure 103

Here we see prompts for the input values for the AverageAndCorrelation template, which we can fill

in. Here we have chosen averages as the Operation, and normexam and standlrt as the Variables;

after pressing Submit we see the following:

Figure 104

So we’re now being prompted for values for the Histogram template inputs; we’ve selected

normexam as the Values to plot, and have typed 20 into the Number of bins. On pressing Submit,

the relevant output from the AverageAndCorrelation template, table, and that from the Histogram

template, histogram.svg, will be created but not displayed until we select them from the pull-down

86

lists associated with each template execution; here first is the output table from the block titled

TemplateExecution(template=AverageAndCorrelation):

Figure 105

…and next the output histogram.svg from the pull-down list associated with the Histogram template

execution:

87

Figure 106

At the bottom of the screen you can see the Re-edit button: as we saw in Section 1.8, this will return

the full workflow including the values for the inputs we specified. So, click on this now and you

should see the following:

88

Figure 107

So this workflow is a log of the workflow we have just run. If we wish to include the output objects

then we need to add two Show blocks from the Output menu after the respective Template blocks,

as follows:

Figure 108

If we were to run this workflow now it would automatically execute to completions, using the input

values we chose earlier, and displaying the two outputs we’ve place in the Show blocks.

Save this workflow as section4_01.xml.

We will next extend our workflow by considering a regression, as we did in Section 1. Here we will

simply add an additional Template block (from the Devel menu) to the end of the workflow and type

Regression1 in the associated shadow block:

89

Figure 109

If we next press Run then, after the templates has calculated the averages and generated the

histogram, we will need to fill in the many Regression1 inputs that appear in sequential stages thus

(here we’re regressing normexam on standlrt, and are including the constant of ones (cons) already

in the dataset as a predictor in order to fit an intercept to the model, cf. earlier examples in which

we demonstrated creating a constant anew):

90

Figure 110

…and (we’re just accepting the defaults here)…

91

Figure 111

…and…

Figure 112

…and finally…

92

Figure 113

Once we have specified this last value, and clicked Submit, then the template will run. Once it has

finished we can display outputs from the template execution, for example here we have chosen

ModelResults:

Figure 114

If we click on Re-edit we will now get a longer workflow that, if executed, would run all three

templates in order:

93

Figure 115

We will add a couple of Show blocks to show the ModelResults and beta_0.svg output objects (the

latter consists of six plots of various MCMC diagnostics for the beta_0 (intercept) parameter):

Figure 116

Save this workflow as section4_02.xml.

94

Now if we run the workflow the three templates will be executed in order, and the four output

objects will be shown. The sixway plot (beta_0.svg) can be seen in the window below:

Figure 117

As you might imagine, if we were to press Re-edit again we should get exactly the workflow we just

ran, however we will instead click on the Save to Ebook button.

When we do this a popup appears for which we will specify the requested information as follows:

95

Figure 118

Clicking Save then gives a standard Save As window in which we then need to save the zip file to a

directory from which we can retrieve it from within Stat-JR’s DEEP interface.

The DEEP interface is Stat-JR’s eBook interface and can be accessed by selecting All programs >

Centre for Multilevel Modelling > StatJR – DEEP. As with the LEAF interface, a console window will

pop-up and after a few moments the DEEP front-end will be displayed in a web browser, as shown

below:

96

Figure 119

To select the eBook you have created you will need to click on the Import button (in the black bar at

the top):

Figure 120

Next choose to Select an E-book file and select the file you saved from the workflow system, and

when prompted click Continue Uploading:

97

Figure 121

…after which we (hopefully) receive confirmation our eBook has been successfully imported:

Figure 122

It now appears in the list of Your E-Books in the top left pane; select this eBook in the list so that it is

highlighted (associated meta-information, such as the Author and Description, will then appear

under About). Then, under Start a new reading, type a New reading process name (we have chosen

test, althought it doesn’t really matter what name you choose):

98

Figure 123

Clicking on Start reading will fire up the eBook and we will get a largely blank page with the progress

gauge in the top-left corner stating “Running Workflow”. Soon this will indicated it has “Finished”

and we will be left with the following:

99

Figure 124

100

Essentially we have a rather skeleton-like eBook where the outputs from the Show blocks in the

workflow appear as objects in boxes in a one-page eBook.

Currently the LEAF system will simply create this skeleton eBook, but we can then consider adding to

the eBook structure etc.; see the Stat-JR DEEP eBook Reader & Authoring Guide for more

information.

4.1 What have we covered?
In this section we have demonstrated how to create a workflow by starting with a ‘skeleton’ and

filling in the template inputs ourselves when prompted, before selecting Re-edit to ‘complete the

loop’ and construct the workflow corresponding to our choices.

Then we have investigated exporting this as a Stat-JR eBook, to be opened and read in the Stat-

JR:DEEP interface.

101

Section 5 Appendix

From Section 1.12, here’s the end of the workflow with our prediction-plotting blocks added to it;

remember to save the workflow as section1_12.xml.

Figure 125

From Section 2.3, here’s how we set-up our loop plotting the response against each of the predictors

in turn:

Figure 126

So for each predictor variable in preds, the four blocks in the “do” section of the for-do block will be

run. The first block assigns the user-nominated variable response as the variable to be plotted on the

y-axis, whilst the second block sets the variable currently indexed in our list of predictors (preds) as

102

the variable to be the plotted on the x-axis. Finally, the XYPlot template is run (with these two

inputs), and the output object of interest is plotted.

Save this workflow as section2_03.xml.

