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1 Introduction

1.1 Motivation

In many of the variables used in the social and medical sciences, measurement errors are
found. These can arise from unreliable measuring instruments, problems with variable
definitions or simply reflect temporal fluctuations, for example, within individual
units. Thus, in educational testing, repeated test measures on a pupil can be affected by
the environment in which the test is administered, the process of test administration
and the coding and scoring of the data, as well as day-to-day variation in individual
test performance. The errors we are concerned with are essentially considered as
random and distinct from systematic errors, which can lead to biases. We will be
concerned with measurement errors of two types. The first are those that apply to
continuously measured variables, where the errors have a continuous distribution.
The second are more appropriately referred to as ‘missclassification errors’, where an
individual is classified into one of several categories and where there are non-zero
probabilities associated with the assigned category being correct or incorrect.

The problem of measurement error in single-level linear models has a large
literature (Degracie and Fuller, 1972; Joreskog, 1970; Plewis, 1985) and a growing
literature in generalized linear models (Carroll et al., 2006; Clayton, 1992; Skrondal
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and Rabe-Hesketh, 2004), particularly Bayesian ones (Gustafson, 2004; Richardson
and Gilks, 1993). Fuller (1987) provides a comprehensive treatment and review of
the field up to the mid-1980s.

Generally, the literature distinguishes between functional modelling, in which no
distribution is assumed for the unobserved ‘true values’, and structural modelling, in
which assumptions are made about their distributions. Despite the growing literature,
methods for measurement error adjustment are not frequently used in practice.
For example, in most applications in the social and medical sciences, a validation
subsample is rarely available so that imputation-based methods are inapplicable. With
the exception of Browne et al. (2001), the existing literature deals with measurement
error in predictor variables only and does not address random coefficient models.

Methods for estimating the parameters of measurement error models, in particular
where the variances and covariances of the measurement errors are required suffer
serious drawbacks, and have been discussed by Ecob and Goldstein (1983) and
Goldstein (1980), and these relate to the very nature of such data. Moreover,
the assumption that the measurement error covariance matrix is independent of
the true values is often difficult to verify. Use of other approaches such as the
Simulation Extrapolation (SIMEX) procedure, which involve both distributions and
covariances of latent variables (Wang et al., 1998) can lead to considerable loss of
efficiency for estimating parameters. Moreover, in such complex approaches, ensuring
identifiability of the measurement error structure typically involves imposing further
constraints on model parameters.

The consequences of ignoring measurement errors for single-level models with
independent observations are well understood. Social research data, however, often
have a hierarchical structure, entailing non-independent observations, and are most
efficiently estimated by means of multi-level models (Goldstein, 2003). The behaviour
of biases associated with measurement error in covariates or the response for such
hierarchically clustered data, is not well-known and can be complex.

A more recent extension to the case of multi-level models is described by
Woodhouse et al. (1996). This approach, however, which is based upon moment
type estimators, does not apply to the case where an explanatory variable containing
measurement error has a random coefficient. Partly to deal with this case Browne
et al. (2001) developed an algorithm using Markov Chain Monte Carlo (MCMC)
estimation and this has been incorporated into the MLwiN software (Browne, 2004).
The assumptions underlying this model include:

(i) Measurement errors are independent across explanatory variables.
(ii) The measurement error variances are assumed known.
(iii) The unknown true values are assumed to have Normal distributions.

In the present paper, we extend this work by allowing for covariances between
measurement errors and for misclassification errors for categorical predictors. We
deal with the 2-level case in detail, with extensions to three levels being relatively
straightforward. Extensions to handle cross-classified and multiple-membership
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models (Goldstein, 2003, Chapters 11 and 12) also involve just the addition
of appropriate sampling steps within the MCMC algorithm. Our algorithms are
implemented in MATLAB (Mathworks, 2004) and a compiled version of the software
that does not require the use of MATLAB is freely available (Goldstein et al., 2007).
We adopt a structural model and emphasize the need to specify the behaviour of prior
assumptions about the measurement error variation via sensitivity analysis.

The article is organized as follows. We begin with a description of the
measurement error models used for the continuous and the categorical case and
the associated assumptions. For completeness, we also review the salient features
of measurement error models for the single-level case. We then describe an MCMC
algorithm for adjusting for these measurement errors. The model is then applied in the
analysis of a pupil’s progress in Mathematics (Blatchford et al., 2002), allowing for
measurement error in the response and a subset of continuous and binary predictors.
We discuss how inferences about both fixed and random effects are changed when
we allow for measurement error.

1.2 The model of inferential interest

The multi-level model of interest is assumed to be the Normal 2-level model, including
random coefficients, given by

yij = Xijβ + Zijuj + eij ,

Xij = (x1ij , x2ij , . . . , xpij ), Zij = (z1ij , z2ij , . . . , zqij ), uT
j = (u1j , u2j , . . . , uqj ),

uj ∼ MVN(0, �u), eij ∼ N(0, σ 2
e ), (1.1)

where Xijβ is the fixed part of the model involving p regression coefficients, β

(including the intercept) and p explanatory variables that may be continuous or
dichotomous or ordinal, and Zijuj describes the contribution from q random effects
at level 2, with a simple level 1 residual term eij . Details of the estimation of the
parameters of this model, using maximum likelihood or Bayesian MCMC procedures,
can be found, for example, in Goldstein (2003, Chapter 2).

2 The measurement error model

2.1 The continuous variable case

The first kind of measurement error occurs with continuously distributed variables,
where the observed value for an individual can be written in the form, omitting
subscripts, x0 = x + m, where x0 is the observed value, x the true value and m the
measurement error. The context for our analysis is that we would like to be able to
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estimate the parameters of the model (1.1), where the predictor and response variables
are assumed to have no measurement errors, but in practice, we can only observe
values for some of these variables that contain errors of measurement in the form
given earlier. Such errors can arise in a number of ways. For example, a measuring
instrument may have an inherent unreliability, or there may be environmental, social
or psychological factors that induce random variation over the course of a short
time period that we wish to discount. We consider here the situation where, for any
particular variable with measurement error, we can only observe values containing
such errors. Thus, we do not, for example, consider the case where the ‘true values’ are
available for a subset of the data and where methods based upon multiple imputation
have been developed (Cole et al., 2006).

We shall develop our exposition first by considering the simple single-level linear
model given by

yi = β0 + β1xi + ei , (2.1)

where measurement error may occur in the explanatory variable x. We assume that the
model of interest, that is (2.1), is that which uses the true variable values rather than
those observed with error. That is, we wish to make inferences about the regression
relationship between the true values y and x. It should be noted that in some cases,
we may wish to use the variables as observed with error; for example, if we were
interested solely in prediction based on these, in which case the procedures of this
paper do not apply.

In order to enable us to identify model parameters we must make the following
assumptions (or equivalent ones). First, the true values and the measurement errors
are assumed to be uncorrelated and the mean value of m is zero. Second, we need to
specify a distribution for m, typically Normal, so that we have m ∼ N(0, σ 2

m).
Finally, for our model, we need to consider the distribution of the true values.

Fuller (1987) distinguishes between ‘structural’ and ‘functional’ models. In the former,
a probability distribution is assumed for x, and in the latter case, the set of x values
is assumed to be fixed. If the set x is fixed, the estimation uses a known value of
the measurement error variance, and as we show in the next section, this case can
be viewed as a special instance of the former case during the estimation process. In
our example, and in many other, if not most, applications in the social and medical
sciences, we will have information about the relationship between observed and true
values, as we now explain.

Suppose that we were able to obtain independent replications of x0, say x0
1, . . . , x0

k .
We could then write a simple model,

x0
i = x + mi , i = 1, . . . , k. (2.2)

A simple analysis will allow us to estimate x, σ 2
m, as part of a larger model. In a

more complex model involving x, the existence of replications will likewise, generally,
allow us implicitly to incorporate the estimation of x, σ 2

m into the model.
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However, in most practical applications we do not have the possibility of
independent replications. For example, in administrating an educational test, a
residual memory effect will preclude this. Hence, the following exposition does not
assume the existence of such replications. Instead, we assume:

(i) An independent value of σ 2
m is available, recognizing that this is typically a

sample estimate, so that we may wish to incorporate uncertainty about σ 2
m into

our analysis, either by supplying a prior distribution, as we will see later, or by
carrying out a sensitivity analysis over the likely range of values for σ 2

m. This
value for σ 2

m is typically obtained via an estimate of the ‘reliability’ (see 2.3).
(ii) A distribution for x. This is required because we cannot condition on x in (2.1)

(as we can do in the replicated situation), and we can only directly observe the
distribution of x0. If we have a value for σ 2

m and assume a joint distribution for
the measurement error and x0, and thus, a joint distribution for the true and
the observed values, we are able to condition on the observed values to obtain
information about the true values. We shall assume that these distributions
are bivariate Normal. Thus we have x ∼ N(µx , σ 2

x ). We can extend this to
the multivariate case in a straightforward way by replacing the variance by a
covariance matrix.

In the ‘classical’ measurement error model, we typically define the reliability
of x0 by

R = R(x0) = σ 2
x /σ 2

x0, σ 2
x0 = σ 2

x + σ 2
m. (2.3)

Thus, given a sample of values {x0
i }, we can estimate σ 2

x0, and hence σ 2
x , if σ 2

m

is assumed known. This step effectively becomes incorporated into the estimation
process via an MCMC algorithm.

There is, of course, the problem of obtaining a suitable estimate of σ 2
m, and

possibly a prior distribution for it. We shall not get involved in any debate about
how suitable estimates may be obtained; see Hand (2004) for a discussion. We do,
however, consider the case where measurement error variances may vary with the
values of explanatory variables.

2.1.1 The effect of adjusting for measurement errors
Consider the simple single-level linear model (2.1) that was introduced earlier.

yi = β0 + β1xi + ei ,

where we have measurement error in the single explanatory ‘true’ variable, x. As
above, we have the adjusted variances and covariances for the ‘true’ model.

σ 2
x = var(x) = R var(x0), cov(xy) = cov(x0y) = cxy .
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Thus, an estimate of the ‘true’ regression coefficient is given by
cxy

R var(x0)
= bobs/R,

where bobs is the coefficient for the regression based on the observed values, and since
the reliability is always less than or equal to 1.0, the ‘true’ regression coefficient is
greater in absolute value. The estimate of the residual variance is given by

var(y) − c2
xy

R var(x0)
,

compared with

var(y) − c2
xy

var(x0)

for the regression using the observed values, and hence smaller than the latter.
Before we go on to an analysis of a data set, we will note some restrictions that our

models impose. Consider the case of two explanatory variables with measurement
error, and suppose, for simplicity, that they have the same observed variance, equal to
1, and the same reliability, R. Let us also suppose that their measurement errors have
a correlation of ρm, and that the correlation between the observed variables is ρo.

Now, we require that the correlation between the true values lies between −1 and
1, and this implies

ρo + R

1 − R
> ρm >

ρo − R

1 − R
. (2.4)

Thus, say, if R = 0.7 and ρo = 0.8, then we require ρm > 0.33. A corresponding
condition can be derived for categorical variables. In our example we shall explore
correlated measurement errors further, but note that these can easily arise in practise
when a set of variables, such as obtained from ratings or educational tests, are carried
out under the same conditions or at the same time, and where random variation over
conditions or times is present.

2.2 The categorical variable case

The second type of error is a misclassification error, where the observed category
of a discrete response variable is not necessarily the true category. Suppose we have
a binary (0, 1) variable; for example, whether or not a school pupil is eligible for
free school meals (yes = 1). We assume that the allocation to a category is not perfect
and we denote the probability of observing a zero (no eligibility), given that the
true value is zero, by Pobs(0|0), the specificity, and the probability of observing
a one, given that the true value is zero, by Pobs(1|0). Similarly, we have Pobs(0|1)
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and Pobs(1|1), the sensitivity. In Section 3 we show that the knowledge of these
misclassification probabilities allows us to compute the true probabilities of a zero
and a one, and how these are used in the estimation.

We shall only consider, for simplicity, misclassification error for a binary variable;
the extension to multicategory variables raises no fundamentally new issues.

Gustafson and Le (2002), and Gustafson (2004) study the extent of bias
introduced as a result of misclassification errors in single-level models where binary
variables are formed from underlying continuous variables. Fox and Glas (2003)
model the misclassification of binary variables in a 2-level model by considering an
underlying latent variable structure for the set of binary variables. Neither of these
approaches directly utilizes external values for the misclassification probabilities.

3 Models and estimation

The general model allows for the possibility that the measurement error covariance
matrix can differ from individual (level 1 unit) to individual, thus allowing for
different groups; for example, males and females, to have different measurement error
distributions. In particular, we can allow different measurement error covariance
matrices for individuals, according to the category observed for a categorical variable
where this is assumed to have misclassification errors.

3.1 Extension 1: correlated measurement errors

Suppose we have p explanatory variables containing measurement error and q that
do not. The model is:

yij = [X1ij (β1 + Z1ij · U1j )] + [X2ij (β2 + Z2ij · U2j )] + eij ,

βT = {βT
1 , βT

2 }, ZT = {ZT
1 , ZT

2 }, U = {U1, U2}, (3.1)

where the explanatory variable matrix of true values for those with measurement
error is X1(N × p), and for those without error is X2(N × q). For the random part,
and explanatory variables Z1 and Z2 are indicator vectors of dimensions (p × 1)
and (q × 1), with ones or zeros, so that the dot (Hadamard) product with the level 2
residuals selects the explanatory variables for the random part of the model, assuming
that these are a subset of the fixed part explanatory variables. Using the notation of
Browne et al. (2001), we have

X0
1 ∼ MVN (X1, �m), X1 ∼ MVN (θ , �φ), (3.2)

where X0
1 is the matrix of observed values and �m is the covariance matrix of

measurement errors, initially assumed to be common to all level 1 units, θ is the
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mean vector and �φ is the assumed known, covariance matrix of the true values of
X1. MCMC estimation is used to obtain the following posterior distributions:

p(θ |X1, �φ) ∼ MVN (θ̂ , V̂θ ), θ̂ = X̄0
1, V̂θ = �φ/N ,

p(�−1
φ |X1, θ) ∼ Wishart (N − 3, [(X1 − θ̂ )T (X1 − θ̂ )]−1), (3.3)

where N is the number of level 1 units. Since θ is a row vector of means, we
assume a uniform prior for θ . We can also choose, and then sample from, a prior
distribution for the measurement error covariance matrix. An obvious choice is
p(�−1

m ) ∼ Wishart (δp, δpSm), and we might wish to assume a minimally informative
choice, where the degrees of freedom δp is equal to the order of the matrix, and Sm is a
covariance matrix chosen on the basis of existing evidence or on theoretical grounds.

An alternative approach is to employ a scaled inverse-Wishart for �m, which
specifies a vector of scale parameters, ξ , chosen to allow less restrictions on
the variances. In particular, we can set �m = Diag(ξ)	Diag(ξ), with the
unscaled covariance matrix 	 being given the inverse-Wishart model: 	 ∼
Inv − Wishartp+1(I ). The variances then correspond to the diagonal elements of
the unscaled covariance 	, multiplied by the appropriate elements of ξ :

σ 2
mk = �mkk = ξ2

k 	kk, where k = 1, . . . , p,

and the covariances are �mklξkξl	kl, where k, l = 1, . . . , p.
This latter approach allows more freedom in the variances whilst still implying

uniform prior distributions in the interval (−1, 1), on the correlation parameters, if
the degrees of freedom are chosen as mentioned earlier (Gelman and Hill, 2007). This
may also be more appealing if we have little prior information on the correlations.

However, in practice, there is so much uncertainty about �m that it may be more
illuminating to select a range of values for Sm and examine the effects conditional on
these choices, in the spirit of sensitivity analysis. For each choice we may also choose
a prior distribution for �m.

For �φ we could also assume a general inverse-Wishart prior, but it is not clear
what parameters we should use, so we have assumed a uniform prior here by setting
the ‘degrees of freedom’ parameter of the Wishart distribution in (3.3) to N-3.

The sampling for the fixed parameters, β, the residuals, measurement error
covariance matrix (conditional on measurement error estimates), level 2 covariance
matrix and level 1 variance, conditional on the X1, X2 and given priors, is as in the
standard case.

For sampling the X1 we write

p(X1|y, X0
1; β, U , σ 2

e , �φ, �m) = p(y|X1; β, U , σ 2
e )p(X0

1|X1, �m)p(X1|�φ), (3.4)
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which leads to the following sampling for each row of X1:

X1ij ∼ MVN (X̂1ij , V̂ij ), where

V̂ij =
[

(β1 + Z1 · U1j )(β1 + Z1 · U1j )
T

σ 2
e

+ �−1
m + �−1

φ

]−1

, (3.5)

X̂1ij = V̂ij

[
(β1 + Z1 · U1j )(yij − X2ij (β2 + Z2 · U2j ))

σ 2
e

+ X0
1ij�

−1
m + θ�−1

φ

]
,

where Z ·U denotes the Hadamard vector product. The level 1 residuals are obtained
by subtraction. Note that in the ‘functional’ model �φ is zero, and this term is omitted
from the expressions in (3.5).

In some applications the measurement error covariance matrix may vary across
level 1 (or level 2) units, for example, as a known function of predictor variables. In
this case we simply replace, �−1

m by �−1
mij in (3.5).

If we have measurement error in the response

y0 = y + ey , ey ∼ N(0, σ 2
ey

), (3.6)

we must have known variance σ 2
ey

, in order to ensure identification. We apply this to

the residuals using the adjusted value σ ∗2

ey
= σ 2

e σ 2
ey

/σ 2
y , and we insert the extra step

to sample yij from

N [(σ 2
e − σ ∗2

ey
)σ−2

e ỹij + ŷij , (σ 2
e − σ ∗2

ey
)σ−2

e σ ∗2
ey

], (3.7)

where ŷij is the predicted value and ỹij = y0
ij − ŷij .

As pointed out in Section 2.1.1, we require that the covariance matrix of the true
explanatory variables is positive definite, so that having sampled the X1, if this is not
the case, we retain the existing values.

3.2 Extension 2: Binary and ordered category explanatory variables

Suppose we write the probability of observing a zero, given that the true value is
zero, as Pobs(0|0), and the probability of observing a one, given that the true value
is a zero, as Pobs(1|0), etc. Then, the probability of observing a zero is Pobs(0) =
Ptrue(0)Pobs(0|0)+Ptrue(1)Pobs(0|1), and the probability of observing a one is where
Pobs(1) = Ptrue(1)(1−Pobs(0|1))+Ptrue(0)(1−Pobs(0|0)), where Ptrue(0) and Ptrue(1)
are the true probabilities of a zero and one.
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This gives the following values for the true (prior) probabilities:

Ptrue(0) = Pobs(1|1) − Pobs(1)

Pobs(1|1) + Pobs(0|0) − 1
, Ptrue(1) = 1 − Ptrue(0).

Consider a Normal response model. The probability for an observation that has
true value zero, where we observe a zero for the binary variable x1 with coefficient
β1, which is assumed to have a uniform prior, is proportional to

L00 = exp

(
−(ỹ)2

2σ 2
e

)
Pobs(0|0),

and for an observed zero where the true value is one, we have the probability
proportional to

L01 = exp

(
−(ỹ − β1)

2

2σ 2
e

)
Pobs(1|0),

where ỹ is the observed response minus predicted value of the response, given the
remaining parameters.

When a zero is observed, combining these probabilities with the priors, we select
a new true value to be zero with probability

L00Ptrue(0)

L00Ptrue(0) + L01Ptrue(1)
.

We have corresponding results when a one is observed, namely

L10 = exp

(
−(ỹ)2

2σ 2
e

)
Pobs(1|0)

L11 = exp

(
−(ỹ − β1)

2

2σ 2
e

)
Pobs(1|1),

and we select a new true value of one with probability

L11Ptrue(1)

L11Ptrue(1) + L10Ptrue(0)
.

Having sampled a new set of true values, we apply the standard steps in the
MCMC algorithm for the remaining parameters. For generalized linear models, the
only change is in the expressions for the likelihoods, and if we use, for example,
a probit link with binary data, then there is no change except for the extra step
generating a Normally distributed response from the binary response.
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3.3 Further extensions

We may also consider models where the measurement error variances or mis-
classification probabilities are a function of further variables, where the function
parameters are to be estimated. Further work on this is planned. Missing responses
can be handled by adding an imputation step for the missing data based on current
parameter estimates.

We have assumed so far that there is no association between the Normal variable
measurement errors and the misclassifications. One way to introduce an association is
to allow the Normal measurement error covariance matrix to depend on the observed
category, as discussed in Section 3.1, so that for each such category, or combination
of categories, we assume a known �c

m, where c denotes the category or category
combination. In practice, this is achieved by choosing corresponding �−1

mij in (3.5).
As before, we can also introduce a prior distribution for these matrices.

The extension to the multicategory case, ordered or unordered, requires us to
evaluate the true priors for each category and then evaluate the corresponding
probabilities. This, therefore, requires a misclassification matrix to be known, or
a good estimate available.

4 An example data set

The data we use comes from a study of the relationship between class size and pupil
progress (Blatchford et al., 2002). Starting in 1996, a cohort of pupils was followed
from entry to reception class, until the end of the school year, with assessments
at the start and end. The response variable is a normalized maths score (end of
reception year), postmaths. The five explanatory variables are: constant (= 1), regcls-
30 (regular class size centred at 30), normalized pretest maths pre-maths, normalized
pretest literacy prelit, and free school meals eligibility fsmn. The original sample
size is 4 691 pupils in 248 classes. For the present analysis we use a subset of the
original data consisting of 4 625 pupils in 248 classes with complete data records.
The population of interest is pupils and classes in the English school reception year.

In the original analysis (Blatchford et al., 2002) a ‘regression spline’ smoothed
relationship with class size was fitted, rather than the linear relationship examined
here.1 For simplicity, here we incorporate just a linear term for the relationship with
class size. The model is thus

1A single level cubic regression with a spline term is defined as follows:

yi = β0 + β1xi + β2x2
i + β3x3

i + β4z3
i + ei

zi =
{

0 if xi < k
xi − k if xi ≥ k

This provides a smooth join at the value k, the knot, and allows us to better calibrate the curve for
high values of x.
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yij = β0 + β1x1j + β2x2ij + β3x3ij + β4x4ij + uj + eij

for the intercept and four predictor variables. We first show the MCMC estimates
assuming no errors of measurement.

5 Results

5.1 No measurement error

It is clear (Table 1) that there is a significant effect of being eligible for free school
meals, equivalent to a decrease in the adjusted maths score of 0.12 of the pupil
level residual standard deviation. Likewise, the greater the class size the smaller the
post-test mathematics score.

Kounali et al. (2007) have analyzed the stability of free school meals data at Key
Stage 2, and their data suggest that approximately 2% of those not eligible for free
school meals at any one time may be classified as eligible. Likewise, they suggest that
as many as 60% of those eligible may be classified as not eligible. We shall use the
illustrative values 2% and 60%, respectively, in our example. The pretest scores are
based upon teacher assessments and can be expected to have relatively low reliability;
we can assume a range of values from 0.6 to 0.9 for these reliabilities.

In the following analyses, for illustration, in the spirit of a sensitivity analysis, we
shall assume a range of values for these reliabilities. It is also reasonable to assume that
misclassification errors in Free School Meals (FSM) are independent of measurement
errors in the test scores, since the former are ascertained from the school records.

All the following analyses use a burn in of 5 000 with a sample of 5 000 iterations,
resulting in Monte Carlo standard errors that are all less than 5% of the posterior
distribution standard deviations.

5.2 Allowing for measurement errors in the analysis

We begin by studying the effect of allowing for measurement errors in the prior test
scores, Mathematics and Literacy, and we shall assume that both of these have the
same reliability. In Table 1 we have summarized the results from all the separate
models fitted. We start with the results that show the parameter estimates where
the reliability is assumed to be 0.9 and the measurement errors independent. The
next model assumes the lowest value of 0.6 for the reliability. We cannot now,
however, assume a zero correlation between the measurement errors, as pointed
out earlier, since the correlation between the observed values is greater than the
reliability, the former being 0.75. We have assumed a moderate correlation between
the measurement errors of 0.5. Note that the pretest coefficients are greatly increased
when we assume the lowest reliability with also a very large increase in standard
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error, and the level 1 variance is reduced as expected. We have also fitted the first
model assuming two quite different prior distributions for the measurement error
covariance matrix, one with the number of degrees of freedom set to 100, and the
other with degrees of freedom set to 2, in order to be minimally informative. In
both cases, the point estimates are little changed from the results in Table 1, but
in the latter case the posterior standard deviation for the two explanatory variables
with measurement error is increased from 0.026 to 0.048, and from 0.025 to 0.049
respectively.

We then introduce non-zero misclassification probabilities for free school meals. In
Table 1 we note that the only real change in effect estimates from the model, assuming
the highest reliability for the pretest scores with measurement error correlation, is
that the free school meal coefficient standard error has increased. In our example,
we have a high probability of observing no FSM eligibility when there is true
eligibility. Since, however, the proportion of truly eligible pupils is small, this will
not result in the reclassification of many pupils, and so can be expected to have little
effect on the estimates. Likewise, since the probability of being incorrectly classified
as eligible when not eligible is very small, this will also involve few pupils being
reclassified.

Finally, in the last model we allow for measurement error in the response
variable, post-test mathematics. Now, in addition to a rather small increase in
standard error of the free school meal coefficient, the coefficient itself has decreased
in absolute value, as expected. Also, as expected, the level 1 variance estimate is
reduced.

Substantively, we can conclude that moderate amounts of measurement error
and small misclassification probabilities only result in small changes to parameter
estimates. With large errors the effects are noticeable, but are confined in the fixed part
of the model to those predictors with error. The level 1 variance estimate, however,
is sensitive to the reliability assumed. In particular, the coefficient estimate for free
school meals is changed noticeably for a small measurement error variance and the
given misclassification probabilities.

6 Conclusions

We have seen how inferences about both fixed and random effects are changed when
we allow for measurement error and misclassification probabilities. An important
issue remains, that of obtaining suitable estimates for the measurement error variance
and misclassification probabilities. Where there is considerable uncertainty in the
value of the measurement error covariance matrix as expressed in the prior, we note an
increase in the standard errors associated with the variables containing measurement
error. In general, a range of values should be used in the spirit of a sensitivity analysis,
since typically these estimates, and especially of measurement error correlations, will
at best be approximate. We also note a further limitation of the current models, which

Statistical Modelling 2008; 8(3): 243--261



Modelling measurement errors 257

assume that measurement errors are limited to variables defined at level 1. However,
as shown in the Appendix, at least for level 2 variables that are aggregates of a level
1 variable, we can often ignore such level 2 measurement errors.

In the case of categorical predictors, adjusting for misclassifications, as we show
in our example, will often have little effect on the size of the coefficient but may be
expected to increase its standard error. Thus, for example, for a binary predictor, the
coefficient of the dummy (0,1) variable estimates the adjusted difference in the mean of
the response variable between the two categories. If there is a weak relationship with
the other variables in the model, then the process of (randomly) reassigning values
from one category to the other will have little effect on the estimated difference, but
will add random variation to the chain estimates resulting in a larger value for the
variability estimate.

Since the MCMC algorithm is modular, the steps involved in the measurement
error model can be combined with sampling steps for more complex models involving,
for example, cross classifications, structural models, etc. Further work that facilitates
such integration is under way.
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A Appendix: Aggregating level 1 variables with measurement errors

A.1 Inferences from aggregated data

In a multilevel model, where there is a level 2 (or higher level) predictor that is
defined as an aggregation from the level 1 units within the cluster, we can distinguish
two kinds of inferences. In the first, we wish to condition on the underlying, but
unknown, ‘true’ value of the variable. Thus, in educational data we may suppose
that the average prior attainment of a school influences the subsequent attainment
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of individuals within it, where this average attainment is used as a proxy for the
long-term intake characteristics of the school. It can then be argued that the observed
attainment should be regarded as a variable measured with error, where the analysis
will attempt to correct for the measurement error. Alternatively, we may regard
the actual average score itself as the influential variable, so that, if it is measured
accurately, there is no measurement error. We postpone a discussion of the role of
level 1 measurement error until later. We shall also introduce below, the common
situation when the average is not available, but only an estimate of it.

In the first case above, assume for simplicity that the variable is Normally
distributed, and that we have fitted a simple variance components (VC) model, so
that the total variance is

σ 2
T = σ 2

u + σ 2
e . (A.1)

Thus the variance of the mean of the N level 1 units in a level 2 unit is

σ 2
u + σ 2

e /N . (A.2)

Since inference is with respect to the ‘true’ mean, the measurement error variance is
simply

σ 2
e /N ,

with corresponding reliability

ρT = Nσ 2
u /(Nσ 2

u + σ 2
e ), (A.3)

which is just the ‘shrinkage’ factor. In many applications where N is very large,
measurement error can be ignored, although attention needs to be paid to the
value of the Variance Partition Coefficient (VPC) (Goldstein et al., 2002) equal to
(σ 2

u /(σ 2
u + σ 2

e )).
In the second case, where inference is with respect to the observed mean, the

reliability is 1.0.

A.2 Sampling level 1 units

In the common situation where we only have a sample of n out of N level 1 units
(A.2) becomes

σ 2
u + σ 2

e /n, (A.4)

and the reliability becomes,

ρT1 = nσ 2
u /(nσ 2

u + σ 2
e ). (A.5)

Thus, for example, with a VPC of 0.1 and n = 20, we have ρT1 = 0.69. This
essentially is the ‘true value’ definition adopted by Sampson et al. (1997). In fact, these
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authors fit a 3-level model where level 1 is the item level for the scale components.
Level 2 is individual and level 3 is area. Their model can be formulated as a single
factor model with scale item loadings equal to 1 (Rasch model). This formulation
enables them to estimate individual level reliabilities also, which can be incorporated
if required. In practice, n is typically large enough to ignore these when estimating
the level 2 reliability (but see below).

Where inference is with respect to the observed mean the reliability is

ρo = σ 2
u + σ 2

e [N(σ 2
u + σ 2

e /n)]−1 =
(

nσ 2
u +

( n

N

)
σ 2

e

)
/(nσ 2

u + σ 2
e ), (A.6)

which becomes 1.0 if the mean is computed from all the level 1 units with a cluster.
If we write v for the VPC, we have

ρo =
(

n +
( n

N

) (1 − v

v

))
/

(
n +

(1 − v

v

))
. (A.7)

As v tends to zero, this tends to (n/N), as does (A.5). Now, the level 2 variance
will often be sensitive to the population considered, or alternatively, the estimate of
the VPC will depend on other variables we adjust for in its estimation, especially if
these are level 2 variables. In general, the appropriate population will be the one that
we intend to use in subsequent models where we adjust for the measurement error.

In the above example with a VPC of 0.1, N = 30 and n = 5, as we might have
for educational data on classes, we have ρo = 0.46. For survey data on small areas,
say with N = 200, n = 20, we have ρo = 0.72, which is not very different from the
‘true’ definition value given above.

If we now consider the (independent) measurement error reliability at level 1, say
ρ1, expression (A.7) becomes

ρo1 =
(

n + (
n
N

) (1−v
v

)
+
(

n

N2

) (
1−v

v

) (
1−ρ1

ρ1

))
/

(
n +

(
1−v

v

)
+
(

1
n

) (
1−v

v

) (
1−ρ1

ρ1

))
.

(A.8)

So that this aggregated level 1 error term can typically be ignored.

A.3 Further considerations

The distinction between the ‘true’ and ‘observed’ definitions for reliability becomes
important only when the actual cluster (level 2 unit) size is relatively small. This will
usually be the case with certain kinds of data such as in education, but may also hold
for certain kinds of survey data, especially in small area analysis.

For categorical variables, we are dealing with misclassification probabilities at
level 1, but to a first approximation can assume Normality at level 2. Thus, for binary
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responses, we would substitute in formulae (A.5) and (A.7), corresponding terms
based on the variance of a proportion. For ordered responses we can approximate
an ordered response by treating it as a continuous variable, and for multicategory
responses we would use the corresponding multinomial variances and covariances,
allowing for correlated measurement errors. A further possibility is to assume a
threshold model, but this adds further numerical complications concerned with
estimating a measurement error variance, given just misclassification probabilities
(see Section 3.2).
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