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1 Introduction 

1.1 Scope of document 

 
This manual was originally written to support the development of the software 

package MLPowSim which was developed by the authors as part of the work in 

ESRC grant R000231190 entitled ‘Sample Size, Identifiability and MCMC Efficiency 

in Complex Random Effect Models.’  

 

The software package MLPowSim creates R command scripts and MLwiN macro 

files which, when executed in those respective packages, employ their simulation 

facilities and random effect estimation engines to perform sample size calculations for 

user-defined random effect models. MLPowSim has a number of features novel to 

this software: for example, it can create scripts to perform sample size calculations for 

models which have more than two levels of nesting, for models with crossed random 

effects, for unbalanced data, and for non-normal responses.  

 

This manual has been written to take the reader from the simple question of ‘what is a 

sample size calculation and why do I need to perform one?’ right up to ‘how do I 

perform a sample size calculation for a logistic regression with crossed random 

effects?’ We will aim to cover some of the theory behind commonly-used sample size 

calculations, provide instructions on how to use the MLPowSim package and the code 

it creates in both the R and MLwiN packages, and also examples of its use in practice. 

 

In this introductory chapter we will go through this whole process using a simple 

example of a single-level normal response model designed to guide the user through 

both the basic theory, and how to apply MLPowSim’s output in the two software 

packages R and MLwiN. We will then consider three different response types in the 

next three chapters: continuous, binary and count. Each of these chapters will have a 

similar structure. We will begin by looking at the theory behind sample size 

calculations for models without random effects, and then look at how we can use 

MLPowSim to give similar results. We will then move on to consider sample size 

calculations for simple random effect models, and increase the complexity as we 

proceed, in particular for the continuous response models. 

 

Please note that MLPowSim does not have a particularly user-friendly interface, and 

also supports a limited set of models. It is hoped that in the future, with further 

funding, both these limitations can be addressed.  However, in Chapter 5 we suggest 

ways in which the more expert user can extend models and give some more details on 

how the code produced for MLwiN and R actually works. 

 

Good luck with your sample size calculating! 

 

William J Browne, Mousa Golalizadeh Lahi, Richard MA Parker, Chris Charlton 

 

February 2023 
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1.2 Sample size / Power Calculations 

 

1.2.1 What is a sample size calculation? 

 

As the name suggests, in simplest terms a sample size calculation is a calculation 

whose result is an estimate of the size of sample that is required to test a hypothesis. 

Here we need to quantify more clearly what we mean by ‘required’ and for this we 

need to describe some basic statistical hypothesis-testing terminology. 

 

1.2.2 What is a hypothesis test? 

 

When an applied researcher (possibly a social scientist) decides to do research in a 

particular area, they usually have some research question/interest in mind. For 

example, a researcher in education may be primarily interested in what factors 

influence students’ attainment at the end of schooling. This general research question 

may be broken down into several more specific hypotheses: for example, ‘boys 

perform worse than average when we consider total attainment at age 16,’ or a similar 

hypothesis that ‘girls perform better than boys.’ 

 

1.2.3 How would such hypotheses be tested?  

 

For the first hypothesis we would need to collect a measure of total attainment at age 

16 for a random sample of boys, and we would also need a notional overall average 

score for pupils. Then we would compare the boys’ sample mean with this overall 

average to find the difference between the two and use the sample size and variability 

in the boys’ scores to assess whether the difference is more than might be expected by 

chance. Clearly, an observed difference based on a sample average derived from just 

two boys might simply be due to the chosen boys (i.e. we may have got a very 

different average had we sampled two different boys) whereas the same observed 

difference based on a sample average of 2,000 boys would be much clearer evidence 

of a real difference. Similarly, if we observe a sample mean that is 10 points below 

the overall average, and the boys’ scores are not very variable (for example, only one 

boy scores above the overall average), then we would have more evidence of a 

significant difference than if the boys’ scores exhibit large variability and a third of 

their scores are in fact above the overall average. 

 

For the second hypothesis (‘girls perform better than boys’) we could first collect a 

measure of total attainment at age 16 for a random sample of both boys and girls, and 

compare the sample means of the genders.  Then, by using their sample sizes and 

variabilities, we could assess whether any difference in mean is more than might be 

expected by chance. 

 

For the purposes of brevity we will focus on the first hypothesis in more detail and 

then simply explain additional features for the second hypothesis. Therefore our initial 

hypothesis of interest is ‘boys perform worse than average’; this is known as the 

alternative hypothesis (H1), which we will compare with the null hypothesis (H0, so-
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called because it nullifies the research question we are hoping to prove) which in this 

case would be ‘boys perform no different from the average’. Let us assume that we 

have transformed the data so that the overall average is in fact 0.  

 

We then wish to test the hypotheses: 

 

H0: μB=0 versus H1: μB<0  

 

where μB is the underlying mean score for the whole population of boys (the 

population mean). 

 

We now need a rule/criterion for deciding between these two hypotheses. In this case, 

a natural rule would be to consider the value of the sample mean �̄� and then reject the 

null hypothesis if �̄� ≤ 𝑐where c is some chosen constant. If �̄� > 𝑐 then we cannot 

reject H0 as we do not have enough evidence to say that boys definitely perform 

worse than average. We now need to find a way to choose the threshold c at which 

our decision will change. The choice of c is a balance between making two types of 

error. The larger we make c the more often we will reject the null hypothesis both if it 

is false but also if it is true. Conversely the smaller we make c the more often we fail 

to reject the null hypothesis both if it is true but also if it false. 

 

The error of rejecting a null hypothesis when it is true is known as a Type I error, and 

the probability of making a Type I error is generally known as the significance level, 

or size, of the test and denoted α. The error of failing to reject a null hypothesis when 

it is false is known as a Type II error, and the probability of making a Type II error is 

denoted β. The quantity 1- β, which represents the probability of rejecting the null 

hypothesis when it is false, is known as the power of a test. 

 

Clearly, we only have one quantity, c, which we can adjust for a particular sample, 

and so we cannot control the values of both α and β. Generally we choose a value of c 

that enables us to get a particular value for α, and this is done as follows. If we can 

assume a particular distributional form for the sample mean (or a function of it) under 

H0 then we can use properties of the distribution to find the probability of rejecting H0 

for various values of c. In our example, we will assume the attainment score for each 

individual boy (xi) comes from an underlying Normal distribution with mean μB and 

unknown variance σ2
B. If we knew the variance then we could assume that the sample 

mean also came from a Normal distribution with mean μB and variance σ2
B/n where n 

is our sample size. From this we could also see that  
�̄�−𝜇𝐵

𝜎𝐵/√𝑛
 follows a standard normal distribution from which we can conclude that if we 

wish  P(�̄� ≤ 𝑐) = α then 𝑃(�̄� ≤ 𝑐) = 𝑃 [
�̄�−𝜇𝐵

𝜎𝐵/√𝑛
≤

𝑐−𝜇𝐵

𝜎𝐵/√𝑛
] = α 

implies 
𝑐−𝜇𝐵

𝜎𝐵/√𝑛
= 𝑍𝛼 where 𝑍𝛼 is the α-th quantile of the Normal distribution. 

 

Rearranging gives 𝑐 = 𝜇𝐵 + 𝑍𝛼𝜎𝐵/√𝑛. 

 

In the usual case when σ2
B is unknown we substitute the sample variance s2

B but as 

this is an estimate for σ2
B we now also need to take its distribution into account. This 

results in using a tn-1 distribution in place of a Normal distribution and we have  
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𝑐 = 𝜇𝐵 + 𝑡𝑛−1,𝛼
𝑠𝐵/√𝑛 as our formula for the threshold. Note that as the sample size 

n increases, the t distribution approaches the Normal distribution, and so often we will 

simply use the Normal distribution quantiles as an approximation to the t distribution 

quantiles. 

 

1.2.4 What is Power? 

 

As previously defined, power is the probability of rejecting the null hypothesis when 

it is false. In the case of our example, we have a null hypothesis H0: μB=0; this is 

known as a simple hypothesis since there is only one possible value for μB if the 

hypothesis is true. The alternative hypothesis H1: μB<0 has an infinite number of 

possible values and is known as a composite hypothesis. The power of the test will 

therefore depend on the true value of μB. Clearly the further μB is from 0, the greater 

the likelihood that a chosen sample will result in rejecting H0, and so the power is 

consequently a function of μB. 

 

We can evaluate the power of the test for a particular value of μB: for example, if we 

believe that the true value of μB=-1 then we could estimate the power of the test given 

this value. This would give us how often we would reject the null hypothesis if the 

specific alternative μB=-1 was actually true. We have Power = P (�̄� ≤ 𝑐 | μB=-1) 

where c is calculated under the null hypothesis, i.e.: 

Power = 𝑡𝑛−1
−1 (

𝑐+1

𝑠𝐵/√𝑛
)= 𝑡𝑛−1

−1 (
(𝑡𝑛−1,𝛼/2

𝑠𝐵/√𝑛)+1

𝑠𝐵/√𝑛
) 

 

So, for example, if n = 100 and sB=1 and α=0.05(2-sided)1 we have t99, 0.05/2 = -1.98 

approximately and 

 

Power = 𝑡99
−1 ((-0.198 + 1) / 0.1) = 𝑡99

−1(8.02) = huge! (approximately 1). 

 

So here 100 boys is more than ample to give a large power. 

However, if we instead believed the true value of μB was only -0.10 then we would 

have 

 

Power = 𝑡99
−1((-0.198 + 0.10) / 0.1) = 𝑡99

−1(-0.98) = 0.165. 

 

Here the power is rather low and we would need to collect a larger sample size to give 

sufficient power. If we want to find a sample size that gives a power of 0.8, we would 

need to solve the power equation for n; this is harder in the case of the t distribution 

compared to the Normal, since the distribution function of t changes with n. However, 

as n gets large the t distribution gets closer and closer to a Normal distribution; if we 

 
1 NB Whilst many of the alternative hypotheses we use as examples in this manual will be directional 

(e.g. H1: μB<0 rather than H1: μB≠0), we generally use 2-sided tests of significance, rather than 1-sided. 

This is simply because, in practice, many investigators are likely to adopt 2-sided tests, even if a priori 

they formulate directional alternative hypotheses. Of course, there may be circumstances in which 

investigators decide to employ 1-sided tests instead: for example, if it simply isn’t scientifically 

feasible for the alternative hypothesis to be in a direction (e.g. H1: μB>0) other than that proposed a 

priori (in this case H1: μB<0), or, if it were, if that outcome were of no interest to the research 

community. 
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then assume a Normal distribution in this case, we have the slightly simpler 

formulation: 

 

Power = 𝛷(
𝑐+0.1

𝑠𝐵/√𝑛
)= 𝛷(

(𝑍𝛼/2𝑠𝐵/√𝑛)+0.1

𝑠𝐵/√𝑛
) 

 

where Φ=Z-1 is the inverse of the standard normal CDF. In the case where sB=1 and 

 Zα/2 = -1.96 we have: 

 

Power = 𝛷 [
(−1.96/√𝑛)+0.1

1/√𝑛
] which means for a Power of at least 0.8 we have 

𝛷 [
(−1.96/√𝑛) + 0.1

1/√𝑛
] ≥ 0.8 →

(−1.96/√𝑛) + 0.1

1/√𝑛
≥ 0.842 

Solving for n we get 𝑛 ≥ (10 × (0.842 + 1.96))2 = 785.1 thus we would need a 

sample size of at least 786. Here 0.842 is the value in the tail of the Normal 

distribution associated with a Power of 0.8 (above which 20% of the distribution lies). 

 

1.2.5 Why is Power important? 

 

When we set out to answer a research question we are hoping both that the null 

hypothesis is false and that we will be able to reject it based on our data. If, given our 

believed true estimate, we have a hypothesis test with low power, then this means that 

even if our alternative hypothesis is true, we will often not be able to reject the null 

hypothesis. In other words, we can spend money collecting data in an effort to 

disprove a null hypothesis, and fail to do so.  

 

On closer inspection the power formula is a function of the size of the data sample 

that we have collected. This means that we can increase our power by collecting a 

larger sample size. Hence a power calculation is often turned on its head and 

described as a sample size calculation. Here we set a desired power which we fix, and 

then we solve for n the sample size instead. 

 

1.2.6 What Power should we aim for? 

 

In the literature the desired power is often set at 0.8 (or 0.9): i.e. in 80% (or 90%) of 

cases we will (subject to the accuracy of our true estimates) reject the null hypothesis. 

Of course, in big studies there will be many hypotheses and many parameters that we 

might like to test, and there is a unique power calculation for each hypothesis. Sample 

size calculations should be considered as rough guides only, as there is always 

uncertainty in the true estimates, and there are often practical limitations to consider 

as well, such as maximum feasible sample sizes and the costs involved. 

 

1.2.7 What are effect sizes? 

 

In sample size calculations the term effect size is often used to refer to the magnitude 

of the difference in value expected for the parameter being tested, between the 

alternative and null hypotheses. For example, in the above calculations we initially 
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believed that the true value of μB=-1 which, as the null hypothesis would correspond 

to μB=0, would give an effect size of 1 (note: it is common practice to assume an 

effect size is positive). In some literature effect sizes are translated to standard 

deviation units (by dividing the differences by their standard deviation) so that they 

can be compared across different contexts. We will use the term effect size both in the 

next section, and when we later use the formula to give theoretical results for 

comparison. However, in the simulation-based approach, we often use the signed 

equivalent of the effect size and so we drop this term and use the terms parameter 

estimate or fixed effect estimate. 

 

1.2.8 How are power/sample size calculations done more generally? 

 

For many power/sample size calculations there are four related quantities: 

The size of the test, the power of the test, the effect size, and standard error of the 

effect size (which is a function of the sample size). The following formula links these 

four quantities when a normal distributional assumption for the variable associated 

with the effect size holds, and it can also be used approximately in other situations: 

 
𝛾

𝑆𝐸(𝛾)
≈ 𝑧1−𝛼/2 + 𝑧1−𝛽 

 

Here α is the size of the test, 1-β is the power of the test, γ is the effect size, and we 

assume that the Null hypothesis is that the underlying variable has value 0 (another 

way to think of this is that the effect size represents the increase in the parameter 

value). 

 

Note that the difficulty here is in determining the standard error formula (SE(γ)). For 

specific sample sizes/designs; this can be done using theory employed by the package 

PINT (e.g. see Section 2.3.2). In MLPowSim we adopt a different approach which is 

more general, in that it can be implemented for virtually any parameter, in any model; 

however, it can be computationally very expensive!  

 

1.3 Introduction to MLPowSim 

 

For standard cases and single-level models we can analytically carry out an exact (or 

approximate) calculation for the power, and we will discuss some of the formulae for 

such cases in later sections. As a motivation for a different simulation-based 

approach, let us consider what a power calculation actually means. In some sense, the 

power can be thought of as how often we will reject a null hypothesis given data that 

comes from a specific alternative. In reality we will collect one set of data and we will 

either be able to reject the null hypothesis, or not. However power, as a concept 

coming from frequentist statistics, has a frequentist feel to it in that if we were to 

repeat our data-collecting many times we could work out a long term average of how 

often we can reject the null hypothesis: this would correspond to our power. 

 

In reality, we do not go out on the street collecting data many times, but instead use 

the computer to do the hard work for us, via simulation. If we were able to generate 

data that comes from the specific alternative hypothesis (many times), then we could 
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count the percentage of rejected null hypotheses, and this should estimate the required 

power. The more sets of data (simulations) we use, the more accurate the estimate will 

be. This approach is particularly attractive as it replicates the procedure that we will 

perform on the actual data we collect, and so it will take account of the estimation 

method we use and the test we perform.  

 

This book will go through many examples of using MLPowSim (along with MLwiN 

and R) for different scenarios, but here we will replicate the simple analysis that we 

described earlier, in which we compared boys’ attainment to average attainment; this 

then boils down to a Z or t test. 

 

1.3.1 A note on retrospective and prospective power calculations 

 

At this point we need to briefly discuss retrospective power calculations. The term 

refers to power calculations based on the currently collected data to show how much 

power it specifically has. These calculations are very much frowned upon, and really 

give little more information than can be obtained from the P-values for the test of 

interest. In the remainder of the manual we will generally use existing datasets to 

derive estimates of effect sizes, predictor means, variabilities, and so on. Here, the 

idea is NOT to perform retrospective power calculations, but to use these datasets to 

obtain (population) estimates for what we might expect in a later sample size 

collection exercise. Using large existing datasets has the advantage that the parameter 

estimates are realistic, and this exercise likely mirrors what one might do in reality 

(although one might round the estimates somewhat, compared to the following 

example, in which we have used the precise estimates from the models fitted to the 

existing datasets). 

 

1.3.2 Running MLPowSim for a simple example 

 

MLPowSim itself is an executable text-based package written in C which should be 

used in conjunction with either the MLwiN package or the R package. It can be 

thought of as a ‘code-generating’ program, as it creates macro code or function code 

to be run using those respective packages. 

 

In the case of our example, the research question is whether boys do worse than 

average in terms of attainment at age 16. For those of you familiar with the MLwiN 

package and its User’s Guide (Rasbash et al, 2004), the tutorial example dataset is our 

motivation here. In the case of that dataset, exam data were collected on 4,059 pupils 

at age 16, and the total exam score at age 16 was transformed into a normalised 

response (having mean 0 and variance 1). If we consider only the boys’ subset of the 

data, and this normalised response, we have a mean of -0.140 and a variance of 1.051. 

Clearly, given the 1,623 boys in this subset, we have a significant negative effect for 

this specific dataset. Let us now assume that this set of pupils represents our 

population of boys, and we wish to see how much power different sample sizes 

produce.  

 

We could consider sub-sampling from the data (see Mok (1995) and Afshartous 

(1995) for this approach with multilevel examples) if this genuinely is our population, 
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but here let us assume that all we believe is that the mean of the underlying population 

of boys is -0.140 and the variance is 1.051. 

 

Now we will fire up the MLPowSim executable and answer the questions it asks. In 

the case of our example, appropriate questions and responses in MLPowSim are given 

below: 
 

                            Welcome to MLPowSim 

 

Please input 0 to generate R code or 1 to generate MLwiN macros: 1 

 

    Please choose model type  

 

1. 1-level model   

2. 2-level balanced data nested model  

3. 2-level unbalanced data nested model  

4. 3-level balanced data nested model  

5. 3-level unbalanced data nested model  

6. 3-classification balanced cross-classified model  

7. 3-classification unbalanced cross-classified model  

 

Model type : 1 

Please input the random number seed: 1 

Please input the significant level for testing the parameters: 0.025 

Please input number of simulations per setting: 1000 

 

                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0 

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

Do you want to include any explanatory variables in your model (1=YES  0=NO)? 0 

 

                          Sample size set up  

 

Please input the smallest sample size : 20 

Please input the largest sample size : 600 

Please input the step size: 20 

 

                             Parameter estimates 

 

Please input estimate of beta_0: -0.140 

 

Please input estimate of sigma^2_e: 1.051 

 

Files to perform power analysis for the 1 level model with the following sample criterion have been 

created 

Sample size starts at 20 and finishes at 600 with the step size  20 

1000 simulations for each sample size combination will be performed 

 

Press any key to continue… 

 

If we analyse these inputs in order, we begin by stating that we are going to use 

MLwiN for a 1-level (single-level) model. We then input a random number seed2, and 

 
2 Note that different random number seeds will result in the generation of different random numbers, 

and so sensitivity to a particular seed can be tested (e.g. one can test how robust particular estimates are 
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state that we are going to use a significance level (size of test) of 0.025. Note that 

MLPowSim asks for the significance level for a 1-sided test; hence, when we are 

considering a 2-sided test, we divide our significance level by 2 (i.e. 0.05 / 2 = 0.025). 

For a 1-sided test, we would therefore input a significance level of 0.05. We then state 

that we will use 1000 simulated datasets for each sample size, from which we will 

calculate our power estimates. 
 

We are next asked what response type and estimation methods we will use. For our 

example we have a normal response, and we will use the IGLS estimation method. 

Note that as this method gives maximum likelihood (ML) estimates, it is preferred to 

RIGLS for testing the significance of estimates, since hypothesis-testing is based on 

ML theory. 

 

We then need to set up the model structure; in our case this is simply an intercept 

(common mean) with no predictor variables. Next, we are asked to give limits to the 

sample sizes to be simulated, and a step size. So, for our example we will start with 

samples of size 20 and move up in increments of 20 through 40,60,… etc., up to 600. 

 

We then give an effect size estimate for the intercept (beta_0) and an estimate for the 

underlying variance (sigma^2_e). When we have filled in all these questions, the 

program will exit having generated several macro files to be used by MLwiN. 

 

1.4 Introduction to MLwiN and MLPowSim 

 

The MLPowSim program will create several macro files which we will now use in the 

MLwiN software package. The files generated for a 1-level model are simu.txt, 

setup.txt, analyse.txt and graphs.txt. In this introductory section we will simply give 

instructions on how to run the macros and view the power estimates. In later sections 

we will give further details on what the macro commands are actually doing. 

 

The first step to running the macros is to start up MLwiN. As the macro files call each 

other (i.e. refer to each other whilst they are running), after starting up MLwiN we 

need to let it know in which directory these files are stored. We can do this by 

changing the current directory, as follows: 

 

We next need to find the macro file called simu.txt, as follows: 

 

 
to different sets of ‘random’ numbers). However, using the same seed should always give the same 

results (since it always generates the same ‘random’ numbers), and so if the user adopts the same seed 

as used in this manual, then they should derive exactly the same estimates (see e.g. Browne, 2009, 

p.59). 

Select Directories from the Options menu. 

In the current directory box change this to the directory containing the macros. 

Click on the Done button. 
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A window containing the file simu.txt now appears. Note that some of the lines of 

code in the macro begin with the command NAME, which renames columns in 

MLwiN. Before starting the macro it is useful to open the data window and select 

columns of interest to view so that we can monitor the macro’s progress. Note that the 

first command in the file simu.txt actually expands the number of columns to 5000 

and so in order to see the columns of interest we will need to perform this command 

first so we need to do the following: 

 

 
 

Next we will select columns c4986, c4989 & c4990; from the code we can see that the 

macro will name these ‘zpow0’, ‘spow0’ and ‘Samplesize’, respectively. These three 

columns will hence contain the sample size, and the power estimate (‘pow’) for the 

intercept (‘0’) derived from the zero/one (‘z’) and standard error (‘s’) methods, 

respectively (see Sections 1.4.1 & 1.4.2 for a discussion of these methods). We do this 

as follows: 

 

If you have performed this correctly, the window will look as follows: 

Select Open Macro from the File menu. 

Find and select the file simu.txt in the filename box. 

Click on the Open button. 

Select View or Edit Data from the Data Manipulation menu. 

Click on the view button to select which columns to show. 

Select columns C4986, C4989 and C4990. 

Note you will need to hold down the Ctrl button when selecting the later columns 

to add them to the selection. 

Click on the OK button  

Select Command Interface from the Data Manipulation window 

Type the command INIT 5 5000 5000 2 40 into the bottom box as shown below 

Hit Return to execute the command, 
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If you now run the macro by pressing the Execute button on the Macro window, the 

data window will fill in the sample size calculations as they are computed. Upon 

completion of the macro, the window will look as follows: 
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So here we see estimates of power of around 0.1 for just 20 boys, and above 0.9 for 

600 boys. Next, we give more details on the two methods used to estimate power with 

the IGLS method. 

 

1.4.1 Zero/One method  

 

The first method used is perhaps the most straightforward, but can take a long time to 

get accurate estimates. For each simulation we get an estimate of each parameter of 

interest (in our case just an intercept) and the corresponding standard error. We can 

then calculate a (Gaussian) confidence interval for the parameter. If this confidence 

interval does not contain 0 we can reject the null hypothesis and give this simulation a 

score of 1. However, if the confidence interval does contain 0, we cannot reject the 

null hypothesis and so the simulation scores 0. To work out power across the 

corresponding set of simulations we simply take the average score (i.e. # of 1s / total 

number of simulations).  

 

1.4.2 Standard error method 

 

A disadvantage of the first method is that to get an accurate estimate of power we 

need a lot of simulations. An alternative method (suggested by Joop Hox, 2007) is to 

simply look at the standard error for each simulation. If we take the average of these 

estimated standard errors over the set of simulations, together with the ‘true’ effect 

size γ, and the significance level α, we can use the earlier given formula: 

 
𝛾

𝑆𝐸(𝛾)
≈ 𝑧1−𝛼/2 + 𝑧1−𝛽 

 

and solve for the power (1-β). This method works really well for the normal response 

models that we first consider in this guide but will not work so well for the other 

response types that we investigate later. 

 

If we look closely at the two columns for the power estimates, we see that the 

differences between consecutive values produced using the zero/one method (i.e. 

those in the column headed ‘zpow0’) are quite variable and can be negative, whilst 

the values estimated using the standard error method (‘spow0’) demonstrate a much 

smoother pattern. If we are interested in establishing a power of 0.8 then both 

methods suggest a sample size around 420 will be fine. We can also plot these power 

curves in MLwiN, and indeed MLPowSim outputs another macro, graphs.txt, 

specifically for this purpose. 

 

1.4.3 Graphing the Power curves 

 

To plot the power curves, we need to find the graphing macro file called graphs.txt, as 

follows: 
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This has set up graphs in the background that can be viewed as follows: 

 

 

 

 

 

The following graph will appear: 

 

  
 

This graph contains two solid lines along with confidence intervals (dashed lines). 

Here, the smoother brighter blue line is the standard error method, and has confidence 

interval lines around it that are actually indistinguishable from the line itself. The 

darker blue line plots the results from the zero/one method, and we can see that, in 

comparison, it is not very smooth and has wide confidence intervals; however, it does 

seem to track the brighter line, and with more simulations per setting we would expect 

closer agreement. 

 

Select Open Macro from the File menu. 

Select the file graphs.txt in the filename box. 

Click on the Open button. 

On the graph macro window click on the Execute button. 

Select Customised graph(s) from the Graphs menu. 

Click on the Apply button on the Customised graph(s) window. 
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We can use this graph to read off the power for intermediate values of n that we did 

not simulate. Note that the curves here are produced by joining up the selected points, 

rather than any smooth curve fitting, and so any intermediate value is simply a linear 

interpolation of the two nearest points. 

 

If we return to the theory, we can plug in the values -0.140 and 1.051 (1.02522) into 

the earlier power calculation to estimate exactly the n that corresponds to a power of 

0.8 (assuming a normal approximation): 

 

𝛷 [
(−1.96 ∗ 1.0252/√𝑛) + 0.14

1.0252/√𝑛
] ≥ 0.8 →

(−1.96/√𝑛) + 0.14

1.0252/√𝑛
≥ 0.842 

Solving for n we get 𝑛 ≥ (7.142 × 1.0252 × (0.842 + 1.96))2 = 420.9 thus we 

would need a sample size of at least 421; therefore, our estimate of around 420 is 

correct.  

 

We will next look at how similar calculations can be performed with MLPowSim 

using the R package, instead of MLwiN, before looking at other model types. 
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1.5 Introduction to R and MLPowSim  

 

As explained earlier, MLPowSim can create output files for use in one of two 

statistical packages. Having earlier introduced the basics of generating and executing 

output files for power analyses in MLwiN, here we do the same for the R package. 

 

Once the user has first requested that R code, rather than MLwiN macros, be 

generated in MLPowSim (by pressing 0 when indicated), most of the subsequent 

questions and user inputs are the same as for MLwiN, and so we shan’t cover all these 

in detail again.  However, there are some differences when specifying the model 

setup, which reflect differences in the methods and terminologies of the estimation 

algorithms used by the two packages.  Therefore, we shall consider these in a little 

more detail. 

 

The R package is generally slower than MLwiN when simulating and fitting 

multilevel models. In R, we focus on the lme and nlme functions, and for single-level 

models the glm function. Employing the same example we studied earlier, the model 

setup questions, along with the user entries when selecting R, look like this: 

 

__________________________________________________________________ 
Model setup  

Please input 0 to generate R code or 1 to generate MLwiN macros: 0 

 

    Please choose model type  

 

1. 1-level model   

2. 2-level balanced data nested model  

3. 2-level unbalanced data nested model  

4. 3-level balanced data nested model  

5. 3-level unbalanced data nested model  

6. 3-classification balanced cross-classified model  

7. 3-classification unbalanced cross-classified model  

 

Model type : 1 

Please input the random number seed: 1 

Please input the significant level for testing the parameters: 0.025 

Please input number of simulations per setting: 1000 

 

                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

 

                            Predictor(s) input 

 

Do you want to include any explanatory variables in your model (1=YES  0=NO)? 0 

 

                          Sample size set up  

 

Please input the smallest sample size : 20 

Please input the largest sample size : 600 

Please input the step size: 20 

 

                             Parameter estimates 

 

Please input estimate of beta_0: -0.140 
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Please input estimate of sigma^2_e: 1.051 

 

 
                        Final sample size check 

 

The first level:  start=20   end=600 step size=20 

 

Do you want to continue (YES=1 , NO=0)?1 

Do you want to have the CI for the power in your output (YES=1 , NO=0)? 1 

 

R does not provide a choice of estimation methods for single-level models, although it 

does for multilevel models; therefore in the model setup dialogue presented above, 

there are no questions about estimation methods (unlike the situation we encountered 

earlier, for MLwiN).  This is because the function glm is used to fit single-level 

models in the R package. In this function there is only one method implemented, 

iteratively reweighted least squares (IWLS). 

 

1.5.1    Executing the R code 

 

Before we introduce the procedure for executing the R code generated by 

MLPowSim, please note that this manual is written with reference to R version 4.2.1, 

on a Windows machine. It is possible that there may be some minor differences when 

executing the R code on other platforms such as Linux, or indeed with other versions 

of the software.  

 

Upon starting R we will be presented by a screen that looks like this: 
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In contrast to the output for MLwiN, MLPowSim generates a single file 

(powersimu.r) for the R package. This file has the extension r which is the default for 

R command files. If this file is saved in the same directory as the R package itself, 

then by entering the following command, R will read the commands contained in the 

file: 

 
source(“powersimu.r”) 

 

If it is not saved in that directory, then one can either give the full path to the output 

file as an argument (i.e. enter the full path between the brackets in the above 

command), or change the working directory in R to the one in which the file is saved, 

as follows: 

 

 

Another simple option is to drag and drop the entire file (i.e. powersimu.r) into the R 

console window. 

 

During the simulation, the R console provides updates, every 10th iteration, of the 

number of iterations remaining for the current sample size combination being 

simulated.  The start of the simulation for each different sample size combination is 

also indicated.  In the case of our example, part of this output is copied below:  

Select Change dir … from the File menu. 

In the window which appears, do one of the following:         

either write the complete pathname to the output file, 

or select Browse and identify the directory containing the output file. 

Click on the OK button. 
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__________________________________________________________________ 
> source("powersimu.r") 

     The programme was executed at Thu Jan  5 09:52:57 2023  

-------------------------------------------------------------------- 

 Start of simulation for sample sizes of  20  units 

 Iteration remain= 990  

 Iteration remain= 980  

 Iteration remain= 970  

 Iteration remain= 960  

 Iteration remain= 950  

 Iteration remain= 940  

 Iteration remain= 930  

 Iteration remain= 920  

 Iteration remain= 910  

 Iteration remain= 900  

 Iteration remain= 890  

 Iteration remain= 880  

 Iteration remain= 870  

 Iteration remain= 860  

 Iteration remain= 850  

 Iteration remain= 840  

 Iteration remain= 830  

 Iteration remain= 820  

 Iteration remain= 810  

 Iteration remain= 800  

 Iteration remain= 790  

 Iteration remain= 780 …………. 

…………. 

…………. 

 

The first line of the above screen indicates the date and time powersimu.r was 

executed in R. There is also another date at the top of the file itself (not shown here) 

indicating the time MLPowSim produced the R code.  When the cursor appears in 

front of the command line again (i.e. in front of sign >), the power calculations are 

complete, and the power estimates and their confidence intervals (if the user has 

answered YES, in MLPowSim, to the question of whether or not they wish to have 

confidence intervals), for the various sample size combinations chosen by the user, 

will automatically be saved as powerout.txt.  Since it is a text file, the results can, of 

course, be viewed using a variety of means; here, though, we view them by typing the 

name of the data frame saved by the commands we have just executed in the R 

console: 

 
output 

 

In the case of our example, the results look like this: 

 
n  zLb0  zpb0  zUb0  sLb0  spb0  sUb0 

20  0.073  0.091  0.109  0.089  0.09  0.091 

40  0.129  0.151  0.173  0.136  0.137  0.138 

60  0.148  0.171  0.194  0.183  0.184  0.186 

80  0.214  0.241  0.268  0.229  0.23  0.232 

100  0.258  0.286  0.314  0.277  0.279  0.281 

120  0.298  0.327  0.356  0.321  0.323  0.325 

140  0.351  0.381  0.411  0.365  0.367  0.369 

160  0.381  0.411  0.441  0.407  0.409  0.412 

180  0.41  0.441  0.472  0.447  0.45  0.452 
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200  0.457  0.488  0.519  0.486  0.489  0.491 

220  0.479  0.51  0.541  0.522  0.524  0.527 

240  0.552  0.583  0.614  0.559  0.562  0.564 

260  0.56  0.59  0.62  0.594  0.596  0.599 

280  0.601  0.631  0.661  0.627  0.629  0.631 

300  0.627  0.656  0.685  0.655  0.657  0.659 

320  0.664  0.693  0.722  0.684  0.686  0.688 

340  0.679  0.707  0.735  0.71  0.712  0.714 

360  0.727  0.754  0.781  0.734  0.736  0.738 

380  0.731  0.758  0.785  0.757  0.759  0.761 

400  0.755  0.781  0.807  0.777  0.778  0.78 

420  0.761  0.786  0.811  0.797  0.799  0.8 

440  0.793  0.817  0.841  0.816  0.818  0.819 

460  0.804  0.827  0.85  0.833  0.834  0.836 

480  0.823  0.845  0.867  0.848  0.849  0.85 

500  0.823  0.845  0.867  0.863  0.865  0.866 

520  0.864  0.884  0.904  0.875  0.876  0.877 

540  0.859  0.879  0.899  0.886  0.887  0.889 

560  0.87  0.889  0.908  0.898  0.899  0.9 

580  0.906  0.923  0.94  0.907  0.908  0.909 

600  0.911  0.927  0.943  0.917  0.918  0.918 

 

The first column in this output file contains the sample size. In multilevel models, 

depending on the model type chosen by the user, we might have one, two or three 

columns representing the various sample size combinations at each level. The rest of 

the columns are either the estimated power or the lower/upper bounds, calculated 

using the methods described earlier (i.e. in Sections 1.4.1 and 1.4.2). 

 

The column headings on the first row denote the specific method, statistic and 

parameter.  This nomenclature uses the prefixes z and s for the zero/one and standard 

error methods of calculating power, respectively. Furthermore, the characters L and U 

indicate the lower (L) and upper (U) bounds of the confidence intervals, whilst the 

character p stands for the power estimate. Finally, in keeping with common notation 

for estimated parameters (i.e. β0, β1 etc.), the characters b0, b1, etc., finish the column 

headings. 

 

The results indicate a sample size of between 420 and 440 should be sufficient to 

achieve a power of 0.8; this is very similar to our earlier finding using MLwiN, and 

indeed our theory-based calculations (Section 1.4). 

 

1.5.2 Graphing Power curves in R  

 

R has many facilities for producing plots of data, and users can load a variety of 

libraries and expand these possibilities further. 

 

When fitting a multilevel (mixed effect) model in R we have a grouped data structure, 

and a number of specific commands have been written to visualise such data (see, for 

example, Venables and Ripley, 2002, Pinheiro and Bates, 2000).  For instance, the 

trellis graphing facility in the lattice package is useful for plotting grouped data, and 

many other complex multivariate data as well.  Among the many plotting commands 

and functions in the trellis device, the command xyplot ( ), combined with others such 
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as lines ( ), via the function panel, are useful tools. For example, one can employ code 

such as the following: 

 
library(lattice) 

output<-read.table("powerout.txt",header =T,sep = " ", dec = ".") 

method<-rep(c("Zero/one method","Standard error method"),each=length(n1range),times=betasize) 

sample<-rep(n1range,times=2*betasize) 

parameter<-rep(c("b0"),each=2*length(n1range)) 

power<-c(output$zpb0,output$spb0) 

Lpower<-c(output$zLb0,output$sLb0) 

Upower<-c(output$zUb0,output$sUb0) 

dataset<-data.frame(method,sample,parameter,Lpower,power,Upower) 

xyplot(power~sample | method*parameter ,data=dataset,xlab="Sample size of first level",  

                 scales=list(x=list(at=seq(0,600,100)),y=list(at=seq(0,1,.1))), 

                 as.table=T,subscripts=T, 

                 panel=function(x,y,subscripts) 

{ 

                  panel.grid(h=-1,v=-1) 

                 panel.xyplot(x,y,type="l") 

                panel.lines(dataset$sample[subscripts],dataset$Lpower[subscripts],lty=2,col=2) 

             panel.lines(dataset$sample[subscripts],dataset$Upower[subscripts],lty=2,col=2) 

             }) 

 

This will produce the following graphs: 
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The curves are shown in two different panels to make comparison easier. In both 

panels, the solid lines (in blue) indicate the estimated powers while the broken lines 

(in red) are the confidence bounds.  It can be seen that the bound interval of the 

estimated power in the zero/one method is wider than that in the standard error 

method.  

 

If one wanted to read off the predicted power for a predefined sample size (or vice 

versa), one could make the grids in the panels thinner, via the available parameters in 

the panel function.  However, it’s likely that visual interpolation with the coarse grid 

above will give approximately the same result. 

 

For further guidance on plotting power estimates in R, please see Section 5.3.3. 
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2 Continuous Response Models 

In this section we describe sample size calculations for continuous (normally-

distributed) response models in general. For these models there exists further exact 

formulae that can be used for other single-level models, and also an existing piece of 

software (PinT) that gives sample size formulae for balanced 2-level nested models. 

In Section 2.1 we will review some of the single-level model formulae while 

comparing results in Section 2.2 with the simulation approach. In Section 2.3 we look 

at 2-level nested variance components models and describe the design effect formula, 

the PinT software package, and the simulation-based approach we adopt in 

MLPowSim. Finally, in Sections 2.4 to 2.6 we discuss extending our calculations to 

other 2-level nested models, 3-level models and cross-classified models. 

 

2.1 Standard Sample size formulae for continuous responses  

 

In the introductory chapter we described how one approximate formula can link 

power, significance level, effect size and sample size (through the standard error of 

the effect size). This formula is as follows: 

 
𝜸

𝑺𝑬(𝜸)
≈ 𝒛𝟏−𝜶/𝟐 + 𝒛𝟏−𝜷 

 

The approximation here is in terms of assuming an underlying normal distribution for 

γ when in reality this is only asymptotically correct: i.e. we should really use a t 

distribution; however, this will not matter much as long as the sample size is 

reasonable. When we are sure about the size and power we require, we can simplify 

this further by plugging these values in and having a simple relationship linking the 

effect size and its standard error, as described in Chapter 20 of Gelman and Hill 

(2007). They consider (as we do in general) two-sided tests with a significance level 

of 0.05 and a power of 0.8 which results in γ= (1.96+0.84)SE(γ) = 2.8SE(γ).3 

 

2.1.1 Single mean – one sample t-test 

 

In the introduction we showed that to test whether a sample mean is greater than 0 we 

needed to perform a one sample t-test which could be approximated by a Z test for 

suitably large sample sizes. 

 

To repeat the theory, we plugged in the values -0.140 and 1.051 (1.02522) into the 

power calculation to estimate exactly the n that corresponds to a power of 0.8 

(assuming a normal approximation): 

 

𝛷 [
(−1.96 ∗ 1.0252/√𝑛) + 0.14

1.0252/√𝑛
] ≥ 0.8 →

(−2.01/√𝑛) + 0.14

1.0252/√𝑛
≥ 0.842 

 
3 Note that if we were considering a one-sided test with the same significance level and power, this 

would result in γ= (1.645+0.842)SE(γ) = 2.487SE(γ). 
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Solving for n we get 𝑛 ≥ (7.142 × 1.0252 × (0.842 + 1.96))2 = 420.9 thus we 

would need a sample size of at least 421. 

 

With our simplified formula we have: 

 

𝛾 = 2.802𝑆𝐸(𝛾) 

→ 0.140 = 2.802 ×
1.0252

√𝑛
→ √𝑛 =

2.87

0.14
= 20.5 

→ 𝑛 = 421 

 

which is exactly the same calculation. We will next consider some other fairly 

standard statistical tests firstly considering the cases of 1 predictor variable. 

 

2.1.2 Comparison of two means – two-sample t-test 

 

If we have a binary predictor variable then we have a predictor that essentially splits 

our dataset in two. We might then be interested in whether these two groups have 

significantly different means, or equivalently in a linear modelling framework (see 

Section 2.1.5), whether the predictor has a significant effect on the response.  

 

The common approach for testing the hypothesis that two independent samples have 

differing means is the two-sample t-test which can be approximated for large sample 

sizes by the Z test using the standard formula. 

 

Letting y1i be the ith observation in the first sample, and y2j be the jth observation in 

the second sample, then the test statistic that will play the role of γ is the difference in 

sample means �̄�1 − �̄�2, which has associated (pooled) standard error 

 

√𝜎1
2/𝑛1 + 𝜎2

2/𝑛2. 

 

Here we can see that to perform a power calculation we need to estimate the 

difference between the means, the variances of the two groups and the sizes of the 

samples in the two groups. We can then work out the power for any combination of 

sample sizes. 

 

So we can calculate the power associated with various combinations of group 1 

sample sizes, and group 2 sample sizes. If the variability within each group is 

different, it may be advantageous to sample more from the group which has the 

highest variance to reduce the standard error of the difference.  In an experimental 

setting it is easy to sample the two groups independently, and if the effect of the two 

groups is of great interest and/or one of the two groups is rare, it might be useful to do 

so explicitly (a form of stratified sampling).  

 

In observational studies, on the other hand, we will generally sample at random from 

the population, and the group identifier/binary predictor will simply be recorded. Here 

the two group sample sizes will be replaced by an overall sample size, together with a 

probability of group membership. The uncertainty in actual group sample sizes will 

have an impact on power, but a simulation approach can cope with this. As later 
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discussed in Section 2.1.5, we can calculate desired sample sizes conditional on the 

probability of group membership. 

 

2.1.3 Simple linear regression 

 

The simple linear regression model can be written as follows: 

 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖, 𝑒𝑖~𝑁(0, 𝜎2) 

 

Here we are aiming to look at the relationship between a (typically continuous) 

predictor variable x, and the response variable y, where i indexes the individuals. Our 

null hypothesis will generally be that the predictor has no effect, i.e. β1 = 0, although 

we might also wish to test for a strictly non-zero intercept as well, i.e. β0 = 0. 

 

From regression theory we can calculate the standard errors for the two quantities β0 

and β1 which are 𝜎√
1

𝑛
+

�̄�2

𝑆𝑥𝑥
 and 𝜎/√𝑆𝑥𝑥 where 𝑆𝑥𝑥 = ∑ 𝑥𝑖

2 −
(∑ 𝑥𝑖𝑖 )2

𝑛𝑖  respectively. It 

is important to note the meaning of σ has changed from the simple mean model. In 

this case it is the residual variation after accounting for the predictor x. This is 

important to note when choosing an estimate for σ to perform the power calculation. 

From the standard error formulae we can see that we also need to give an estimate for 

𝑆𝑥𝑥 to perform a sample size calculation. This quantity is not an intuitive one to 

estimate, so it makes more sense to make use of the fact that  

𝑆𝑥𝑥 = ∑(𝑥𝑖 − �̄�)2 = (𝑛 − 1)

𝑖

𝑣𝑎𝑟( 𝑥𝑖) 

and instead estimate the variance of the predictor variable. The simple linear 

regression is a special case of the general linear model which we consider next. 

 

2.1.4 General linear model 

 

In the general linear modelling framework, we have the following: 

 

𝑦𝑖 = 𝑋𝑖
𝑇𝛽 + 𝑒𝑖, 𝑒𝑖~𝑁(0, 𝜎2) 

 

Here Xi is a vector of predictor variables for individual i that are associated with 

response yi. The corresponding coefficient vector β represents the effects of the 

various predictor variables. Usually our null hypotheses will be based on specific 

elements of the vector β, and whether they are zero. For this we will require the 

standard errors for the elements of β. The variance matrix associated with the β 

predictors has formula σ2 (XTX)-1 from which we can pick out the standard errors for 

specific βi. The standard error formula will then be a function of the sample size, the 

variance of the particular predictor, and the covariances between the predictors. 

Therefore, as we will see in Section 2.2, if we specify that our predictors are 

multivariate normally-distributed, then we will need to specify both their means and 

also their covariance matrix. 
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2.1.5 Casting all models in the same framework 

 

For normal response models which do not involve higher-level random structure, the 

linear modelling framework covers most cases. There is one minor exception which 

we have already looked at briefly: namely the two population different means (two 

sample t / Z test) hypothesis. Here we can write out the linear regression model  

 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖, 𝑒𝑖~𝑁(0, 𝜎2) 

 

where xi is a binary indicator that an observation belongs to group 2. Clearly this 

model is a member of the linear model family and testing the hypothesis that β1 = 0 is 

equivalent to the hypothesis that the two group means differ. However, this model 

makes the implicit assumption that the two group variances are equal, and equal to σ2. 

To allow a model with differing group variances we would need the more general 

model: 

 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖, 𝑒𝑖~𝑁(0, 𝜎𝑖
2) 

 

which allows different variances for each observation. We would then need to 

implicitly set the variances for each observation in group 1 to be equal and similarly 

set the variances for each observation in group 2 to be equal. Such a model is fitted 

easily in packages such as MLwiN, with which a simulation study can be conducted 

to work out power.  For this first version of MLPowSim, however, we have assumed 

that single-level models fit in the standard linear modelling framework with constant 

residual variation. 

 

We will now introduce a selected range of the possible single-level models that 

MLPowSim can fit, using the tutorial example introduced in the last chapter. 

 

2.2 Equivalent results from MLPowSim 

 

In this section we will begin each example by describing the research question, and 

then show how to set up the model in MLPowSim. We will then look at the answers 

produced in MLwiN, and compare them with theoretical results. Note that similar 

results would be attained via R, but these are not included for brevity. 

 

2.2.1 Testing for differences between two groups 

 

The tutorial dataset contains a gender predictor for each pupil. In the introduction we 

looked at the hypothesis that boys did worse than an average value. Perhaps a more 

sensible hypothesis would be that girls do better than boys. We will here consider the 

hypothesis within a regression framework, and consider the model: 

 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖, 𝑒𝑖~𝑁(0, 𝜎2) 
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where xi takes value 1 for a girl, and 0 for a boy. Our null hypothesis is that β1=0, with 

an alternative hypothesis β1>0. To fit this model we need estimates for β0, β1 and σ2, 

along with some information about the predictor. 

 

We will take estimates from the full tutorial dataset, and so we have  

β0=-0.140, β1=0.234 and σ2=0.985. 

In the population we have 60% girls and 40% boys and so we will consider two 

possible ways of including this information about the predictor: 

 

(i) assume xi is Bernouilli-distributed, with underlying probability 0.6; 

(ii) assume a normal approximation, and so xi ~N(0.6,0.24). 

 

We will describe each of these, in turn, below.  We will fire up the MLPowSim 

executable and answer the questions it asks. Using our tutorial example, here we 

present questions and responses corresponding to (i): 
 

                            Welcome to MLPowSim 

 

Please input 0 to generate R code or 1 to generate MLwiN macros: 1 

 

    Please choose model type  

 

1. 1-level model   

2. 2-level balanced data nested model  

3. 2-level unbalanced data nested model  

4. 3-level balanced data nested model  

5. 3-level unbalanced data nested model  

6. 3-classification balanced cross-classified model  

7. 3-classification unbalanced cross-classified model  

 

Model type : 1 

Please input the random number seed: 1 

Please input the significant level for testing the parameters: 0.025 

Please input number of simulations per setting: 1000 

 

                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0 

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

Do you want to include any explanatory variables in your model (1=YES  0=NO)? 1 

How many explanatory variables do you want to include in your  model?  1 

Please choose a type for the predictor x1 (1=Binary  2=Continuous): 1 

Please input probability of a 1 for x1 : 0.6 

 

                          Sample size set up  

 

Please input the smallest sample size : 50 

Please input the largest sample size : 1500 

Please input the step size: 50 

 

                             Parameter estimates 

 

Please input estimate of beta_0: -0.140 

Please input estimate of beta_1: 0.234 

 

Please input estimate of sigma^2_e: 0.985 
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Files to perform power analysis for the 1 level model with the following sample criterion have been 

created 

Sample size starts at 50 and finishes at 1500 with the step size 50 

1000 simulations for each sample size combination will be performed 

 

Press any key to continue… 

 

We will now run the code in MLwiN as we did in the introductory example (see 

Section 1.4 for information on starting up MLwiN and changing directories). 

Again, before starting the macro, it is useful to open the View/Edit Data window to 

view its progress (Section 1.4 details how to do this). In this case, it is useful to select 

columns c4982, c4983, c4988, c4989 and c4990 to view (having first run the INIT 

command so we have 5000 columns), since, as the coding in the macro indicates, it 

will place the sample sizes in the first of these columns, and the estimated powers for 

the two predictors, using two different methods detailed earlier (Sections 1.4.1 & 

1.4.2), in the last four of these columns. 
 

If we now run the macro by pressing the Execute button on the Macro window the 

data window will fill in the sample size calculations as they are computed. Upon 

completion of the macro, the window will look as follows: 
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So here we see estimates of power for the intercept of around 0.1 for 50 pupils, and up 

to 0.92 for 1500 pupils (see columns ‘zpow0’ & ‘spow0’). More importantly, for the 

gender effect (‘zpow1’ & ‘spow1’) we have power of around 0.12 for 50 pupils, rising 

to 0.993 for 1500 pupils, with around 600 pupils giving a power of 0.8. 
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If we graph the curves (see Section 1.4.3 on finding and executing the graphs.txt 

macro, and then viewing the resulting graph), they look as follows: 

 

 
 

This graph contains two lines, along with confidence intervals, for each parameter, 

with the intercept in blue and the gender effect in green. The smoother brighter lines 

correspond to the standard error method and have confidence interval lines around 

them that are actually indistinguishable from the lines themselves. The darker lines 

are the zero/one method results and we can see they are not very smooth and have 

wide confidence intervals; however, as we mentioned in Section 1.4.3, they do seem 

to track the brighter lines and with more simulations per setting we would expect 

more agreement. 

 

We next consider option (ii), and look at the effect of assuming an approximate 

normal distribution for gender: i.e. in the simulated dataset that generated 0 and 1 

values for boys and girls, we will have a continuous predictor with mean and variance 

equal to the mean and variance of the binary predictor considered in option (i), 

remembering the mean of a Bernouilli(p) distributed variable is p and the variance is 

p(1-p). In our case we have p = 0.6. 

 

To do this, we have to make some minor changes to the questions in MLPowSim 

regarding types of predictor. Rather than repeat all the code from the example relating 

to (i), we only show the relevant changes below: 
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Please choose a type for the predictor x1 (1=Binary  2=Continuous): 2 

Assuming normality, please input its parameters here: 

The mean of the predictor x1: 0.6 

The variance of the predictor x1: 0.24 

 

Running this model results in the following table of output: 
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There is very little difference between the results produced using the normal 

approximation, and the results produced using the binary predictor, which suggests 

that we might like to consider using the normal approximation at all times, 
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particularly as it makes it easy to include correlations between predictors (see Section 

2.2.3). One word of caution, though: in this case we have an underlying probability of 

0.6, and reasonable sample sizes; the normal approximation works best in these 

situations but may not be so good when the probability is more extreme or the sample 

size is small. 

 

From a theory point of view, we can consider the 2-sample Z-test with fixed sample 

size ratio of 60% girls and 40% boys and equal variance (0.985), and an effect size of 

0.234. 

 

Then the sample size calculation becomes: 

𝛾 = 2.802𝑆𝐸(𝛾) 

→ 0.234 = 2.802 ×  √𝜎2/0.4𝑛 + 𝜎2/0.6𝑛 

→ 0.234 = 2.802 × √0.985/0.24𝑛 

→ 𝑛 = (2.802/0.234)2 × 0.985/0.24 = 588.5 

 

So if we had fixed ratios in our 2-sample Z-test, we would need a sample of at least 

589 pupils. Even though our simulation is based on observational data, where the ratio 

6:4 is just the expected ratio, we still get a similar estimate of the sample size 

required. 

 

2.2.2 Testing for a significant continuous predictor 

 

The main predictor of interest in the tutorial example in the MLwiN User’s Guide is a 

prior ability measure: namely the London Reading Test (LRT; this predictor is 

standardised using Z-scores in the User’s Guide and is thus named ‘standlrt’) which 

the students take at age 11 prior to taking their main exams (the response variable) at 

age 16. This predictor has a very significant effect on the exam response, and 

consequently we expect that we will need a small sample size to gain a power of 0.8. 

 

We can run MLPowSim in a similar way as we did for the gender predictor in Section 

2.2.1 when we assumed a normal approximation. The inputs that will change are 

outlined below: 

 

Please choose a type for the predictor x1 (1=Binary  2=Continuous): 2 

Assuming normality, please input its parameters here: 

The mean of the predictor x1: 0 

The variance of the predictor x1: 1 

 

Sample size set up  

 

Please input the smallest sample size : 5 

Please input the largest sample size : 50 

Please input the step size: 5 

 

                             Parameter estimates 

 

Please input estimate of beta_0: -0.001 

Please input estimate of beta_1: 0.595 

 

Please input estimate of sigma^2_e: 0.648 



 

 33 

 

Files to perform power analysis for the 1 level model with the following sample criterion have been 

created 

Sample size starts at 5 and finishes at 50 with the step size 5 

1000 simulations for each sample size combination will be performed 

 

Press any key to continue… 

 

If we run these new macros in MLwiN as previously described (in Section 1.4) we get 

the following values in the Data window: 

 

 
 

So, looking at columns ‘spow1’ and ‘zpow1’ we see that with even around 15 pupils, 

we have a power greater than 0.8. 

 

To compare this with the theory, we can look at the following: 

 

𝛾 = 2.802𝑆𝐸(𝛾) 

→ 0.595 = 2.802 ×  √𝜎2/𝑆𝑥𝑥 

→ 0.595 = 2.802 × √0.648/(𝑛 − 1) 

→ 𝑛 − 1 = (2.802/0.595)2 × 0.648 → 𝑛 = 14.37 

 

and so this clearly agrees with the simulation results. 

 

2.2.3 Fitting a multiple regression model. 

 

We can next consider a model that includes both gender and LRT predictors. We 

already have sample size estimates for the relationship between each of these two 

predictors and the response independently, but now we are looking at the relationships 
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conditional on the other predictor. For this model we will get three estimated powers 

for each sample size: one for each of the relationships, and one for the intercept.  

 

We will once again use the actual estimates obtained from fitting the model to the full 

tutorial dataset for our effect estimates, our variability, and so on. Note that the 

estimates are reduced due to the correlation between the two predictors. We will 

firstly assume independence between the two predictor variables; the MLPowSim 

session will then proceed as follows: 

 

                            Welcome to MLPowSim 

 

Please input 0 to generate R code or 1 to generate MLwiN macros: 1 

 

    Please choose model type  

 

1. 1-level model   

2. 2-level balanced data nested model  

3. 2-level unbalanced data nested model  

4. 3-level balanced data nested model  

5. 3-level unbalanced data nested model  

6. 3-classification balanced cross-classified model  

7. 3-classification unbalanced cross-classified model  

 

Model type : 1 

Please input the random number seed: 1 

Please input the significant level for testing the parameters: 0.025 

Please input number of simulations per setting: 1000 

 

                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0 

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

Do you want to include any explanatory variables in your model (1=YES  0=NO)? 1 

How many explanatory variables do you want to include in your  model?  2 

Please choose a type for the predictor x1 (1=Binary  2=Continuous  3=all MVN): 1 

Please input probability of a 1 for x1 : 0.6 

Please choose a type for the predictor x2 (1=Binary  2=Continuous): 2 

Assuming normality, please input its parameters here: 

The mean of the predictor x2: 0 

The variance of the predictor x2: 1 

 

                          Sample size set up  

 

Please input the smallest sample size : 50 

Please input the largest sample size : 1500 

Please input the step size: 50 

 

                             Parameter estimates 

 

Please input estimate of beta_0: -0.103 

Please input estimate of beta_1: 0.170 

Please input estimate of beta_2: 0.591 

 

Please input estimate of sigma^2_e: 0.642 

 

Files to perform power analysis for the 1 level model with the following sample criterion have been 

created 
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Sample size starts at 50 and finishes at 1500 with the step size 50 

1000 simulations for each sample size combination will be performed 

 

Press any key to continue… 

 

We will now run the macros in the usual way and we will need to look at seven 

columns to get the power for all three parameters using both methods. 

The generated code that is run in MLwiN allocates groups of columns from the end of 

the worksheet for the Power values from each method as well as confidence interval 

limits. This means you should be able to find the columns from the Data window by 

scrolling to the end. In displays in this guide we will typically have selected the power 

estimates only. For example doing this the Data window for this model looks as 

follows: 
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Here we see that the LRT predictor has associated power (see columns ‘zpow2’ and 

‘spow2’) of essentially 1 at sample sizes of only 100 pupils, whilst the gender 

predictor requires samples of around 700-750 to gain a power of 0.8 (‘zpow1’ and 

‘spow1’). This is higher than the 600 required when LRT was not considered, but this 

will be in part due to the reduced effect size of 0.170 versus 0.234, which more than 

outweighs the reduction in unexplained variability (0.642 versus 0.985). 

 

We could also consider including the correlation between our two predictors in our 

simulation; i.e. at present we are assuming independence between prior attainment 

and gender, whereas in reality there is a small positive correlation, with girls doing 

better in the LRT than boys. To do this we need to approximate the 0/1 gender 

predictor with a continuous predictor for simulation purposes and assume a 

multivariate normal distribution. This involves minor changes to the above macro as 

follows: 

 

Please choose a type for the predictor x1 (1=Binary  2=Continuous  3=all MVN): 3 

Assuming multivariate normality, please input its parameters here:  

The mean of the predictor x1: 0.6 

The mean of the predictor x2: 0 

The variance matrix of the predictors 

The element [1,1]: 0.24 

The element [2,1]: 0.026 

The element [2,2]: 1 

 

Note that here we have worked out the correlation between the two predictors based 

on the full tutorial dataset and then converted this to a covariance value of 0.026. In 

addition, note that in MLPowSim, one can choose independent combinations of 

binary and continuous as predictor types, but if MVN is selected, then all predictors 

are treated as continuous and normally distributed (i.e. as MVN). 

 

So, if we fit this model, we get the following: 
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Here we see that, as with the uncorrelated case, we need a sample size of around 750 

for a power of 0.8 for the gender predictor (columns ‘zpow1’ & ‘spow1’). Please note 

that in this case, the correlation between the two predictors is small (0.053). Allowing 

for correlations between predictors will be more important, however, when those 

correlations are larger. In fact, if we were to increase the covariance from 0.026 to 

0.26 (i.e. a correlation of 0.53 between gender and LRT), then the resulting 

simulations suggest that we would then need a sample size of around 1000 for a 

power of 0.8. 

 

Perhaps more importantly, the inclusion of the LRT predictor in the model has 

changed our hypothesis so that we are now investigating the effect of gender on 

progress made between ages 11 to 16, rather than simply unadjusted attainment at age 

16; since this change results in reduced estimates, we now need a larger sample size. 
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2.2.4 A note on sample sizes for multiple hypotheses, and using sample size 

calculations as ‘rough guides’ 

 

This example illustrates several important factors when constructing sample size 

calculations. Firstly, each hypothesis will have a unique sample size calculation. So, 

even though we found that a very small sample is required to show the significant 

relationship between the response and LRT, the same data are to be used to show a 

significant relationship between the response and gender, and so our chosen sample 

size will need to satisfy all our hypotheses. Secondly, in this section we have used 

existing data – in fact the true tutorial dataset – to estimate parameter values, and so 

we have been able to establish, for example, that there is a reduction in the effect of 

gender when we include LRT in the model. This illustrates that when conducting our 

power calculation, it is important to replicate exactly what we expect to happen in our 

data collection. However, this is easier said than done. This is why sample size 

calculations can be thought of as a rough guide: in practice, it might be best to treat 

them with some caution and scale them up to cover factors such as over-optimism in 

effect sizes, missing variables, and so on. In addition, if we were to switch to a one-

sided test, then this would decrease our sample sizes, whereas if we were to choose a 

power of 0.9, then this would increase our sample sizes. 

 

2.2.5 Using RIGLS  

 

Up to this point we have focussed solely on the IGLS method in the MLwiN package. 

This is because when fitting models in MLwiN, most people use IGLS. This is 

because it gives maximum likelihood (ML) estimates and therefore allows likelihood 

ratio tests to be used when comparing nested models. In terms of single-level normal 

models, we do have a bit of a dilemma, since, typically, general purpose statistical 

software packages output unbiased standard errors for coefficients. These coefficients 

are equivalent to restricted maximum likelihood (REML) estimates, as used in the 

RIGLS estimation method. This difference amounts to changing the divisor in the 

formula for estimating the residual variance from n in the ML estimate, to n-p in the 

REML estimate, where p is the number of fitted parameters. This will only have a big 

impact when n is sufficiently small, and in these cases the fact that we are assuming a 

normal distribution, rather than a t distribution, is also a problem. 

 

In Section 2.2.2 we encountered an example where this would make a difference; 

there we looked at sample sizes for estimating the effect of LRT (the London Reading 

Test score indicator). We can repeat this analysis using RIGLS estimation simply by 

changing our selection, when prompted in MLPowSim, of the estimation method 

from a 1 to a 0. If we do this, and run the resulting macros in MLwiN, we get the 

following: 
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For comparison, in the column headed ‘spow1’ for the IGLS method the first three 

power estimates are 0.362, 0.648 and 0.821, respectively, and so we see that for very 

small n, the power can be very different. However, we still come to a similar 

conclusion that for a power of 0.8, we would need a sample of around 15 to 20 pupils. 

 

2.2.6 Using MCMC estimation 

 

MCMC estimation is another alternative estimation approach available in MLwiN 

(see Browne, 2009, for details). Later we will see that when we encounter cross-

classified models, we turn to MCMC estimation to work out power calculations in 

MLwiN. One problem with MCMC estimation, however, is its speed, as it is far 

slower than the IGLS method. This is because it is an iterative procedure, and so for 

each simulated dataset, the method needs to be run for a large number of iterations. 

So for example if we require 1,000 simulations per setting and choose to run MCMC 

for a burn-in of 1,000 iterations and store the following 5,001 iterations we will in 

effect run for over 6 million iterations per setting! This means that it is not desirable 

to use the MCMC method for many of the examples illustrated here, unless you 

intend to use MCMC to fit your model in practice (for example, for non-normal 

responses, where MCMC estimation has some advantages over the classical methods). 

 

At this stage, we will simply illustrate MCMC estimation in the case of the simple 

example given in Chapter 1, in which we estimated power for a 1-sample mean 

problem. The MLPowSim program will create MLwiN macro code that utilises 

MCMC with the MLwiN default prior distributions: improper normal priors for fixed 

effects and Г-1(ε,ε) priors for variances (with inverse Wishart priors for variance 

matrices). For the starting values, MCMC uses the IGLS estimates for the fixed effect 

parameters and the values simulated for the variances to avoid any zero starting 

values. In multilevel models (unlike running MCMC in MLwiN normally, i.e. from 

the menu), the residual starting values are not taken from IGLS, and so the method 

may need to burn in for longer. 
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The MCMC method requires the user to input both a burn-in length, and main run 

length, that will be used for each simulated dataset. It should be noted that this doesn’t 

guarantee the MCMC method has converged for all datasets but building this in 

would be difficult. In calculating the power we can use both the 0/1 approach, and the 

SE approach (as described in Sections 1.4.1 & 1.4.2), simply by taking the posterior 

means and standard deviations for each simulated dataset. Here, though, another 

approach is also available, namely a non-parametric 0/1 method, where for each 

parameter the chain of stored values is sorted, and the value of the appropriate 

quantile is calculated from this sorted chain. The sign of this value can then be 

evaluated to decide if the credible interval (a Bayesian form of confidence interval) 

contains zero or not. So, when selecting MCMC estimation in MLPowSim, and 

running the resulting macros in MLwiN, power estimates from three different 

methods are produced. Here we show the relevant MLPowSim inputs for MCMC 

estimation, using the example from Chapter 1: 
 

                            Welcome to MLPowSim 

 

Please input 0 to generate R code or 1 to generate MLwiN macros: 1 

 

    Please choose model type  

 

1. 1-level model   

2. 2-level balanced data nested model  

3. 2-level unbalanced data nested model  

4. 3-level balanced data nested model  

5. 3-level unbalanced data nested model  

6. 3-classification balanced cross-classified model  

7. 3-classification unbalanced cross-classified model  

 

Model type : 1 

Please input the random number seed: 1 

Please input the significant level for testing the parameters: 0.025 

Please input number of simulations per setting: 1000 

 

                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0 

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 2 

Please input burnin length for each simulation: 1000 

Please input main run length for each simulation : 5001 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

Do you want to include any explanatory variables in your model (1=YES  0=NO)? 0 

 

                          Sample size set up  

 

Please input the smallest sample size : 20 

Please input the largest sample size : 500 

Please input the step size: 20 

 

                             Parameter estimates 

 

Please input estimate of beta_0: -0.140 

 

Please input estimate of sigma^2_e: 1.051 

 

Files to perform power analysis for the 1 level model with the following sample criterion have been 

created 
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Sample size starts at 20 and finishes at 500 with the step size  20 

1000 simulations for each sample size combination will be performed 

 

Press any key to continue… 

 

Here we see that we have selected a burn-in of 1000 iterations to allow the chains for 

each model to settle down, and then a main run of 5001 iterations from which we will 

obtain our power estimates. Note we use 5001, rather than 5000, for ease of 

calculation of quantiles. The macros take a while to run in MLwiN (approximately 43 

minutes on my machine) and if one selects columns `mpow0’, `spow0’, `zpow0’ and 

`Samplesize’ to view in the View/Edit Data window, the results can be seen as 

follows: 
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Note that the three methods of estimating power give similar results, and the estimates 

for power are broadly similar to those using IGLS. In addition, for small sample sizes, 

the power from MCMC is systematically smaller than that for IGLS; again, this is due 

to the bias (downwards) of ML variance estimates. 

 

2.2.7 Using R 

 

Whilst RIGLS and MCMC estimation are not offered in MLPowSim when producing 

output for R (as opposed to producing output for MLwiN), power calculations for the 

various models we have discussed above can be performed in R, using the default 

estimation method of iteratively reweighted least squares (IWLS; see Section 1.5 for 

notes on both this, and on running the outputted code in R). For illustrative purposes, 

here we present the results of a power calculation conducted in R for the model we 

studied in Section 2.2.1 (testing differences between the two genders, treating the 

predictor as binary):4: 
 

n  zLb0  zpb0  zUb0  sLb0  spb0  sUb0  zLb1  zpb1  zUb1  sLb1  spb1  sUb1 

50  0.088  0.107  0.126  0.090  0.091  0.092  0.109  0.130  0.151  0.123  0.124  0.126 

100  0.124  0.146  0.168  0.141  0.142  0.143  0.175  0.200  0.225  0.208  0.209  0.211 

150  0.171  0.196  0.221  0.192  0.193  0.195  0.257  0.285  0.313  0.291  0.293  0.295 

200  0.212  0.238  0.264  0.240  0.241  0.243  0.339  0.369  0.399  0.369  0.371  0.372 

250  0.266  0.294  0.322  0.289  0.291  0.293  0.417  0.448  0.479  0.444  0.446  0.448 

300  0.313  0.342  0.371  0.335  0.337  0.339  0.501  0.532  0.563  0.512  0.514  0.516 

350  0.354  0.384  0.414  0.382  0.384  0.386  0.579  0.609  0.639  0.576  0.578  0.581 

400  0.422  0.453  0.484  0.428  0.430  0.432  0.619  0.649  0.679  0.634  0.636  0.638 

450  0.452  0.483  0.514  0.471  0.473  0.475  0.670  0.698  0.726  0.686  0.687  0.689 

500  0.489  0.520  0.551  0.511  0.513  0.515  0.727  0.754  0.781  0.730  0.732  0.734 

550  0.517  0.548  0.579  0.549  0.551  0.553  0.751  0.777  0.803  0.770  0.771  0.773 

600  0.546  0.577  0.608  0.588  0.590  0.592  0.767  0.792  0.817  0.806  0.808  0.809 

650  0.570  0.600  0.630  0.622  0.624  0.626  0.796  0.820  0.844  0.837  0.838  0.839 

700  0.620  0.650  0.680  0.653  0.655  0.657  0.873  0.892  0.911  0.862  0.863  0.864 

750  0.652  0.681  0.710  0.683  0.685  0.687  0.853  0.874  0.895  0.884  0.885  0.886 

800  0.659  0.688  0.717  0.711  0.713  0.714  0.865  0.885  0.905  0.903  0.904  0.905 

850  0.681  0.709  0.737  0.738  0.739  0.741  0.908  0.924  0.940  0.920  0.921  0.921 

900  0.736  0.762  0.788  0.761  0.763  0.764  0.921  0.936  0.951  0.933  0.934  0.934 

950  0.780  0.805  0.830  0.782  0.784  0.785  0.947  0.959  0.971  0.944  0.945  0.945 

1000  0.810  0.833  0.856  0.803  0.805  0.806  0.941  0.954  0.967  0.954  0.954  0.955 

1050  0.787  0.811  0.835  0.823  0.824  0.825  0.936  0.950  0.964  0.962  0.963  0.963 

1100  0.836  0.858  0.880  0.840  0.841  0.843  0.958  0.969  0.980  0.969  0.969  0.970 

1150  0.856  0.876  0.896  0.856  0.857  0.858  0.976  0.984  0.992  0.975  0.975  0.975 

1200  0.846  0.867  0.888  0.870  0.871  0.872  0.975  0.983  0.991  0.979  0.979  0.980 

1250  0.872  0.891  0.910  0.883  0.884  0.885  0.973  0.981  0.989  0.983  0.983  0.983 

1300  0.888  0.906  0.924  0.894  0.895  0.896  0.994  0.997  1.000  0.986  0.986  0.986 

1350  0.891  0.909  0.927  0.904  0.905  0.906  0.981  0.988  0.995  0.988  0.989  0.989 

1400  0.889  0.907  0.925  0.915  0.916  0.917  0.985  0.991  0.997  0.991  0.991  0.991 

1450  0.896  0.913  0.930  0.923  0.924  0.924  0.979  0.986  0.993  0.992  0.992  0.993 

1500  0.908  0.924  0.940  0.932  0.933  0.934  0.986  0.992  0.998  0.994  0.994  0.994 

 

Here we see the sample size indicated in the column on the far left, with the power 

estimates (together with upper and lower bounds) of the intercept and the predictor in 

the remaining columns, for each method of power calculation. As discussed in Section 

1.5.1, ‘z’ and ‘s’ denote the zero/one and standard error methods, respectively, whilst 

 
4 Note that to aid the reader, we have widened the spaces between columns relating to different 

predictors/methods, and have formatted the power estimates in bold. 
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‘p’, ‘L’ and ‘U’ denote the power estimate, and the lower and upper bounds, 

respectively, whilst ‘b0’ and ‘b1’ denote the intercept (β0) and predictor (β1). The 

results indicate that sampling around 600 pupils should provide a power of 0.8 for the 

gender predictor (columns ‘zpb1’ and ‘spb1’). These findings are very similar to the 

results we found earlier when using MLwiN (Section 2.2.1), although performing the 

above power calculation in R is computationally more expensive (taking 

approximately 9 minutes (for R) versus a minute or so (for MLwiN) on my machine). 
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2.3 Variance Components and Random Intercept Models 

 

We now turn our attention to multilevel data, as this is one of the chief motivations in 

writing MLPowSim. This is because apart from simple cases, such as those described 

in Sections 2.3.1 and 2.3.2, when we move to multilevel modelling, standard sample 

size formulae do not exist. In Section 2.3.1 we will discuss a specific formula – the 

design effect formula – that can be used for scaling up sample sizes in variance 

components models to account for clustering; we will compare results from that 

formula with MLPowSim. In Section 2.3.2 we will discuss the PINT modelling 

software that can be used to fit (balanced) two-level nested models, and we will again 

compare results between PINT and MLPowSim. 

 

Before we begin, however, please note that in this section we are considering random 

intercepts models – i.e. models that can be written as follows: 

 

𝑦𝑖𝑗 = 𝑋𝑖𝑗
𝑇 𝛽 + 𝑢𝑗 + 𝑒𝑖𝑗, 𝑢𝑗~𝑁(0, 𝜎𝑢

2), 𝑒𝑖𝑗~𝑁(0, 𝜎𝑒
2) 

 

where j indexes clusters (schools, in our example) and i indexes units within clusters 

(pupils, in our example). We also assume that the uj and the eij are independent, and 

we have J clusters with the jth cluster containing nj units. 

 

2.3.1 The Design Effect formula 

 

In the case of a model where we test just a mean against some known constant (as 

described in the introductory chapter), but with clustering in the data (i.e. a variance 

components model) and balance in the clusters (i.e. nj=nC for all j where nC is a 

common cluster size), there is a simple scaling formula that can be used. 

 

The design effect formula requires an estimate of ρ, the intra-class correlation. This is 

a measure of how much correlation exists within clusters. If we initially work out a 

required sample size without accounting for clustering, then to subsequently account 

for clustering we need to multiply by the Design effect = 1 + (nC-1)ρ where nC is the 

cluster size. 

 

To see this in practice, we will return to the introductory example in which we 

estimated sample sizes to show that boys do significantly worse at age 16 than 

average, with a power of 0.8. The tutorial dataset consists of 65 schools with 4059 

pupils in total, leaving an average cluster sample size of 62, but 60% of these pupils 

are, on average, girls and so we will now consider a (balanced) analysis where we 

take samples of between 10 and 60 boys from each school and we visit between 10 

and 50 schools. When we look at the model fitted to all the boys in the tutorial dataset 

(accounting for clustering) we get an estimate of -0.177. The estimates of the level 1 

and level 2 variances are 0.916 and 0.151, respectively. 

 

If we assume a total variance of 0.916+0.151 = 1.067, we can then repeat our 

calculations from Section 2.1.1 to give: 

 

𝛾 = 2.802𝑆𝐸(𝛾) 
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→ 0.177 = 2.802 ×
√1.067

√𝑛
→ √𝑛 =

2.89

0.177
= 16.352 

→ 𝑛 = 267.4 

 

which, due to the increased parameter estimate, is smaller than in Chapter 1.  With the 

design effect formula we can now work out total sample sizes required for clusters of 

sizes 10 to 60. Note that ρ has the formula: 

 

𝜌 =
𝜎𝑢

2

𝜎𝑢
2+𝜎𝑒

2 =
0.151

1.067
= 0.142 in our example. 

 

Cluster size Design formula Total sample size Number of clusters 

10 2.278 610 61 

20 3.698 989 50 

30 5.118 1369 46 

40 6.538 1749 44 

50 7.958 2128 43 

60 9.378 2508 42 

 

We will now show how to fit this model using MLPowSim to confirm that it gives 

similar sample sizes. Below, we show how to set up this model (to generate output for 

MLwiN): 
 

                            Welcome to MLPowSim 

 

Please input 0 to generate R code or 1 to generate MLwiN macros: 1 

 

    Please choose model type  

 

1. 1-level model   

2. 2-level balanced data nested model  

3. 2-level unbalanced data nested model  

4. 3-level balanced data nested model  

5. 3-level unbalanced data nested model  

6. 3-classification balanced cross-classified model  

7. 3-classification unbalanced cross-classified model  

 

Model type : 2 

Please input the random number seed: 1 

Please input the significant level for testing the parameters: 0.025 

Please input number of simulations per setting: 1000 

 

                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0 

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

Do you want to have a random intercept in your model (1=YES  0=NO )? 1 

Do you want to include any explanatory variables in your model (1=YES  0=NO)? 0 

 

                          Sample size set up  

 

Please input the smallest number of units for the second level: 10 

Please input the largest number of units for the second level: 50 

Please input the step size for the second level: 10 
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Please input the smallest number of units for the first level per second level: 10 

Please input the largest number of units for the first level per second level: 60 

Please input the step size for the first level per second level: 10 

 

                             Parameter estimates 

 

Please input estimate of beta_0: -0.177 

Please input estimate of sigma^2_u: 0.151 

Please input estimate of sigma^2_e: 0.916 

 

Files to perform power analysis for the 2 level nested model with the following sample criterion have 

been created 

Sample size in the first level starts at 10 and finishes at 60 with the step size  10 

Sample size in the second level starts at 10 and finishes at 50 with the step size 10  

1000 simulations for each sample size combination will be performed 

 

Press any key to continue… 

 

If we run the macros in MLwiN, we can view the following results via the View or 

edit data menu option: 
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Looking at the power estimates we see that with 40 schools (see the column headed 

‘N-level 2’), only a cluster size of 60 produces a power around 0.8, but for 50 schools 
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we have all bar cluster size 10 producing a power above 0.8; this corresponds to the 

design effect table where the required number of schools for the various cluster sizes 

is between 40 and 50 for cluster sizes greater than 10. 

 

2.3.2 PINT 

 

The PINT program (Bosker, Snijders and Guldemond, 2003) calculates Power IN 

Two-level designs and is available at http://stat.gamma.rug.nl/snijders/. PINT takes 

user input detailing the proposed design, including effect sizes and anticipated 

variabilities, and for a range of sample sizes, both for the clusters and within clusters, 

it gives standard error estimates for the fixed effect parameters in the model. The 

mathematics that it uses to construct its approximation to the standard errors can be 

found in Snijders and Bosker (1993). It is very fast for the models it covers, as it is 

simply deriving matrix formulae, but it has some limitations: for example, it only 

deals with normal response models with equal-sized (balanced) clusters and only one 

set of clusters. 

 

We will compare the results we get from MLPowSim to PINT in the remaining 

examples in this section. 

 

2.3.3 Multilevel two sample t-test example  

 

We earlier studied power calculations pertaining to the hypothesis that girls did better 

than boys, and we saw in Section 2.2.1 how to test this hypothesis with independent 

samples of girls and boys. We now look at what happens when the girls and boys are 

clustered together in schools. We will again use the tutorial dataset example to get 

hold of our parameter estimates.  For this model, the tutorial example gives estimates 

of the intercept and female effects of -0.161 and 0.262, respectively (note in the one-

level case, these were -0.140 and 0.234), and the split of the variability is 0.161 at 

school level with 0.839 left as residual variability. 

 

We will consider two methods of describing the variability in the predictor variable of 

gender. Firstly, as in Section 2.2.1, we will assume a normal approximation to the 

Binomial with probability of 0.6 of being a girl, with a mean of 0.6 and a variance of 

0.24. Secondly, we will take account of clustering by assuming the variability is split 

into 0.12 between schools, with 0.12 left as residual variability. In reality, the tutorial 

dataset has some single sex schools which can explain this clustering, and which we 

will examine in Section 2.3.4. 

 

Below, we give details of the MLPowSim inputs which have changed from 

previously: 
 

Model type: 2 

Please input the random number seed: 1 

Please input the significance level for testing the parameters: 0.025 

Please input number of simulations per setting: 1000 

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0 

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1 

http://stat.gamma.rug.nl/snijders/
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Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

Do you want to have a random intercept in your model (1=YES  0=NO )? 1 

Do you want to include any explanatory variables in your model (1=YES  0=NO)? 1 

How many explanatory variables do you want to include in your  model?  1 

Please choose a type for the predictor x1 (1=Binary  2=Continuous): 2 

Assuming normality, please input its parameters here: 

The mean of the predictor x1: 0.6 

The variance of the predictor x1 at level 1: 0.24 

The variance of the predictor x1 at level 2: 0 

Do you want the coefficient associated with explanatory variable x1 to be random (1=YES  0=NO) ? 0 

 

                          Sample size set up  

 

Please input the smallest number of units for the second level: 10 

Please input the largest number of units for the second level: 50 

Please input the step size for the second level: 10 

Please input the smallest number of units for the first level per second level: 10 

Please input the largest number of units for the first level per second level: 60 

Please input the step size for the first level per second level: 10 

 

                             Parameter estimates 

 

Please input estimate of beta_0: -0.161 

Please input estimate of beta_1: 0.262 

Please input estimate of sigma^2_u: 0.161 

Please input estimate of sigma^2_e: 0.839 

 

Files to perform power analysis for the 2 level nested model with the following sample criterion have 

been created 

Sample size in the first level starts at 10 and finishes at 60 with the step size  10 

Sample size in the second level starts at 10 and finishes at 50 with the step size 10  

1000 simulations for each sample size combination will be performed 

 

Press any key to continue… 

 

If we run the macros in MLwiN, and look at the following six columns in the View 

Data window, we see the following: 
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Here the interesting thing is that if we look at ‘zpow1’ or ‘spow1’, then the power 

values obtained for equal-sized designs (for example 10 schools with 60 students, 20 

schools with 30 students and 30 schools with 20 students) are approximately equal at 

0.92 (note numbers of students and schools are stored as ‘N-level 1’ and ‘N-level 2’, 

respectively). This is not the case for the intercepts, where the power goes up from 

around 0.23 for 10 schools with 60 students, to around 0.41 for 30 schools with 20 

students. This is because in a random intercept model, the clustering is only affecting 

the overall response and not the relationship with predictor variables. It appears here 

that a sample size somewhere between 400 and 500, regardless of clustering, will 

result in a power of 0.8; this is smaller than in Section 2.2.1, but this will be mainly 



 

 51 

due to the increase in the gender estimate we are using (0.262 instead of 0.234). To 

illustrate, if we consider the one-level calculation with the new gender estimate and 

total variability, we see that indeed the estimated sample size would be between 400 

and 500, since 
 

𝛾 = 2.802𝑆𝐸(𝛾) 

→ 0.262 = 2.802 ×  √𝜎2/0.4𝑛 + 𝜎2/0.6𝑛 

→ 0.262 = 2.802 × √1/0.24𝑛 

→ 𝑛 = (2.802/0.262)2 × 1/0.24 = 476.6 

 

This method of calculating the sample size is, of course, not appropriate here, and it 

transpires that when we fix the number of schools to 50 then a power of 0.8 is 

achieved somewhere between 8 and 9 pupils per school, which is smaller than the 477 

obtained here. However, what we are illustrating is the fact that it is not necessarily 

true that accounting for a clustered design, as in a variance components model, 

automatically requires a larger sample size. 

 

If we now consider the effect of changing the variability of the predictor so that it is 

split between the 2 levels, we will need to rerun MLPowSim and change the 

following lines: 

 

The variance of the predictor x1 at level 1: 0.12 

The variance of the predictor x1 at level 2: 0.12 

 

The rest of the inputs will be as before. Running this in MLwiN gives the following: 
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Here we see (by looking at ‘zpow1’) that increasing the number of schools for a fixed 

sample size increases power. For example, 10 schools each with 20 pupils has a 

power of 0.346, whilst 20 schools each with 10 pupils has a power of 0.375. The 

effect in this example is rather small but what is more impressive is the effect on the 

overall sample size required. We now see that to get a power of 0.8, we would need 

nearly 800 pupils, as opposed to the estimate of between 400 and 500 we found when 

we didn’t account for the variability between the gender ratios in schools.  

 

We will now confirm these findings with PINT. 
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PINT requires a text file as input, containing all the information about the design we 

are interested in. For the example that contains all the variability in gender at level 1 

we need to create a text file as follows: 

 

   1      1      0 

   10    -10     60 

   10     50 

   0.839 

   0.161  

   0.24  

   0.0  

   0.6 

 

Here we have, in order:  

1 for the number of level 1 predictors (in this case gender); 

1 for the number of level 1 predictors that are not also random effects; 

0 for the number of level 2 predictors; 

10 for the smallest number of level 1 units per level 2 unit; 

-10 for the step size at level 1; 

60 for the largest number of level 1 units per level 2 unit; 

10 for the smallest number of level 2 units; 

50 for the largest number of level 2 units (note a step size of 2 is chosen here 

automatically); 

0.839 for the level 1 variance; 

0.161 for the level 2 variance; 

0.24 for the level 1 variance associated with the predictor (gender); 

0 for the level 2 variance associated with the predictor (gender); 

0.6 for the mean of the gender predictor. 

 

As PINT only calculates the standard errors, the fixed effect estimates are not required 

as inputs. Loading up PINT (version 2.12) we are first asked for the input file in a 

dialogue box, and then are greeted by a screen as follows: 

 



 

 54 

 
 

Clicking on the OK button will result in many windows appearing, each asking the 

user to confirm (or change) the inputs. If you click on OK at each prompt, PINT will 

run and store the output in a file named gender.out (assuming you have named the 

input text file gender.dat, as we have). 

 

The file gender.out contains a large amount of background information on the input 

settings before giving a table of standard error estimates. We show this for every 

combination with the number of clusters as a multiple of 10 to save some space: 
 

The following table contains the standard errors (s.e.): 

Fixed:   s.e. of regr. coeff.s of level-1 variables with a fixed 

effect only. 

Const:   s.e. of the intercept. 

 

 

    Sample sizes      Standard errors    

 

    N*n     N     n    Fixed   Const   

    100    10    10   0.18697 0.19255 

    200    20    10   0.13221 0.13615 

    300    30    10   0.10795 0.11117 

    400    40    10   0.09349 0.09627 

    500    50    10   0.08362 0.08611 

    200    10    20   0.13221 0.16306 

    400    20    20   0.09349 0.11530 

    600    30    20   0.07633 0.09414 

    800    40    20   0.06610 0.08153 

   1000    50    20   0.05913 0.07292 

    300    10    30   0.10795 0.15196 

    600    20    30   0.07633 0.10745 

    900    30    30   0.06232 0.08773 

   1200    40    30   0.05397 0.07598 

   1500    50    30   0.04828 0.06796 
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    400    10    40   0.09349 0.14610 

    800    20    40   0.06610 0.10330 

   1200    30    40   0.05397 0.08435 

   1600    40    40   0.04674 0.07305 

   2000    50    40   0.04181 0.06534 

    500    10    50   0.08362 0.14246 

   1000    20    50   0.05913 0.10073 

   1500    30    50   0.04828 0.08225 

   2000    40    50   0.04181 0.07123 

   2500    50    50   0.03739 0.06371 

    600    10    60   0.07633 0.13999 

   1200    20    60   0.05397 0.09898 

   1800    30    60   0.04407 0.08082 

   2400    40    60   0.03817 0.06999 

   3000    50    60   0.03414 0.06260 

 

We can now use these output standard errors to convert into an equivalent power. We 

have to do this by hand as this is not done explicitly by the PINT software.  

 

We earlier had the formula 
𝛾

𝑆𝐸(𝛾)
= 𝑍1−𝛼/2 + 𝑍1−𝛽 

→ 𝑍1−𝛽 =
𝛾

𝑆𝐸(𝛾)
− 𝑍1−𝛼/2 

for our example we have 

 

𝑍1−𝛽 =
0.262

𝑆𝐸(𝛾)
− 1.96 

and so for each of the standard errors given in the 4th column of the above outcome 

we can use the above formula and look up the power in the normal tables. For a power 

of 0.8 we find we require a standard error of 0.0935, or less, in this example. Looking 

at the PINT column we see that this value would occur at around 400 pupils in total, 

as we observed in MLPowSim. We can also see in the PINT output that, for all 

designs with exactly 400 pupils, the same standard error and hence the same power is 

obtained for the gender predictor.  This was suggested earlier, and MLPowSim 

appears to give this result (with some Monte Carlo error), but the PINT approximate 

standard errors are identical for each scenario. 

 

We can also look at the second scenario where we have the variance of the gender 

predictor split between the two levels.  

The PINT input file is now as follows: 

 

   1      1      0 

   10    -10     60 

   10     50 

   0.839 

   0.161  

   0.12  

   0.12  

   0.6 

 

If we run this input file in PINT, we can again look at the output standard errors: 
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The following table contains the standard errors (s.e.): 

Fixed:   s.e. of regr. coeff.s of level-1 variables with a fixed 

effect only. 

Const:   s.e. of the intercept. 

 

 

    Sample sizes      Standard errors    

 

    N*n     N     n    Fixed   Const   

    100    10    10   0.22820 0.20794 

    200    20    10   0.16136 0.14703 

    300    30    10   0.13175 0.12005 

    400    40    10   0.11410 0.10397 

    500    50    10   0.10205 0.09299 

    200    10    20   0.17021 0.17528 

    400    20    20   0.12035 0.12394 

    600    30    20   0.09827 0.10120 

    800    40    20   0.08510 0.08764 

   1000    50    20   0.07612 0.07839 

    300    10    30   0.14248 0.16188 

    600    20    30   0.10075 0.11447 

    900    30    30   0.08226 0.09346 

   1200    40    30   0.07124 0.08094 

   1500    50    30   0.06372 0.07239 

    400    10    40   0.12519 0.15440 

    800    20    40   0.08852 0.10918 

   1200    30    40   0.07228 0.08914 

   1600    40    40   0.06260 0.07720 

   2000    50    40   0.05599 0.06905 

    500    10    50   0.11304 0.14959 

   1000    20    50   0.07993 0.10578 

   1500    30    50   0.06526 0.08637 

   2000    40    50   0.05652 0.07480 

   2500    50    50   0.05055 0.06690 

    600    10    60   0.10388 0.14623 

   1200    20    60   0.07345 0.10340 

   1800    30    60   0.05997 0.08443 

   2400    40    60   0.05194 0.07311 

   3000    50    60   0.04646 0.06540 

 

Here we see that – as with MLPowSim – the standard errors, and hence power 

associated with the sample sizes, does depend on the design, and for equivalent total 

numbers of pupils the greater the number of schools the smaller the standard error and 

the larger the power. Looking for a standard error of 0.0935 or smaller we see that this 

occurs when we have 40 pupils in 20 schools, 20 pupils in 40 schools, and so on, as 

we found with MLPowSim. 

 

We will occasionally compare our results from MLPowSim with those from PINT in 

later examples, but as this is a book about MLPowSim our coverage of PINT will be 

brief. If the reader requires more information regarding PINT, there is a user’s guide 

available from https://www.stats.ox.ac.uk/~snijders/multilevel.htm#progPINT which 

provides further details. 
 

2.3.4 Higher level predictor variables 

 

https://www.stats.ox.ac.uk/~snijders/multilevel.htm#progPINT
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Continuing with our topic of the effect of gender on exam score, we saw in the last 

example that differential sex ratios between schools had an impact on our sample size 

calculation. In fact we saw the impact of an ICC for gender of 0.5: i.e. 50% of the 

variability between “pupil’s gender” is due to schools. This high ICC is partly due to 

the large numbers of single sex schools in the tutorial dataset. In the MLwiN User’s 

Manual they study another hypothesis concerning the effect of single sex school 

attendance, as it appears that such pupils do better, in general, than pupils in a mixed 

school. 

 

Here we will test a version of this hypothesis to demonstrate how to use MLPowSim 

with predictors at the cluster (school) level. In the tutorial dataset there is a categorical 

variable school gender which takes 3 values: mixed schools, boys’ schools and girls’ 

schools. As the current version of MLPowSim only deals with continuous and binary 

variables, and in fact the effects of boys’ schools and girls’ schools are similar in 

magnitude, we will create a version of this predictor that purely differentiates between 

mixed and single-sex schools. Note that in Chapter 5, we will revisit this as an 

example of how to modify the macros produced by MLPowSim to deal with 

categorical predictors at higher levels. 

 

We fitted a model with this predictor to the tutorial dataset and the result was 

estimates of -0.101 for the intercept (mixed schools) and 0.193 for the single-sex 

schools predictor. The model had estimates of 0.159 and 0.848 for level 2 and residual 

(level 1) variances, respectively. Of the 65 schools in the dataset, we have 30 single 

sex schools, but to express the variable as a level 2 predictor we (currently) have to 

convert this to a continuous variable with mean 30/65 = 0.462, and variance 

(0.462)*(1-0.462) = 0.249. 

 

We will use these numbers to set up an MLPowSim scenario.  For illustration, we will 

assume a constant 40 pupils per school, and then vary the number of schools. 

After choosing a balanced 2-level model, and the usual numbers of simulations, and 

the usual random seed and significance level, we enter the following inputs when 

prompted: 
 

                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0 

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

Do you want to have a random intercept in your model (1=YES  0=NO )? 1 

Do you want to include any explanatory variables in your model (1=YES  0=NO)? 1 

How many explanatory variables do you want to include in your  model?  1 

Please choose a type for the predictor x1 (1=Binary  2=Continuous): 2 

Assuming normality, please input its parameters here: 

The mean of the predictor x1: 0.462 

The variance of the predictor x1 at level 1: 0 

The variance of the predictor x1 at level 2: 0.249 

Do you want the coefficient associated with explanatory variable x1 to be random (1=YES  0=NO) ? 0 

 

                          Sample size set up  

 

Please input the smallest number of units for the second level: 10 

Please input the largest number of units for the second level: 200 

Please input the step size for the second level: 10 

Please input the smallest number of units for the first level per second level: 40 
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Please input the largest number of units for the first level per second level: 40 

Please input the step size for the first level per second level: 10 

 

                             Parameter estimates 

 

Please input estimate of beta_0: -0.101 

Please input estimate of beta_1: 0.193 

Please input estimate of sigma^2_u: 0.159 

Please input estimate of sigma^2_e: 0.848 

 

Files to perform power analysis for the 2 level nested model with the following sample criterion have 

been created 

Sample size in the first level starts at 10 and finishes at 200 with the step size 10 

Sample size in the second level starts at 40 and finishes at 40 with the step size 10  

1000 simulations for each sample size combination will be performed 

 

Press any key to continue… 

 

If we run the macro code produced in MLwiN, we will get the following output in the 

View/Edit Data window: 

 

 
 

Here we see that we need around 160 schools of size 40 to detect a single sex school 

effect which is more schools than are present in the real tutorial dataset! This is not 
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very surprising, since in the real dataset the average pupils per school is larger, and 

the effect of single sex schools only has a p-value of 0.03 on a 1-sided test. 

 

So far, we have not mentioned graphs in our discussion of multilevel models. As 

described in Section 1.4.3, to plot the power curves we need to execute the graphing 

macro file graphs.txt in MLwiN, and then view the resulting plot via Customised 

graph(s) from the Graphs menu. This will produce the following: 

 

 
 

Note, by default the graphs.txt macro plots separate curves for each parameter, and 

estimation method, against column c210 (‘N-level 2’: the number of schools). This 

means that if we vary the number of pupils and the number of schools we will get a 

messy graph, but in this case, as we have fixed the number of pupils as 40 per school, 

this is not the case. Once again, we observe that the brighter curves, plotting results 

from the SE method, are much smoother than the 0/1 method. 

 

We can compare our results with PINT. On this occasion, since the parameter 

estimate is 0.193, we are looking for a standard error of 0.0689 for a power of 0.8. 
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We will use the following input file: 

 

   0      0      1 

    40    -10     40 

    10    150 

    0.848 

    0.159 

      0.249  

      0.462 

 

which results in the following output file: 

 
Sample sizes      Standard errors    

 

    N*n     N     n    Const   Group   

    400    10    40   0.18294 0.26902 

    800    20    40   0.12936 0.19022 

   1200    30    40   0.10562 0.15532 

   1600    40    40   0.09147 0.13451 

   2000    50    40   0.08181 0.12031 

   2400    60    40   0.07468 0.10983 

   2800    70    40   0.06914 0.10168 

   3200    80    40   0.06468 0.09511 

   3600    90    40   0.06098 0.08967 

   4000   100    40   0.05785 0.08507 

   4400   110    40   0.05516 0.08111 

   4800   120    40   0.05281 0.07766 

   5200   130    40   0.05074 0.07461 

   5600   140    40   0.04889 0.07190 

   6000   150    40   0.04723 0.06946 

   6400   160    40   0.04573 0.06725 

   6800   170    40   0.04437 0.06525 

   7200   180    40   0.04312 0.06341 

   7600   190    40   0.04197 0.06172 

   8000   200    40   0.04091 0.06015 

 

Here we see that around 160 schools results in the required reduction in standard 

error, as we found with MLPowSim. 

2.3.5 A model with 3 predictors 

 

So far we have looked at predictors in isolation, but as we saw in Section 2.2 for 

single level models, if we are interested in testing many hypotheses we might need to 

consider a model with many predictor variables. For the final model considered in this 

section we will look at three predictor variables: gender, school gender, and the 

London Reading Test (LRT) score. We have discussed the first two in this section 

already, and encountered the LRT when considering single level models (e.g. Section 

2.2.2). Our hypotheses here will concern the effect of gender and school gender when 

accounting for intake ability, and conversely the effect of intake ability when 

accounting for gender and school gender. 

 

If we fit a variance components model to the tutorial dataset with these three predictor 

variables, we will get the following: 
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Here we see for the real data that there are significant effects for all three predictor 

variables. As we discovered earlier for one-level models, the relationship of the 

response with LRT is particularly strong, and we need very small sample sizes to find 

a significant effect. In order to get accurate sample size estimates we require 

information about the variability (at both levels) and correlation between the 

predictors. To estimate these from the real data we could look at school means of the 

three predictors, and their variability and correlations. We could also look at fitting a 

multilevel multivariate model for the two predictors, gender and LRT, to get the 

within covariance matrix. In the inputs that follow, we will take estimates obtained 

from such an approach. Note that this will result in an assumed multivariate normal 

distribution for the predictors, which is an approximation for the binary variables. In 

Chapter 5 we discuss what may be a better approach of dealing with the school gender 

and gender predictors. 

 

After choosing a balanced 2-level model, and the usual numbers of simulations, and 

the usual random seed and significance level, we enter the following inputs when 

prompted: 

 
 

                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0 

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

Do you want to have a random intercept in your model (1=YES  0=NO )? 1 

Do you want to include any explanatory variables in your model (1=YES  0=NO)? 1 

How many explanatory variables do you want to include in your  model?  3 

Please choose a type for the predictor x1 (1=Binary  2=Continuous  3=all MVN): 3 

Assuming multivariate normality, please input its parameters here: 

The mean of the predictor x1: 0.6 

The mean of the predictor x2: 0.462 

The mean of the predictor x3: 0 

The variance matrix of the predictors at level 1 

The element [1,1] : 0.120 

The element [2,1] : 0 

The element [2,2] : 0 

The element [3,1] : 0.020 

The element [3,2] : 0 
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The element [3,3] : 0.902 

The variance matrix of the predictors at level 2 

The element [1,1] : 0.125 

The element [2,1] : 0.045 

The element [2,2] : 0.249 

The element [3,1] : 0.013 

The element [3,2] : -0.006 

The element [3,3] : 0.116 

Do you want the coefficient associated with explanatory variable x1 to be random (1=YES  0=NO) ? 0 

Do you want the coefficient associated with explanatory variable x2 to be random (1=YES  0=NO) ? 0 

Do you want the coefficient associated with explanatory variable x3 to be random (1=YES  0=NO) ? 0 

 

                          Sample size set up  

 

Please input the smallest number of units for the second level: 10 

Please input the largest number of units for the second level: 150 

Please input the step size for the second level: 10 

Please input the smallest number of units for the first level per second level: 40 

Please input the largest number of units for the first level per second level: 40 

Please input the step size for the first level per second level: 10 

 

                             Parameter estimates 

 

Please input estimate of beta_0: -0.167 

Please input estimate of beta_1: 0.166 

Please input estimate of beta_2: 0.165 

Please input estimate of beta_3: 0.560 

Please input estimate of sigma^2_u: 0.081 

Please input estimate of sigma^2_e: 0.562 

 

Files to perform power analysis for the 2 level nested model with the following sample criterion have 

been created 

Sample size in the first level starts at 10 and finishes at 150 with the step size 10 

Sample size in the second level starts at 40 and finishes at 40 with the step size 10  

1000 simulations for each sample size combination will be performed 

 

Press any key to continue… 

 

This will create the macros needed to perform this simulation exercise in MLwiN. To 

run these macros takes a little longer than the earlier examples (a few minutes). If we 

run the macros and look at the View/Edit Data window with the following five 

columns chosen (i.e. only the number of schools and the powers from the SE method), 

we have: 
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So here we see that to gain a power of 0.8 we need less than 10 schools for the LRT 

predictor (‘spow3’), around 30 for the gender predictor (‘spow1’), and between 110 

and 120 for the school gender predictor (‘spow2’). 

 

Again we can plot the power curves associated with the three predictors and the 

intercept, with the following results: 
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Here we see the intercept in dark blue, the gender effect in green, the school gender 

effect in cyan and the LRT predictor in red. 

 

The PINT input code for this model is as follows: 

 

2      2     1 

40    -10     40 

10    150 

0.562 

0.081  

0.120  

0.020 0.902   

0.249 

0.045 0.125 

-0.006 0.013 0.116 

0.6 0.0  

0.462 
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which results in the following output: 

 
Sample sizes      Standard errors    

 

    N*n     N     n    Fixed   Fixed   Const   Group   

    400    10    40   0.10136 0.03917 0.14280 0.19624 

    800    20    40   0.07168 0.02770 0.10097 0.13876 

   1200    30    40   0.05852 0.02262 0.08244 0.11330 

   1600    40    40   0.05068 0.01959 0.07140 0.09812 

   2000    50    40   0.04533 0.01752 0.06386 0.08776 

   2400    60    40   0.04138 0.01599 0.05830 0.08012 

   2800    70    40   0.03831 0.01481 0.05397 0.07417 

   3200    80    40   0.03584 0.01385 0.05049 0.06938 

   3600    90    40   0.03379 0.01306 0.04760 0.06541 

   4000   100    40   0.03205 0.01239 0.04516 0.06206 

   4400   110    40   0.03056 0.01181 0.04306 0.05917 

   4800   120    40   0.02926 0.01131 0.04122 0.05665 

   5200   130    40   0.02811 0.01086 0.03960 0.05443 

   5600   140    40   0.02709 0.01047 0.03816 0.05245 

   6000   150    40   0.02617 0.01011 0.03687 0.05067 

 

Here the 4th column corresponds to gender, the 5th to LRT and the last to school 

gender. As we have different parameter estimates for each variable, for powers of 0.8 

we require standard errors of 0.059, 0.200 and 0.059, respectively. Looking at the 

columns we see that these occur at around 30 schools for gender, with less than 10 

schools for LRT and between 110 and 120 schools for school gender which agrees 

exactly with the results from MLPowSim! 

 

Once you have figured out how to specify your model in PINT, and how to perform 

the post output translation from parameter estimates and standard errors to powers, it 

is clear that PINT is quicker than the simulation approach, but it is restricted to 2-level 

balanced models and to normal responses, neither of which restrictions exist with 

MLPowSim. We will briefly consider one of these restrictions in the next section. 

 

2.3.6 The effect of balance 

 

One of the features that PINT, in particular, relies on when constructing sample size 

calculations is that the nested design is balanced. Here we mean that we have the 

same number of level 1 units within each level 2 unit. This would seem a sensible 

strategy to adopt when collecting data, as there isn’t usually a reason to pick more 

level 1 units from specific clusters. In practice, though, things don’t always pan out 

that way: for example, in an education setting, some of the pupils chosen in the 

sample may be absent on the day of the test, resulting in non-responses. It’s also 

possible that, for some reason, a structured approach is adopted: for example, for 

some schools more pupils may be chosen than for other schools – perhaps certain 

school types are rarer and so we might wish to over-sample pupils from such schools, 

for instance. We will illustrate both these possibilities using the example we examined 

in Section 2.3.3, in which we compared boys’ and girls’ performance. There we saw 

that to have a power of 0.8 of detecting a positive effect on attainment for girls, we 

needed a sample size of nearly 800, assuming that the proportion of girls varied 

between schools. We will now investigate the impact of pupil non-response and 

structured sampling on this figure. 
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2.3.6.1 Pupil non-response 

 

Here we will need to make several assumptions, firstly that non-response is at random 

and does not depend on (i) the exam response (ii) the gender of the pupils and (iii) the 

school they attend. We will also assume that the parameter estimates we used earlier 

(0.161 for the intercept, 0.262 for the gender predictor, and of variabilities 0.161 at 

level 2, and 0.839 at level 1) still hold. We might think that some of these 

assumptions could be incorrect, in particular the lack of a relationship between non-

response and potential exam response. If so, we could adjust our simulation in some 

respect to account for this. For example, it’s possible that the effect of greater 

numbers of low achievers dropping out might reduce variability in the response, 

might increase the intercept, and might reduce the gender effect, since more of the 

low achievers are boys and so more boys might be less likely to respond. However, 

for our present purposes let us assume that the parameter estimates cited above are for 

the population who did respond and continue. We will now assume that we expect 

around 20% of pupils not to respond in the study. 

 

The MLPowSim inputs are similar to those in Section 2.3.3, but are given in full here: 
 

                            Welcome to MLPowSim 

 

Please input 0 to generate R code or 1 to generate MLwiN macros: 1 

 

    Please choose model type  

 

1. 1-level model   

2. 2-level balanced data nested model  

3. 2-level unbalanced data nested model  

4. 3-level balanced data nested model  

5. 3-level unbalanced data nested model  

6. 3-classification balanced cross-classified model  

7. 3-classification unbalanced cross-classified model  

 

Model type : 3 

Please input the random number seed: 1 

Please input the significance level for testing the parameters: 0.025 

Please input number of simulations per setting: 1000 

 

 

                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0 

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

Do you want to have a random intercept in your model (1=YES  0=NO )? 1 

Do you want to include any explanatory variables in your model (1=YES  0=NO)? 1 

How many explanatory variables do you want to include in your  model?  1 

Please choose a type for the predictor x1 (1=Binary  2=Continuous): 2 

Assuming normality, please input its parameters here: 

The mean of the predictor x1: 0.6 

The variance of the predictor x1 at level 1: 0.12 

The variance of the predictor x1 at level 2: 0.12 

Do you want the coefficient associated with explanatory variable x1 to be random (1=YES  0=NO) ? 0 
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                          Sample size set up  

 

Please input the smallest number of units for the second level: 10 

Please input the largest number of units for the second level: 50 

Please input the step size for the second level: 10 

Please choose one of the following scenarios for unbalance: 

1: Binomial with the fixed trial and probability of non-response for first level nested in second   

2: Fixed sample with your preference 

Scenario type: 1 

Please enter your probability of non-response: 0.2 

Please input the smallest number of units for the first level per second level: 10 

Please input the largest number of units for the first level per second level: 60 

Please input the step size for the first level per second level: 10 

 

                             Parameter estimates 

 

Please input estimate of beta_0: -0.161 

Please input estimate of beta_1: 0.262 

Please input estimate of sigma^2_u: 0.161 

Please input estimate of sigma^2_e: 0.839 

 

Files to perform power analysis for the 2 level unbalanced nested model with the following sample 

criterion have been created 

Sample size in the first level starts at 10 and finishes at 60 with the step size 10 

Sample size in the second level starts at 10 and finishes at 50 with the step size 10  

1000 simulations for each sample size combination will be performed 

 

Press any key to continue… 

 

We can now run this scenario in MLwiN and look at the power estimates that it 

produces in the View/Edit Data window: 
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Here we see that compared to the power estimates in Section 2.3.3, the values are 

reduced, as might be expected given the smaller actual sample size compared to the 

designed sample size. As we have a non-response probability of 0.2, we could 

consider the effect of looking at a sampling scheme with step sizes of 8 pupils per 

school as opposed to 10: i.e. 8, 16, 24, 32, 40 and 48 in a balanced model. If we do 

this by rerunning MLPowSim and MLwiN, we will get the following table of powers: 
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Here we see that the results are very close to those from the non-response scenario. Of 

course, for this example we have chosen a non-response probability that corresponds 

in expectation to a whole number sample size per cluster, and it would have been 

quicker to use PINT to establish sample sizes. However, if the non-response 

probability had resulted in an average of 8.3 pupils per cluster, for instance, it would 

not have been possible to use PINT, although we could still have used PINT with 

sample sizes 8 per cluster and 9 per cluster, and then interpolated between the two. 
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2.3.6.2 Structured sampling 

 

The other option available in MLPowSim is for the user to specify the number of 

clusters of each particular size. This might occur due to over-sampling specific 

clusters, or the user may simply wish to get estimates of power for specific datasets 

which are not balanced. We will consider the example in Section 2.3.6.1, and assume 

that 80% of clusters are of size 30, but the other 20% are of size 60. We will consider 

cases with 10, 20, 30, 40 and 50 schools. 

 

The inputs will be almost the same as in Section 2.3.6.1, apart from where we specify 

the unbalanced structure, as follows: 

 
Please choose one of the following scenarios for unbalance: 

1: Binomial with the fixed trial and probability of non-response for first level nested in second   

2: Fixed sample with your preference 

Scenario type : 2 

Please choose how many distinct cluster sizes you want for second level units: 2 

 

Unbalanced set up inside the second level with 10 level 2 units 

How many (from 1 to 10) groups  do you want to be in the class 1? 8 

For class 1, please input the number of level 1 units: 30 

How many (from 2 to 2) groups  do you want to be in the class 2? 2 

For class 2, please input the number of level 1 units: 60 

 

Unbalanced set up inside the second level with 20 level 2 units 

How many (from 1 to 20) groups  do you want to be in the class 1? 16 

For class 1, please input the number of level 1 units: 30 

How many (from 4 to 4) groups  do you want to be in the class 2? 4 

For class 2, please input the number of level 1 units: 60 

 

Unbalanced set up inside the second level with 30 level 2 units 

How many (from 1 to 30) groups  do you want to be in the class 1? 24 

For class 1, please input the number of level 1 units: 30 

How many (from 6 to 6) groups  do you want to be in the class 2? 6 

For class 2, please input the number of level 1 units: 60 

 

Unbalanced set up inside the second level with 40 level 2 units 

How many (from 1 to 40) groups  do you want to be in the class 1? 32 

For class 1, please input the number of level 1 units: 30 

How many (from 8 to 8) groups  do you want to be in the class 2? 8 

For class 2, please input the number of level 1 units: 60 

 

Unbalanced set up inside the second level with 50 level 2 units 

How many (from 1 to 50) groups  do you want to be in the class 1? 40 

For class 1, please input the number of level 1 units: 30 

How many (from 10 to 10) groups  do you want to be in the class 2? 10 

For class 2, please input the number of level 1 units: 60 

 

The rest of the inputs are as before. As you can see, the procedure for inputting the 

model structure is relatively laborious, and we would not anticipate that this form of 

unbalanced design will be heavily-used in MLPowSim; however, the inputs only take 

a minute or two to type in, which is quicker than the macros take to run, so it is only a 

small overhead. 

 

Running the resulting macros in MLwiN gives the following power estimates: 
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If we compare the powers produced here with those produced for the balanced design 

in Section 2.3.3, we can see that they lie somewhere between the powers for balanced 

designs with 30 pupils per school and those with 40 pupils per school, as we might 

expect given our design has on average 36 pupils per school. 

 

2.4 Random slopes/ Random coefficient models 

 

Random intercept models are a special case of two-level models where the only 

relationship that is assumed different at the cluster level is the average effect or 

intercept in the model. The effect of predictors is assumed constant across clusters in 

a random intercept model. If we wish to allow for a different effect for a predictor in 

each cluster then we will fit a random slopes model, or random coefficients model. 

Note that the term ‘slope’ is generally reserved for continuous predictors where the 

coefficient associated with the predictor can be thought of as the slope of a predicted 

regression line. If such a regression were plotted for binary predictors, it would 

essentially join up the predictions for the two states of the predictor, and so ‘random 

coefficient model’ is a better term, meaning the effect of the binary predictor is 

different for different groups. 

 

We could go through lots of examples of random coefficient models in this section, 

but we will limit ourselves to just one for brevity. 

 

The tutorial dataset presents us with some problems when trying to find examples of 

random slopes models that follow on from our earlier investigations. Firstly, the 

gender predictor exhibits no significant between-school variability: i.e. the effect of 

gender doesn’t vary across schools. This is possibly because many of the schools are 

single sex, and so can give no information on the effect of gender within them – in 

fact, the concept doesn’t make sense in such schools. Secondly, the school gender 

predictor is a school-level predictor, and so cannot be treated as random at the school-

level, and finally the LRT predictor is such a strong predictor that we will only need 

very small sample sizes regardless of any random slope.  

 

We will therefore turn to a different example, again from an educational setting. Later 

on, we will investigate this example further when we look at cross-classified models. 

The example is used in the MLwiN User’s Guide (Rasbash et al, 2004) to illustrate 

cross-classified modelling, and consists of exam scores for 3,435 secondary school 
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pupils in Fife, Scotland. The response used is an attainment score for students at age 

16, with the students nested within both primary school, and secondary school. For 

the purposes of our example, we will consider the primary school nesting which 

results in 3,435 pupils nested within 148 primary schools. We will again consider a 

gender predictor (sex), which in this case has a significant fixed effect in the dataset, 

but also exhibits variability in effect between primary schools: i.e. the size of the 

differences in attainment between genders varies across schools. 

 

The model fitted in MLwiN can be seen below: 

 

 
 

We will use these values as fixed effect estimates, and variance estimates, for the 

analysis that follows. We can also look at the variability in the predictor sex, assuming 

it is normally distributed. This can be done in MLwiN, producing: 
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So we see that MLwiN estimates no between-school variability in the ratio of boys to 

girls. Given this, we will assume a binomial distribution for the predictor with 

probability 0.494 of each pupil being a girl. We have on average 23 pupils per 

primary school, and so we will investigate sample sizes of 5, 10, 15, 20 and 25 within 

school, and numbers of schools ranging from 20 to 160, in steps of 20. 

 

The inputs to MLPowSim are as follows: 

 

                            Welcome to MLPowSim 

 

Please input 0 to generate R code or 1 to generate MLwiN macros: 1 

    Please choose model type  

1. 1-level model   

2. 2-level balanced data nested model  

3. 2-level unbalanced data nested model  

4. 3-level balanced data nested model  

5. 3-level unbalanced data nested model  

6. 3-classification balanced cross-classified model  

7. 3-classification unbalanced cross-classified model  

Model type : 2 

Please input the random number seed: 1 

Please input the significance level for testing the parameters: 0.025 

Please input number of simulations per setting: 1000 

 

                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0 

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

Do you want to have a random intercept in your model (1=YES  0=NO )? 1 

Do you want to include any explanatory variables in your model (1=YES  0=NO)? 1 

How many explanatory variables do you want to include in your  model?  1 

Please choose a type for the predictor x1 (1=Binary  2=Continuous): 1 

Please input probability of a 1 for x1 : 0.494 

Do you want the coefficient associated with explanatory variable x1 to be random (1=YES  0=NO) ? 1 
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                          Sample size set up  

 

Please input the smallest number of units for the second level: 20 

Please input the largest number of units for the second level: 100 

Please input the step size for the second level: 20 

Please input the smallest number of units for the first level per second level: 5 

Please input the largest number of units for the first level per second level: 25 

Please input the step size for the first level per second level: 5 

 

                             Parameter estimates 

 

Please input estimate of beta_0: 5.370 

Please input estimate of beta_1: 0.495 

There is more than one random effect in your model and so you need to enter variance/covariance 

matrix. 

Please input lower triangular entries ( 3 elements): 

The element [1,1] : 1.064 

The element [2,1] : 0.109 

The element [2,2]: 0.180 

 

Matrix is positive-definite 

 

Please input estimate of sigma^2_e: 8.098 

 

Files to perform power analysis for the 2 level nested model with the following sample criterion have 

been created 

Sample size in the first level starts at 5 and finishes at 25 with the step size  5 

Sample size in the second level starts at 20 and finishes at 100 with the step size 20  

1000 simulations for each sample size combination will be performed 

 

Press any key to continue… 

 

This will set up the model. If we now run the macros in MLwiN, and focus on the 

columns for the gender predictor, we see the following: 
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We see here that a power of greater than 0.8 is achieved by 25 pupils in 60 schools, 15 

pupils in 80 schools, and 10-15 pupils in 100 schools. The power for 10 pupils in 100 

schools is greater than that for 25 pupils in 40 schools, and so for the same total pupil 

number it is better to have more clusters with less pupils per cluster. 

  

To plot the curves, we can execute the macro file graphs.txt (see Section 1.4.3); this 

produces the following graphs (via Customised graph(s) from the Graphs menu): 
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This graph is not correct because the grouping of pupils within schools has not been 

accounted for. To account for this we need to do the following: 

 

 

 

 

 

 

 

 

 

 

 

 

The graphs will now look as follows: 

 

In the Customised graph window select ds#1 (may already be selected) 

Now choose column `N-level 1’ from the group pull down list. 

Next select ds#2 by clicking on `zpow0’ in the Y list  

Again choose column `N-level 1’ from the group pull down list 

Next select ds#3 by clicking on the `spow0’ in the Y list  

Again choose column `N-level 1’ from the group pull down list 

Finally select ds#4 by clicking on the `spow1’ in the Y list  

Again choose column `N-level 1’ from the group pull down list 

Now click on the Apply button to redraw graphs. 



 

 77 

 

 
 

Here we have separate sets of lines for (from the bottom) 5 pupils per school, 10 

pupils per school, and so on, up to 25 pupils per school. 

 

We can compare results with those from a fitted model with no random slopes. A 

random intercepts model for the actual data has the following estimates: 
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If we use these estimates to set up a simulation study in MLPowSim, we will get the 

results shown below in MLwiN. We can see that the designs with a power greater 

than 0.8 are 20 pupils in 60 schools, 15 pupils in 80 schools, and between 10 and 15 

pupils in 100 schools. The power of the equivalent designs appears to reduce when we 

account for the random slopes, as we might expect. It also appears that having more 

schools, each with fewer pupils but maintaining the total pupil number, tends to be 

associated with reduced power. This is somewhat contrary to what one might expect, 

and may be due to the binary predictor having more chance of being constant in small 

clusters. 
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It is possible to fit random coefficient models in the PINT package. However, as a 

result of making the mathematics behind the approximate standard errors easier to 

calculate, PINT has some restrictions. In particular, all predictors treated as random 

coefficients must have mean zero. This makes sense for some predictors, where 

centring is probably a sensible modelling option, however for categorical predictors, 

e.g. gender, a centred gender indicator is rather a strange concept!  

 

As we only have one predictor, then centring it will only change our estimate of the 

intercept, which we are not interested in, and which PINT does not require. It will also 
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change the between-intercept variance and covariance at level 2, but we can re-

evaluate these on the real data and then run PINT with the following input code:  

 

   1      0      0 

    5    -5     25 

    20    100 

    8.098 

    1.215 

    0.198 0.180       

    0.249964 

 

The fixed effect estimate for gender is 0.495, which means we would like a standard 

error smaller than 0.495/2.802 = 0.177. PINT gives standard errors for all 

combinations of pupils and schools, with a step size for both of 5, so from the output 

file we can extract the appropriate sample sizes, as follows: 

 

 
Sample sizes      Standard errors    

 

    N*n     N     n    Const   Random  

   1050    70    15   0.15833 0.18283 

   1125    75    15   0.15296 0.17663 

   1200    80    15   0.14811 0.17102 

   1275    85    15   0.14369 0.16591 

   1100    55    20   0.17162 0.18090 

   1200    60    20   0.16431 0.17320 

   1300    65    20   0.15787 0.16640 

   1400    70    20   0.15212 0.16035 

   1125    45    25   0.18493 0.18110 

   1250    50    25   0.17544 0.17181 

   1375    55    25   0.16727 0.16381 

   1500    60    25   0.16015 0.15684 

 

Here we see that for only 15 pupils per school we would need 75 schools, for 20 

pupils per school we would need 60, and for 25 pupils per school we would need 50, 

which roughly corresponds to the results in MLPowSim, although any minor 

differences may be due to the approximation used in PINT, or to Monte Carlo 

standard errors in MLPowSim, or even the fact that in MLPowSim we assumed that 

the predictor was binomially-distributed rather than a normal approximation. 

 

2.5 Three-level random effect models 

 

2.5.1 Balanced 3-level models – The ILEA dataset 

 

Here we continue with an education theme, and use as our example the ILEA dataset 

dating from 1985-1987, and consisting of exam results at 16 for three years of London 

secondary school children (see Nuttall et al., 1989). The subsample of the data that we 

have used to derive the effect sizes is large: 15,632 pupils from 304 cohorts in 139 

schools (note some schools did not participate in all 3 years of the study). We 
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therefore have a three-level structure with pupils nested within cohorts, nested within 

schools. 

 

The response of interest is the total exam score based on grades achieved in all 

subjects summed together. This response takes values from 1 to 70. We look at two 

predictor variables: gender, and the proportion of pupils in the cohort eligible for free 

school meals (FSM). Both these predictors are very significant with this large sample 

size, but we are interested in whether (i) a smaller sampling scheme would have 

resulted in sufficient power, or more importantly (ii) if we were to attempt a similar 

data collection exercise today, using smaller samples (assuming broadly similar 

effects exist), what sample sizes would result in similar power? 

 

Here we will use the estimates produced by this large dataset as a guide for what we 

might expect in our data collection exercise. The fixed effect estimates from the 

whole data are 21.535 for the intercept, 2.839 for the gender effect, and -6.039 for the 

FSM effect. We will therefore use the values 21.5, 3 and -6 in our simulations as 

estimated effect sizes: i.e. girls tend to do 3 grades better in total over their collection 

of exams than boys, while the difference between a school with no pupils eligible to 

FSM, and one with all FSM pupils, is 6 grades in total across each pupil’s collection 

of exam results. 

 

The variability is estimated as 12.174, 2.5 and 142.635, for between schools, between 

cohorts within schools, and residual variability, respectively. We will therefore use 

12, 2.5 and 140 here. The gender predictor has mean 0.523 and variances 0.138, 0.001 

and 0.116, respectively: so slightly more girls than boys, with slightly more variability 

between schools than within schools. However, we will assume for our study an 

average 50/50 split, and equal variance between schools and within cohorts (residual 

variability) but no variability between cohorts within schools i.e. variances of 0.125, 

0, and 0.125, respectively. There doesn’t appear to be a significant relationship 

between %FSM and gender, and the average proportion of FSM per cohort is 0.423, 

with variability split as 0.017 between schools and 0.09 between cohorts. So, for the 

purposes of our illustration, we will use the values 0.4 for the mean and 0.02, 0.01 and 

0 for the variances, respectively, for %FSM and independence between the 2 

predictors. In terms of sample size we will assume a similar 3-year study design, and 

so we will have 3 cohorts per school, and we will vary the numbers of schools 

(between 10 and 40), and pupils per cohort sampled (between 10 and 50). 

 

The inputs for MLPowSim will then be as follows: 
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                            Welcome to MLPowSim 

 

Please input 0 to generate R code or 1 to generate MLwiN macros: 1 

 

    Please choose model type  

 

1. 1-level model   

2. 2-level balanced data nested model  

3. 2-level unbalanced data nested model  

4. 3-level balanced data nested model  

1 

6. 3-classification balanced cross-classified model  

7. 3-classification unbalanced cross-classified model  

 

Model type : 4 

Please input the random number seed: 1 

Please input the significance level for testing the parameters: 0.025 

Please input number of simulations per setting: 1000 

 

                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0 

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

Do you want to have a random intercept associated with the second level in your model (1=YES  

0=NO )? 1 

Do you want to have a random intercept associated with the third level in your model (1=YES  0=NO 

)? 1 

Do you want to include any explanatory variables in your model (1=YES  0=NO)? 1 

How many  explanatory variables do you want to include in your  model?  2 

Please choose a type for the predictor x1 (1=Binary  2=Continuous  3=all MVN): 2 

Assuming normality, please input its parameters here: 

The mean of the predictor x1: 0.5 

The variance of the predictor x1 at level 1: 0.125 

The variance of the predictor x1 at level 2: 0 

The variance of the predictor x1 at level 3: 0.125 

Please choose a type for the predictor x2 (1=Binary  2=Continuous ): 2 

Assuming normality, please input its parameters here: 

The mean of the predictor x2: 0.4 

The variance of the predictor x1 at level 1: 0 

The variance of the predictor x1 at level 2: 0.01 

The variance of the predictor x1 at level 3: 0.02 

 

Do you want the coefficient associated with explanatory variable x1 to be random at level two (1=YES  

0=NO) ? 0 

Do you want the coefficient associated with explanatory variable x2 to be random at level two (1=YES  

0=NO) ? 0 

Do you want the coefficient associated with explanatory variable x1 to be random at level three 

(1=YES  0=NO) ? 0 

Do you want the coefficient associated with explanatory variable x2 to be random at level three 

(1=YES  0=NO) ? 0 

 

 

                          Sample size set up  

 

Please input the smallest number of units for the third level: 10 

Please input the largest number of units for the third level: 40 

Please input the step size for the third level: 10 

Please input the smallest number of units for the second level per third level: 3 

Please input the largest number of units for the second level per third level: 3 
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Please input the step size for the second level per third level: 1 

Please input the smallest number of units for the  first level per second level: 10 

Please input the largest number of units for the  first level per second level: 50 

Please input the step size for the first level per second level: 10 

 

                             Parameter estimates 

 

Please input estimate of beta_0: 21.5 

Please input estimate of beta_1: 3 

Please input estimate of beta_2: -6 

Please input estimate of the level 3 variance (sigma^2_v): 12 

Please input estimate of the level 2 variance (sigma^2_u): 2.5 

Please input estimate of sigma^2_e: 140 

 

Files to perform power analysis for the 3 level nested model with the following sample criterion have 

been created 

Sample size in the first level starts at 10 and finishes at 50 with the step size 10 

Sample size in the second level starts at 3 and finishes at 3 with the step size 1  

Sample size in the third level starts at 10 and finishes at 30 with the step size 10  

1000 simulations for each sample size combination will be performed 

 

Press any key to continue… 

 

We can run the macros produced in MLwiN in the usual way. Since we are only 

interested in the two predictors, and not the intercept, if we select the columns 

containing the sample size at each level, and the columns containing the power 

estimates for the two predictors (via the View/Edit Data window), we will see the 

following: 

 

 



 

 84 

 

Here we see that for the gender predictor (‘zpow1’ & ‘spow1’) we do not need a 

particularly big design, with 10 schools (‘N-level 3’) with 3 cohorts of 30 pupils (‘N-

level 1’), or 20 schools with 3 cohorts of size between 10 and 20 both producing 

powers of around 0.8. However, for the proportion FSM predictor (‘zpow2’ & 

‘spow2’), which is a cohort-level predictor, we clearly need more schools, and we see 

that even with 30 schools with 50 pupils per cohort we do not reach a power of 0.8, 

whilst for 40 schools 50 pupils per cohort suffices to produce a power greater than 

0.8. 

 

MLPowSim is flexible enough to allow the numbers of units at all three levels to vary, 

and we have simply fixed the number of cohorts here to 3 as this represents our study 

design. As with 2-level modelling, MLPowSim can also allow any of the predictor 

variables to be treated random at higher levels for 3-level models as well, but we do 

not give examples of this here. We will, however, consider the options that exist for 

unbalanced 3-level models, and we turn to these in the following few sections. 

 

2.5.2 Non-response at the first level in a 3-level design 

 

We will consider here a scenario where individual pupils do not respond at random 

from our sample – for example, perhaps we constructed a sampling frame of students 

earlier in their schooling, and some students then moved school and so were not 

included in the final sample. We will use exactly the same inputs for parameter 

estimates as in Section 2.5.1, but will assume a non-response probability of 0.2, and 

will additionally consider 60 pupils per school to account, in part, for this non-

response. 

 

To investigate a non-balanced 3-level design we need to select option: 

  

5 (‘3-level unbalanced data nested model’)  

 

when prompted in MLPowSim, and then all our inputs are as for the balanced case 

until we reach the section on Sample size set up, where we enter the following: 

 

                          Sample size set up  

 

Please input the smallest number of units for the third level: 10 

Please input the largest number of units for the third level: 40 

Please input the step size for the third level: 10 

Unbalanced set up 

Please choose one of the following scenarios for unbalanced sampling: 

1: Non-response of level 1 units using a Binomial probability of non-response  

2: Non-response of level 2 units using a Binomial probability of non-response  

3: Fixed sample size in first level with your preference 

Scenario type : 1 

Please input the probability of non-response for the first level units: 0.2 

Please input the smallest number of units for the second level per third level: 3 

Please input the largest number of units for the second level per third level: 3 

Please input the step size for the second level per third level: 1 

Please input the smallest number of units for the  first level per second level: 10 

Please input the largest number of units for the  first level per second level: 60 

Please input the step size for the first level per second level: 10 
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The remaining inputs are as in Section 2.5.1. If we run the macros produced in 

MLwiN, we get the following in the View/Edit Data window: 

 

 
 

Unsurprisingly, we see that the power is lower when non-response occurs, as we 

found with the two-level models we considered earlier (Section 2.3.6.1). As one might 

expect, the power for designs with 50 pupils per school, and a 20% average non-

response rate, are close to those observed with 40 pupils per school and no non-

response. Next we will investigate the effect of whole cohort non-response. 

 

2.5.3 Non-response at the second level in a 3-level design 

 

In the actual ILEA dataset, the design is not balanced at the second level: some 

schools joined the study in the second cohort, some schools dropped out after the first 

cohort, and some schools even managed to miss the second cohort. 304 cohorts for 

139 schools means that in the actual dataset 27% of the possible cohorts are missing. 

Here, however, we will stick to a 0.2 probability of a missing cohort, in line with 

Section 2.5.2. Again, we need to modify our inputs in MLPowSim, but this time there 

are only a few changes, as follows: 
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Unbalanced set up 

Please choose one of the following scenarios for unbalanced sampling: 

1: Non-response of level 1 units using a Binomial probability of non-response  

2: Non-response of level 2 units using a Binomial probability of non-response  

3: Fixed sample size in first level with your preference 

Scenario type : 2 

Please input the probability of non-response for the second level units: 0.2 

 

If we run the resulting macros in MLwiN and view the Data window as before we 

will this time get the following results: 

 

 
 

We have assumed an average 20% non-response rate as in Section 2.5.2 except at a 

different level of the data structure. This means that we should expect, on average, the 

same total number of pupils, so it is interesting to compare the relative effects on 

power of the two forms of non-response. If we look at the columns headed ‘spow1’ 

and ‘spow2’, and compare them with the equivalent columns in Section 2.5.2, we can 

gauge the effect on power for the two predictors: gender and proportion FSM. We see 

that there is very little to choose between the two forms of non-response for the 

gender predictor (a level 1 predictor which exhibits no between-cohort within-school 

variability), but for the proportion FSM predictor the cohort non-response scenario 

results in worse power. This makes sense, since this predictor is at the cohort-level 
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and exhibits between-cohort variability, and so a cohort non-response scenario 

reduces both the total number of pupils and the total number of cohorts having an 

additional effect on power. 

 

2.5.4 Individually chosen sample sizes at level 1 

 

To complete our unbalanced options, we have the possibility of allowing different-

sized clusters, as specified by the user. Here the assumption is that for each level 3 

unit there will be the same number of level 2 units with the same structure in terms of 

cluster sizes: for instance, for the education example we might assume cluster sizes of 

30, 40 and 50 pupils for the three cohorts within a school, but each school must then 

have the same structure. We will consider the ILEA example once again but assume, 

as discussed above, that the cluster sizes of each cohort increase, and so we have 3 

cohorts of sizes 30, 40 and 50, respectively, for each school.  The changes to the 

inputs to MLPowSim only occur for the unbalanced set up, as follows: 

 

Unbalanced set up 

Please choose one of the following scenarios for unbalanced sampling: 

1: Non-response of level 1 units using a Binomial probability of non-response  

2: Non-response of level 2 units using a Binomial probability of non-response  

3: Fixed sample size in first level with your preference 

Scenario type : 3 

Please input the smallest number of units for the second level per third level: 3 

Please input the largest number of units for the second level per third level: 3 

Please input the step size for the second level per third level: 1 

Please choose how many distinct classes you want the second level to have: 3 

Unbalanced set up inside the second level with 3 level 2 units 

How many (from 1 to 3) level 2 units do you want to be in the class 1 ? 1 

For class 1, please input the number of level 1 units: 30 

How many (from 1 to 2) level 2 units do you want to be in the class 2 ? 1 

For class 2, please input the number of level 1 units: 40 

For class 3, please input the number of level 1 units: 50 

 

The remainder of the inputs are as previously given. Once the macros have been run 

in MLwiN, the outputs for this analysis are as follows: 

 

 
 

The power estimates produced are only slightly smaller than those produced by 

equivalent designs, but with 40 pupils in each of the 3 cohorts per school. 

 

2.6 Cross-classified Models 
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For the cross-classified models we will once again consider the educational example 

we encountered in Section 2.4, from Fife in Scotland (taken from the MLwiN User’s 

Guide (Rasbash et al, 2004)). The dataset consists of records for 3,435 children from 

19 secondary schools, and the response of interest is their exam attainment at age 16. 

For each child, we have also recorded the primary school they attended prior to 

secondary school, of which there are 148 in our sample. The data structure is therefore 

crossed, and we hypothesise that attainment at 16 will be affected by both the primary 

and secondary schools that the children attended.  

 

One difficulty with cross-classified models is their estimation. In MLwiN it is 

generally recommended that MCMC estimation be used. The IGLS/RIGLS algorithm 

can be adapted to fit cross-classified models but this is currently achieved via some 

macros that cast the cross-classified model as a constrained nested model. These 

macros work fine for a single model, however we have not yet incorporated such 

methods into MLPowSim, as fitting thousands of models in this framework is more 

difficult.  The problem with using MCMC estimation is the increased burden of 

computational time, and in this case using R will be quicker. In R the function lmer 

does not appear to have problems with cross-classified models although they are 

generally more computationally-expensive to run than nested models. In this section, 

we will therefore provide information on running the models using R first and then 

one example of MCMC in MLwiN. 

 

As with nested data, ideally we might like to collect balanced cross-classified data. In 

this section we will firstly consider balanced data, before moving on to potentially 

more realistic unbalanced data scenarios. 

 

2.6.1 Balanced cross-classified models. 

 

As further background to our example, the response we are interested in is an 

attainment score from 1 to 10 that represents the pupils’ score on a school leaving 

exam. For simplicity, we assume this score is continuous and normally-distributed as 

fitted in the User’s Guide (although in reality an ordered categorical model might be 

more appropriate).  

 

We will then fit a simple variance components model that assumes that the exam 

score for a particular pupil includes an overall population mean, an effect for the 

primary school they attended, an effect for the secondary school they attended, and a 

residual for that particular pupil. The average score in the actual data is 5.5, and so we 

form a null hypothesis (for illustration) that the average score is 5 versus an 

alternative that the average is higher than 5. For simplicity, we subtract 5 from all 

scores – as a result, we now have a null hypothesis that the average score is 0 – and 

we input an effect size (for the intercept) of 0.5. We give similar variances to those 

which appeared in the actual data, and use values of 0.4 for secondary school, 1.2 for 

primary school, and 8 for residual variability. 

 

As we are assuming balanced data we will try to mimic a little the actual data 

collected. Given there were 148 primary schools and 19 secondary schools making 

potentially nearly 3,000 combinations this would be a little over 1 pupil per 

combination. We however see that in reality the data is fairly sparse with only 303 of 
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the pairings of primary and secondary school actually occurring, with on average 11 

pupils per combination. We will compromise by having 3 pupils per combination and 

trying between 20 and 100 primary schools (first cross-classified factor) and 10 and 

30 secondary schools (second cross-classified factor). Here we give instructions for 

fitting this model in R, since this is quicker than the MCMC methods in MLwiN. The 

inputs for MLPowSim are as follows: 
 

                            Welcome to MLPowSim 

 

Please input 0 to generate R code or 1 to generate MLwiN macros: 0 

 

    Please choose model type  

 

1. 1-level model   

2. 2-level balanced data nested model  

3. 2-level unbalanced data nested model  

4. 3-level balanced data nested model  

5. 3-level unbalanced data nested model  

6. 3-classification balanced cross-classified model  

7. 3-classification unbalanced cross-classified model  

 

Model type : 6 

Please input the random number seed: 1 

Please input the significance level for testing the parameters: 0.025 

Please input number of simulations per setting: 1000 

 

                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0 

Please enter estimation method [0 - REML, 1 - ML] : 1 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

Do you want to have a random intercept associated with the first XC factor in your model (1=YES  

0=NO )? 1 

Do you want to have a random intercept associated with the second XC factor in your model (1=YES  

0=NO )? 1 

 

                          Predictor(s) input 

 

Do you want to include any explanatory variables in your model (1=YES  0=NO)? 0 

 

                          Sample size set up (balance) 

 

Please input the smallest number of units for the first cross-classified factor: 20 

Please input the largest number of units for the first cross-classified factor: 100 

Please input the step size for the first cross-classified factor: 20 

Please input the smallest number of units for the second cross-classified factor: 10 

Please input the largest number of units for the second cross-classified factor: 30 

Please input the step size for the second cross-classified factor: 10 

Please input the smallest number of replications per XC cell : 3 

Please input the largest number of replications per XC cell : 3 

Please input the step size for the number of replications : 1 

 

                             Parameter estimates 

 

                 Fixed effects input 

Please input estimate of beta_0: 0.5 

 

                 Random effects input 

Please input estimate of the variance of the first classification: 1.2 
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Please input estimate of the variance of the second classification: 0.4 

Please input estimate of sigma^2_e: 8 

 

                  Final sample size check   

The first XC factor:  start=20   end=100 step size=20 

The second  XC factor: start=10   end=30 step size=10 

The first level (replication): start=3  end=3 step size=1 

 

Do you want to continue (YES=1 , NO=0)? 1 

Do you want to have the CI for the power in your output (YES=1 , NO=0)? 1 

 

After running MLPowSim we need to start up R and read in and run the file 

powersimu.r (see Section 1.5) which contains all the inputs for running the 

simulations. The simulations will take quite a while to run in R (depending on your 

machine’s processor but could take an hour), and at the end we get the following 

results if we ask to see the stored data frame output by typing output at the command 

prompt: 

 

> output 

 #XC2 #XC1 #repeat  zLb0  zpb0           zUb0           sLb0           spb0          sUb0 

10  20  3  0.328  0.358  0.388  0.330  0.335  0.340 

10  40  3  0.419  0.450  0.481  0.459  0.466  0.473 

10  60  3  0.520  0.551  0.582  0.533  0.541  0.548 

10  80  3  0.574  0.604  0.634  0.578  0.586  0.595 

10  100  3  0.582  0.612  0.642  0.605  0.614  0.624 

20  20  3  0.388  0.419  0.450  0.409  0.414  0.420 

20  40  3  0.537  0.568  0.599  0.592  0.597  0.602 

20  60  3  0.663  0.692  0.721  0.690  0.695  0.700 

20  80  3  0.716  0.743  0.770  0.749  0.754  0.759 

20  100  3  0.780  0.805  0.830  0.793  0.798  0.803 

30  20  3  0.457  0.488  0.519  0.451  0.457  0.463 

30  40  3  0.633  0.662  0.691  0.655  0.660  0.665 

30  60  3  0.739  0.765  0.791  0.768  0.772  0.776 

30  80  3  0.803  0.826  0.849  0.834  0.837  0.841 

30  100  3  0.840  0.861  0.882  0.872  0.875  0.879 

 

We can see from these results that designs with 20 secondary schools and 100 primary 

schools or 30 secondary schools and 80 primary schools result in a power of 

approximately 0.8 or greater. It is interesting that these designs have 6,000 and 7,200 

pupils, respectively, whilst the actual dataset has only 3,435 pupils. This is in part due 

to the replication of pupils within a particular pairing of primary school and secondary 

school. If in fact we remove this replication, and instead have only 1 pupil for each 

combination but change ranges of secondary school(20,30) and primary schools 

(80,100,120,140), we get a far smaller dataset and the following power calculations: 

 

#XC2  #XC1  #repeat  zLb0  zpb0  zUb0  sLb0  spb0  sUb0 

20  80  1  0.683  0.711  0.739  0.707  0.713  0.719 

20  100  1  0.721  0.748  0.775  0.763  0.768  0.774 

20  120  1  0.763  0.788  0.813  0.791  0.797  0.802 

20  140  1  0.816  0.839  0.862  0.820  0.825  0.830 

30  80  1  0.784  0.808  0.832  0.808  0.812  0.816 

30  100  1  0.830  0.852  0.874  0.851  0.854  0.858 
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30  120  1  0.836  0.858  0.880  0.884  0.887  0.890 

30  140  1  0.890  0.908  0.926  0.902  0.905  0.908 

 

Here we see that the power values are not reduced much and for 20 secondary schools 

and 140 primary schools, and for 30 secondary schools and 80 primary schools, we 

have a power of greater than 0.8 with total sample sizes of 2,800 and 2,400 pupils, 

respectively. What this is demonstrating is that sampling additional pupils from new 

schools increases power far more than sampling further pupils from the same schools. 

This backs up the results for the simpler nested models that we looked at earlier.  

 

The prospect of collecting balanced data in practice for this problem is non-existent as 

logistically we could not take groups of 3 pupils from each primary school and send a 

group to every secondary school. For one thing we would need 60 pupils from each 

primary school for 20 secondary schools, which is unlikely given many primary 

schools will only have around 30 pupils in total. We will now look at various possible 

unbalanced data designs, some of which are feasible in this situation and some of 

which we include for completeness. 

  

2.6.2 Non-response of single observations. 

 

We begin by considering the simplest possible cause of lack of balance, the possibility 

that some pupils do not respond. Here we will investigate a fairly extreme situation 

where we anticipate that 50% of the pupils will not respond. We have chosen this 

level of non-response because, in our example of two crossed higher-level 

classifications, each with a reasonable amount of variability attached to it, we find 

small amounts of dropout do not have a great impact on the power. This links in with 

the fact that in the last section when we reduced the number of pupils per combination 

from 3 to 1, we saw only small changes in power.  A dropout rate of 50% will also 

result in some primary school/secondary school combinations having complete 

dropout. 

 

The MLPowSim input for this situation is as follows: 
 

                            Welcome to MLPowSim 

 

Please input 0 to generate R code or 1 to generate MLwiN macros: 0 

 

    Please choose model type  

 

1. 1-level model   

2. 2-level balanced data nested model  

3. 2-level unbalanced data nested model  

4. 3-level balanced data nested model  

5. 3-level unbalanced data nested model  

6. 3-classification balanced cross-classified model  

7. 3-classification unbalanced cross-classified model  

 

Model type : 7 

Please input the random number seed: 1 

Please input the significance level for testing the parameters: 0.025 

Please input number of simulations per setting: 1000 
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                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0 

Please enter estimation method [0 - REML, 1 - ML] : 1 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

Do you want to have a random intercept associated with the first XC factor in your model (1=YES  

0=NO )? 1 

Do you want to have a random intercept associated with the second XC factor in your model (1=YES  

0=NO )? 1 

 

Predictor(s) input 

 

Do you want to include any explanatory variables in your model (1=YES  0=NO)? 0 

 

Random slope set up 

 

                      Sample size set up (unbalanced) 

 

Please choose one of the following scenarios for unbalanced sampling: 

1: Non-response of level 1 units using a Binomial probability of non-response  

2: Non-response of combinations of crossed factors using a Binomial probability of non-response  

3: Fixed sized samples for each XC1 unit with probabilities for XC2 identifiers 

4: Fixed total sample with each observation sampled from a  

contingency table of probabilities for each combination of XC1 and XC2 

     

  Scenario type : 1 

 

Please input the probability of non-response : 0.5 

Please input the smallest number of units for the first cross-classified factor: 20 

Please input the largest number of units for the first cross-classified factor: 100 

Please input the step size for the first cross-classified factor: 20 

Please input the smallest number of units for the second cross-classified factor: 10 

Please input the largest number of units for the second cross-classified factor: 30 

Please input the step size for the second cross-classified factor: 10 

Please input the smallest number of replications per XC cell : 3 

Please input the largest number of replications per XC cell : 3 

Please input the step size for the number of replications : 1 

 

                             Parameter estimates 

 

                 Fixed effects input 

Please input estimate of beta_0: 0.5 

 

                 Random effects input 

Please input estimate of the variance of the first classification: 1.2 

Please input estimate of the variance of the second classification: 0.4 

Please input estimate of sigma^2_e: 8 

 

                  Final sample size check   

The first XC factor:  start=20   end=100 step size=20 

The second  XC factor: start=10   end=30 step size=10 

The first level (replication): start=3  end=3 step size=1 

 

Do you want to continue (YES=1 , NO=0)? 1 

Do you want to have the CI for the power in your output (YES=1 , NO=0)? 1 

 

Having answered all the questions we next run the R package, and after waiting again 

for some time while the code runs we will get the following output: 
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>output 

#XC2 #XC1 #1-level zLb0  zpb0  zUb0          sLb0  spb0          sUb0 

10 20 3         0.307  0.336  0.365       0.307          0.312          0.318 

10 40 3         0.422 0.453   0.484       0.428  0.435          0.443 

10 60 3         0.466 0.497   0.528        0.503  0.511  0.519 

10 80 3         0.507 0.538   0.569 0.547  0.555  0.564 

10 100 3         0.542 0.573  0.604 0.591  0.600  0.610 

20 20 3         0.375 0.405  0.435 0.386  0.391   0.397 

20 40 3            0.518 0.549  0.580 0.566  0.571  0.576 

20 60 3         0.637 0.666  0.695 0.668  0.673  0.678 

20 80 3         0.713 0.740  0.767 0.728  0.734  0.739 

20 100 3         0.728 0.755  0.782 0.774  0.780  0.785 

30 20 3         0.415 0.446  0.477 0.430  0.437  0.443 

30 40 3        0.611 0.641  0.671 0.639          0.644  0.649 

30 60 3        0.711 0.738  0.765 0.751  0.755  0.760 

30 80 3        0.792 0.816  0.840 0.817          0.820  0.824 

30 100 3        0.840 0.861  0.882 0.863  0.866  0.869 

 

Here we see that the power has reduced, in comparison to the data without dropout, as 

we might expect; we now need at least 30 secondary schools and 80 primary schools 

to get a power of 0.8. 

2.6.3 Dropout of whole groups   

 

The other method of dropout that can be used in MLPowSim to create unbalanced 

designs involves the complete dropout of specific combinations of primary and 

secondary school. Here we will have two possibilities for each combination of 

primary and secondary school: either (i) the combination is in the dataset and so 3 

pupils are sampled or (ii) the combination is not in the dataset and so no pupils are 

sampled. The user is required to input the probability of possibility (ii) and the inputs 

are identical to the case of single person dropout, aside from selecting sampling 

option 2 rather than 1 as detailed below: 

 

                      Sample size set up (unbalanced) 

 

Please choose one of the following scenarios for unbalanced sampling: 

1: Non-response of level 1 units using a Binomial probability of non-response  

2: Non-response of combinations of crossed factors using a Binomial probability of non-response  

3: Fixed sized samples for each XC1 unit with probabilities for XC2 identifiers 

4: Fixed total sample with each observation sampled from a  

contingency table of probabilities for each combination of XC1 and XC2 

     

  Scenario type : 2 

 

Please input the probability of non-response : 0.5 

 

Upon running the R code we get the following output: 

 

> output 

#XC2#XC1#1-level zLb0 zpb0  zUb0  sLb0  spb0  sUb0 

10 20 3 0.297  0.326  0.355  0.300  0.305  0.311 

10 40 3 0.412  0.443  0.474  0.425  0.432  0.439 
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10 60 3 0.467  0.498  0.529  0.494  0.502  0.510 

10 80 3 0.512  0.543  0.574  0.546  0.555  0.564 

10 100 3 0.539  0.570          0.601  0.584  0.593  0.603 

20 20 3 0.368  0.398  0.428  0.388  0.394  0.399 

20 40 3 0.537  0.568  0.599  0.561  0.567  0.573 

20 60 3 0.631  0.660   0.689  0.663  0.668  0.673 

20 80 3 0.697  0.725  0.753  0.730  0.735  0.741 

20 100 3 0.748  0.774  0.800  0.774  0.779  0.785 

30 20 3 0.403  0.434  0.465  0.429  0.434  0.404 

30 40 3 0.608  0.638  0.668  0.633  0.638  0.644 

30 60 3 0.719  0.746  0.773  0.745          0.750  0.754 

30 80 3 0.808  0.831  0.854  0.819  0.823  0.827 

30 100 3 0.817  0.840  0.863  0.859  0.862  0.866 

 

Here we again see that the power is reduced compared to the case in which there were 

no dropouts, however there is very little to choose between this and the other (pupil 

level) dropout scenario. This may be because of the small number of replications, or 

even because when we remove a primary and secondary school combination we still 

have other information on each of the two schools involved through other pairings.  

 

2.6.4 Unbalanced designs – sampling from a pupil lookup table. 

 

The two dropout options for producing unbalanced designs make sense when it is 

easy to sample from every combination of the two factors. In reality, however, the 

majority of pupils in a particular primary school will all attend the same secondary 

school, and the real design is close to a nested one, with primary schools nested 

within secondary schools.  In fact, if we count the number of pupils not attending the 

most popular secondary for a particular primary school, we find that only 288 pupils 

do not fit a nested structure. In order to more closely mimic the actual data structure 

we could use the actual data as a guide for the pattern of schools. Here we tally up the 

numbers of pupils in each combination of primary and secondary school and simulate 

data with probabilities proportional to the numbers of pupils present for each 

combination. 

 

We will look first at simply choosing pupils at random from the set of all pupils (this 

is option 4 in the list of (unbalanced) scenarios in MLPowSim). Essentially we are 

using the 3,435 pupils to give probabilities of each combination of primary and 

secondary school, and so if no pupils in the real data went to a particular combination, 

then in the simulated datasets no pupils would be observed either. The school labels 

are purely used to describe the structure of the data and the school effects from the 

actual data are not used. In the simulations, only the variances of the primary and 

secondary schools are used to generate new school effects for the simulated schools.  

 

To run this option we need a file that contains the numbers of pupils observed for 

each combination, and this is provided as ‘fife.txt’ which contains a row for each 

primary school. We will consider sampling between 200 and 4,000 pupils, and the 

inputs for MLPowSim are as follows: 

 

                            Welcome to MLPowSim 
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Please input 0 to generate R code or 1 to generate MLwiN macros: 0 

 

    Please choose model type  

 

1. 1-level model   

2. 2-level balanced data nested model  

3. 2-level unbalanced data nested model  

4. 3-level balanced data nested model  

5. 3-level unbalanced data nested model  

6. 3-classification balanced cross-classified model  

7. 3-classification unbalanced cross-classified model  

 

Model type : 7 

Please input the random number seed: 1 

Please input the significance level for testing the parameters: 0.025 

Please input number of simulations per setting: 1000 

 

                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0 

Please enter estimation method [0 - REML, 1 - ML] : 1 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

Do you want to have a random intercept associated with the first XC factor in your model (1=YES  

0=NO )? 1 

Do you want to have a random intercept associated with the second XC factor in your model (1=YES  

0=NO )? 1 

 

  Predictor(s) input 

 

Do you want to include any explanatory variables in your model (1=YES  0=NO)? 0 

 

                      Sample size set up (unbalanced) 

 

Please choose one of the following scenarios for unbalanced sampling: 

1: Non-response of level 1 units using a Binomial probability of non-response  

2: Non-response of combinations of crossed factors using a Binomial probability of non-response  

3: Fixed sized samples for each XC1 unit with probabilities for XC2 identifiers 

4: Fixed total sample with each observation sampled from a  

 contingency table of probabilities for each combination of XC1 and XC2 

     

  Scenario type : 4 

 

Please input the filename (text file) including sample sizes of cells for XC1 crossed with XC2 : fife.txt 

Please input the unit numbers of XC1 (numbers of row in fife.txt file): 148 

Please input the unit numbers of XC2 (numbers of column  in fife.txt file): 19 

Please input the smallest number of total units: 200 

Please input the largest  number of total units: 4000 

Please input the step size for the total units: 200 

 

                             Parameter estimates 

 

                 Fixed effects input 

Please input estimate of beta_0: 0.5 

 

                 Random effects input 

Please input estimate of the variance of the first factor classification: 1.2 

Please input estimate of the variance of the second classification: 0.4 

Please input estimate of sigma^2_e: 8 
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                  Final sample size check   

The first and second XC samples are row and column numbers in fife.txt file as follows: 

Row=148   column=19 

The first level (replication) sample is fixed as 1. 

Total sample range for XCs combination: start=200 end=4000   step size=200 

 

Do you want to continue (YES=1 , NO=0)? 1 

Do you want to have the CI for the power in your output (YES=1 , NO=0)? 1 

 

If we run the file produced in R (which again will take an hour or so), we will get the 

following estimates stored in the data frame output: 

 

> output 

#XC2#XC1#TsamplezLb0 zpb0  zUb0  sLb0  spb0  sUb0 

19 148 200 0.388  0.419  0.450  0.429  0.435  0.442 

19 148 400 0.575  0.605  0.635  0.573  0.581  0.589 

19 148 600 0.606  0.636  0.666  0.650  0.658  0.666 

19 148 800 0.649  0.678  0.707  0.691  0.699  0.708 

19 148 1000 0.689  0.717  0.745  0.708  0.716  0.725 

19 148 1200 0.693  0.721  0.749  0.731  0.740  0.748 

19 148 1400 0.724  0.751  0.778  0.746  0.754  0.762 

19 148 1600 0.729  0.756  0.783  0.757  0.764  0.772 

19 148 1800 0.725  0.752  0.779  0.760  0.768  0.775 

19 148 2000 0.722  0.749  0.776  0.763  0.771  0.779 

19 148 2200 0.726  0.753  0.780  0.777  0.785  0.792 

19 148 2400 0.745  0.771  0.797  0.780  0.788  0.795 

19 148 2600 0.746  0.772  0.798  0.778  0.785  0.793 

19 148 2800 0.741  0.767  0.793  0.783  0.790  0.797 

19 148 3000 0.747  0.773  0.799  0.785  0.792  0.799 

19 148 3200 0.744  0.770  0.796  0.785  0.793  0.800 

19 148 3400 0.756  0.782  0.808  0.797  0.804  0.811 

19 148 3600 0.745  0.771  0.797  0.792  0.799  0.806 

19 148 3800 0.770  0.795  0.820  0.793  0.800  0.808 

19 148 4000 0.754  0.780  0.806  0.795  0.802  0.809 

 

What is interesting here is that the power increases very quickly for the small sample 

sizes but then tends to plateau having reached roughly 0.8 after around 3,000 pupils. 

Increases in sample sizes when sample size is smaller will generally increase both the 

number of pupils and the numbers of schools. However, having reached 3,000 pupils, 

most simulated datasets will include virtually all the primary schools, and so further 

increasing the number of pupils will not have as much of an impact. Note that some 

primary schools only have 1 or 2 pupils in the real data, and so even with 3,000 pupils 

there is a good chance they will not appear in a simulated dataset. 

2.6.5 Unbalanced designs – sampling from lookup tables for each 

primary/secondary school. 

 

The final possible way to generate unbalanced data in MLPowSim (option 3) is 

perhaps the most realistic in the case of our example. Often, when one collects data, 

the design is based on one factor, for example the primary schools or the secondary 

schools, with the other factor recorded but not controlled. For example, we might 
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decide we wish to collect educational data from pupils in secondary school, and 

having decided to take a balanced sample from each secondary school, we also record 

the primary school that each attended. We could also consider the alternative situation 

of setting up a study while pupils are in primary school and hence selecting a fixed 

size sample from each primary school. We then follow these pupils as they go through 

the education system noting also their choice of secondary school. We will consider 

this situation first and consider following between 2 and 20 pupils in each primary 

school. 

 

The (later) inputs to MLPowSim are as follows: 

 

                      Sample size set up (unbalanced) 

 

Please choose one of the following scenarios for unbalanced sampling: 

1: Non-response of level 1 units using a Binomial probability of non-response  

2: Non-response of combinations of crossed factors using a Binomial probability of non-response  

3: Fixed sized samples for each XC1 unit with probabilities for XC2 identifiers 

4: Fixed total sample with each observation sampled from a  

 contingency table of probabilities for each combination of XC1 and XC2 

     

  Scenario type : 3 

 

Please input the filename (text file) including sample sizes of cells for XC1 crossed with XC2 : fife.txt 

Please input the unit numbers of XC1 (numbers of row in fife.txt file): 148 

Please input the unit numbers of XC2 (numbers of column  in fife.txt file): 19 

Please input the smallest number of units per first cross-classified factor unit: 2 

Please input the largest number of units per first cross-classified factor unit: 20 

Please input the step size per first cross-classified factor unit: 1 

 

                             Parameter estimates 

 

                 Fixed effects input 

Please input estimate of beta_0: 0.5 

 

                 Random effects input 

Please input estimate of the variance of the first classification: 1.2 

Please input estimate of the variance of the second classification: 0.4 

Please input estimate of sigma^2_e: 8 

 

                  Final sample size check   

 

The first and second XC samples are row and column numbers in fife.txt file as follows: 

Row=148   column=19 

The first level (replication) sample is fixed as 1. 

Total sample range for XCs combination: start=2    end=20   step size=1 

 

 

The first XC factor:  start=10   end=50 step size=10 

The second  XC factor: start=10   end=30 step size=10 

The first level (replication): start=5  end=5 step size=1 

 

Do you want to continue (YES=1 , NO=0)? 1 

Do you want to have the CI for the power in your output (YES=1 , NO=0)? 1 

 

If we run the output file in R we will get the following output: 

 

>output 
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#XC2#XC1#Tninrow zLb0 zpb0  zUb0  sLb0  spb0  sUb0 

19 148 2 0.514  0.545  0.576  0.563  0.571  0.580 

19 148 3 0.614  0.644  0.674  0.641  0.649  0.658 

19 148 4 0.650  0.679  0.708  0.680  0.689  0.698 

19 148 5 0.714  0.741  0.768  0.717  0.726  0.735 

19 148 6 0.705  0.732  0.759  0.732  0.740  0.749 

19 148 7 0.698  0.726  0.754  0.729  0.738  0.747 

19 148 8 0.721  0.748  0.775  0.759  0.767  0.775 

19 148 9 0.715  0.742  0.769  0.760  0.769  0.777 

19 148 10 0.746  0.772  0.798  0.770  0.779  0.787 

19 148 11 0.762  0.787  0.812  0.774  0.782  0.790 

19 148 12 0.727  0.754  0.781  0.782  0.790  0.798 

19 148 13 0.748  0.774  0.800  0.789  0.797  0.804 

19 148 14 0.742  0.768  0.794  0.790  0.797  0.805 

19 148 15 0.722  0.749  0.776  0.792  0.800  0.807 

19 148 16 0.778  0.803  0.828  0.801  0.808  0.816 

19 148 17 0.741  0.767  0.793  0.798  0.806  0.813 

19 148 18 0.761  0.786  0.811  0.798  0.805  0.813 

19 148 19 0.750  0.776  0.802  0.803  0.810  0.817 

19 148 20 0.795  0.819  0.843  0.807  0.815  0.822 

 

Here we see that, even for small sample sizes, the power is quite big, and again 

plateaus out at the desired level of 0.8 by about 14 pupils per primary school – 2,072 

pupils in total. Sampling further pupils has very little impact on the power. It is 

interesting here that the standard error method tends to give a larger power estimate 

than the 0/1 method. 

 

We can also consider sampling fixed numbers of pupils per secondary school. To do 

this we require a file with secondary schools as rows, and primary schools as 

columns, and such a file is available as fife2.txt. The inputs are as above apart from 

the following: 
 

Please input the filename (text file) including sample sizes of cells for XC1 crossed with XC2 : 

fife2.txt 

Please input the unit numbers of XC1 (numbers of row in fife2.txt file): 19 

Please input the unit numbers of XC2 (numbers of column  in fife2.txt file): 148 

Please input the smallest number of units per first cross-classified factor unit: 5 

Please input the largest number of units per first cross-classified factor unit: 200 

Please input the step size per first cross-classified factor unit: 5 

 

Parameter estimates 

                Fixed effects input 

Please input estimate of beta_0: 0.5 

 

                 Random effects input 

Please input estimate of the variance of the first classification: 0.4 

Please input estimate of the variance of the second classification: 1.2 

Please input estimate of sigma^2_e: 8 
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This will produce the following output in R: 

 

#XC2#XC1 #Tninrow zLb0 zpb0  zUb0  sLb0  spb0  sUb0 

148   19        5  0.247  0.275  0.303  0.287  0.291  0.295 

148   19       10  0.425  0.456  0.487  0.435  0.441  0.447 

148   19       15  0.483  0.514  0.545  0.517  0.524  0.531 

148   19       20  0.549  0.580  0.611  0.578  0.585  0.593 

148   19       25  0.573  0.603  0.633  0.620  0.628  0.636 

148   19       30  0.631  0.660  0.689  0.648  0.657  0.665 

148   19       35  0.645  0.674  0.703  0.676  0.684  0.692 

148   19       40  0.665  0.694  0.723  0.689  0.697  0.705 

148   19       45  0.654  0.683  0.712  0.702  0.711  0.719 

148   19       50  0.678  0.706  0.734  0.710  0.719  0.727 

148   19       55  0.687  0.715  0.743  0.722  0.730  0.738 

148   19       60  0.723  0.750  0.777  0.733  0.741  0.749 

148   19       65  0.679  0.707  0.735  0.732  0.740  0.748 

148   19       70  0.717  0.744  0.771  0.748  0.756  0.764 

148   19       75  0.731  0.758  0.785  0.741  0.748  0.756 

148   19       80  0.731  0.758  0.785  0.751  0.759  0.767 

148   19       85  0.720  0.747  0.774  0.751  0.758   0.766 

148   19       90  0.714  0.741  0.768  0.752  0.760  0.768 

148   19       95  0.715  0.742  0.769  0.767  0.775  0.783 

148   19      100  0.731  0.758  0.785  0.772  0.780  0.787 

148   19      105  0.741  0.767  0.793  0.773  0.780  0.788 

148   19      110  0.746  0.772  0.798  0.779  0.786  0.793 

148   19      115 0.726  0.753  0.780   0.778  0.785   0.793 

148   19      120  0.747  0.773  0.799  0.768  0.776  0.783 

148   19      125  0.754  0.780  0.806  0.781   0.788  0.796 

148   19      130  0.745  0.771  0.797  0.780  0.786  0.793 

148   19      135  0.762  0.787  0.812  0.781  0.788  0.795 

148   19      140  0.749  0.775  0.801  0.785   0.792  0.799 

148   19      145  0.722  0.749  0.776  0.783  0.790  0.797 

148   19      150  0.736  0.762  0.788  0.787  0.794  0.801 

148   19      155  0.760  0.785  0.810  0.784  0.791  0.798 

148   19      160  0.762  0.787  0.812  0.790  0.797  0.804 

148   19      165  0.773  0.798  0.823  0.797  0.805  0.812 

148   19      170  0.765  0.790  0.815  0.789  0.796  0.804 

148   19      175  0.734  0.760  0.786  0.795  0.802  0.808 

148   19      180  0.773  0.798  0.823  0.794  0.802  0.809 

148   19      185  0.762  0.787  0.812  0.791  0.798  0.805 

148   19      190  0.756  0.782  0.808  0.792  0.799  0.806 

148   19      195  0.766  0.791  0.816  0.798  0.805  0.812 

148   19      200  0.795  0.819  0.843  0.802   0.809  0.815 

 

Here we see that although the power increases quickly with increasing pupils per 

school, it then plateaus off. We therefore need something of the order of 170 pupils 

per school (3,230 in total) to get a power of 0.8. 
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2.6.6 Using MCMC in MLwiN for cross-classified models. 

 

The alternative to using R for the cross-classified models is to use MCMC in MLwiN. 

This is far more time-consuming, and so here we just repeat the balanced cross-

classified modelling approach. With MCMC estimation we need to decide on a burn-

in length and main run length for each simulation. In the case of our example, we 

have chosen the (rather arbitrary) values of 5,000 and 10,000 iterations, respectively. 

The following inputs are required in MLPowSim: 
 

                            Welcome to MLPowSim 

 

Please input 0 to generate R code or 1 to generate MLwiN macros: 1 

 

    Please choose model type  

 

1. 1-level model   

2. 2-level balanced data nested model  

3. 2-level unbalanced data nested model  

4. 3-level balanced data nested model  

5. 3-level unbalanced data nested model  

6. 3-classification balanced cross-classified model  

7. 3-classification unbalanced cross-classified model  

 

Model type : 6 

Please input the random number seed: 1 

Please input the significance level for testing the parameters: 0.025 

Please input number of simulations per setting: 1000 

 

                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0 

Currently only MCMC estimation is available in MLPowSim for cross-classified models 

Please input burnin length for each simulation : 5000 

Please input main run length for each simulation : 10000 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

Do you want to have a random intercept associated with the first XC factor in your model (1=YES  

0=NO )? 1 

Do you want to have a random intercept associated with the second XC factor in your model (1=YES  

0=NO )? 1 

Do you want to include any explanatory variables in your model (1=YES  0=NO)? 0 

 

                          Sample size set up  

 

Please input the smallest number of units for the first cross-classified factor: 20 

Please input the largest number of units for the first cross-classified factor: 100 

Please input the step size for the first cross-classified factor: 20 

Please input the smallest number of units for the second cross-classified factor: 10 

Please input the largest number of units for the second cross-classified factor: 30 

Please input the step size for the second cross-classified factor: 10 

Please input the smallest number of replications per XC cell : 3 

Please input the largest number of replications per XC cell : 3 

Please input the step size for the number of replications : 1 

 

                             Parameter estimates 

 

                 Fixed effects input 

Please input estimate of beta_0: 0.5 
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                 Random effects input 

Please input estimate of the variance of the first classification: 1.2 

Please input estimate of the variance of the second classification: 0.4 

Please input estimate of sigma^2_e: 8 

 

Files to perform power analysis for the 3 level cross-classified model with the following sample 

criterion have been created 

Power analysis for the model with the following sample criterion starts now. Please wait ... 

 

Sample size in the first factor starts at 20 and finishes at 100 with the step size  20 

Sample size in the second factor starts at 10 and finishes at 30 with the step size  10 

Number of replications per cell starts at 3 and finishes at 3 with the step size  1 

1000 simulations for each sample size combination will be performed 

 

Press any key to continue… 

 

Having run MLPowSim we next need to run the macros produced in MLwiN. For this 

we will need to select the macro simu.txt and view the columns `mpow0’, `spow0’, 

`zpow0’, `N-level 1’, `N-XC Fact2’ and `N-XC-Fact1’ in the View/Edit Data 

window (see Section 1.4). The simulations here took 36 hours on my machine and 

produced the following output: 

 

 
 

Here we see that we need to sample at least 80 primary schools and 30 secondary 

schools to gain a power of 0.8. We can see that the stability of the power estimates 

using MCMC with a burn-in of 5000 and a main run of 10,000 is not as good as that 

observed using R. For example 2 of the 3 power estimation methods suggest that a 

design with 80 primary schools and 20 secondary schools has more power than one 

with 100 primary schools and 20 secondary schools! This suggests that maybe 5,000 
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and 10,000 iterations are still not enough, and we need even more. Given that the 

above run took 36 hours this starts becoming infeasible, but for the purposes of 

comparison, below we present the results from 100,001 iterations: 

 

 
 

Here we see the power estimates are considerably more stable, increasing 

monotonically with sample size  

 

The table below compares the power estimates we earlier derived via R (see Section 

2.6.1) with those we have just obtained above (all the power estimates listed in the 

table are those derived from the standard error method): 

 

N-XC Fact1 N-XC Fact2 N-level 1 

Estimation method (with stats 

package) 

MCMC (MLwiN) ML (R) 

20 10 3 0.287 0.335 

20 20 3 0.375 0.414 

20 30 3 0.402 0.457 

40 10 3 0.410 0.466 

40 20 3 0.568 0.597 

40 30 3 0.632 0.660 

60 10 3 0.452 0.541 

60 20 3 0.658 0.695 

60 30 3 0.733 0.772 
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80 10 3 0.462 0.586 

80 20 3 0.726 0.754 

80 30 3 0.818 0.837 

100 10 3 0.510 0.614 

100 20 3 0.755 0.798 

100 30 3 0.868 0.875 

 

It’s apparent that, especially for smaller sample sizes, the power estimates from the 

MCMC method (run for 100,001 iterations) are smaller than those generated by R 

(using maximum likelihood estimation), but the estimates derived from each method 

become more similar as sample size increases. It has been shown (Browne and 

Draper, 2006) that ML estimation (via the IGLS) algorithm gives under-estimates for 

higher level variances in multilevel models when the number of higher level units is 

small. This underestimation will result in larger power estimates when the number of 

higher level units is small which may in part explain the differences in the above 

table. 

 

3 Binary Response models 

 

In the last chapter we dealt with models where the response variable is assumed to be 

continuous and to follow a normal distribution. In other situations we might have 

binary response data: for example, in educational research the response might be 

whether or not a student passes an exam, in health many studies have success of a 

treatment or mortality as a response variable, and so on. As with continuous 

responses, binary responses can also exhibit dependence through clustering: for 

example, more students may pass an exam in a good school than in a poorer school, 

and so the results of different pupils from the same school are likely to be more 

correlated than the results of pupils chosen at random. In this chapter, we begin by 

looking at the common methods of devising power calculations for simple binary 

response models before linking models together in a unified framework, and also 

adding in multilevel structure. 

 

3.1 Simple binary response models – comparing data with a fixed 

proportion. 

 

In this chapter our dataset of interest involves the use of contraceptives by women in 

Bangladesh: an example dataset used in the MLwiN User’s Guide (Rasbash et al, 

2004). We will therefore have a binary response which represents whether or not a 

woman uses any form of contraceptive. The simplest possible model is then a single 

proportion model, where we disregard possible predictor variables and simply assume 

there is an underlying proportion of women who use contraceptives: i.e. for each 

woman there is a probability π of using contraceptives. We may then want to compare 

this unknown proportion against some fixed value, for example we might like to know 

how many women we would need to sample to be able to state that the proportion of 

women using contraceptives is greater or less than 0.5.  
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The approach that is commonly used for getting approximate sample sizes in this 

simple scenario is to make a normal assumption to the Binomial distribution, and then 

test the hypothesis as we would with the simple single means model described earlier. 

 

The normal approximation to the Binomial assumes that a sample proportion p is 

normally-distributed with mean the unknown population proportion, π and variance 

π(1- π)/n, which is approximated by p(1-p)/n where n here represents the chosen 

sample size. This approximation is best when the underlying π is close to 0.5 and the 

sample size is large. 

 

So let us suppose that we believe the proportion of women that use contraceptives is 

0.4, and we wish to estimate how many women we need to sample to have a power of 

0.8 of saying that the proportion is less than 0.5. The formula for calculating the 

sample size is as follows (assuming a two-sided test): 

 

𝑛 ≥ [
𝛷−1(0.8)√𝜋(1 − 𝜋) + 𝛷−1(0.975)√𝜋0(1 − 𝜋0)

𝜋 − 𝜋0

]

2

= [
0.842√0.4(1 − 0.4) + 1.96√0.5(1 − 0.5)

0.4 − 0.5
]

2

 

Here as we see π0 is the probability under the null hypothesis (0.5) whilst π is the 

believed value (0.4). Solving for n we get 𝑛 ≥ 193.9 thus we would need a sample 

size of at least 194. 

 

As we see a little later, this model can be cast into a standard modelling formulation – 

namely that of generalized linear models. When we considered continuous responses 

then the simple means model was a special case of the general linear modelling 

framework, but in the binary response case the simple proportion model is not quite a 

special case as it involves a different normal approximation as will become clear in 

Section 3.3. 

3.2 Comparing two proportions. 

 

The other commonly-considered simple model is used when we wish to establish 

whether the proportion of positive responses are different for two populations. For 

example, in our dataset we have a descriptive indicator of the area where the women 

live (either urban or rural). We might then like to see whether women use 

contraceptives more in urban or rural areas. Our null hypothesis in this case is that 

women are equally likely to use contraceptives in both areas, whereas we might 

hypothesise the alternative that women in urban areas are more likely to use 

contraceptives. Here we will use normal approximations again, so that under the null 

hypothesis we assume all women come from an approximate Normal distribution with 

some mean π and variance π(1- π)/n. Under the alternative hypothesis, the women 

come from different populations and have approximate Normal distributions with 

means πU and πR with corresponding variances πU(1- πU)/nu and  πR(1- πR)/nR where 

n= nu + nR. 

 

Now we choose nu and nR as part of our sampling strategy, and our options are to 

sample the same number of each, or to assume some fixed ratio for the two categories 
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based on the perceived population sizes. If the same sample size is assumed to be the 

same for each group, then the following formula holds: 

 

𝑛𝑢 = 𝑛𝑅 = (
0.842√𝜋𝑢(1 − 𝜋𝑢) + 𝜋𝑅(1 − 𝜋𝑅) + 1.96√2𝜋0(1 − 𝜋0)

𝜋𝑢 − 𝜋𝑅
)

2

 

 

If we assume that πU=0.5 and πR=0.35 then π0 = (0.5+0.35)/2 = 0.425. Solving, we 

find we need 170 women in each group and 340 women in total for a power of 0.8. In 

the Bangladesh dataset the ratio of urban to rural dwellers is 30%:70%; hence, to get a 

similar power, with this ratio, we will need 130 urban women and 302 rural dwellers, 

making 432 in total, which shows that a balanced number in each group is preferred 

as it reduces the overall sample size. 

 

3.3 Logistic regression models 

 

The two models described above – in which we compared an observed proportion to a 

fixed value, and also compared the proportions in two populations – are widely used 

in many applied areas, especially medical research. It is, however, difficult to extend 

this modelling framework to account for further categorical predictors and/or 

continuous predictors. Instead, we turn to generalized linear models and in particular 

logistic regression models. Here, we transform the underlying probability to a 

measure that can take values on the whole real line via a link function, and then fit a 

model to this transformed measure. As probabilities lie between 0 and 1 we need a 

function that maps values in the range [0,1] to values in the range (-∞,∞). The 

function has to be monotonic: i.e. with each probability mapping onto a different 

value; by convention, we expect 0 to map onto -∞ and 1 onto ∞. This suggests that 

inverse cumulative distribution functions (CDFs) are ideal candidates, and the most 

commonly-used function is the inverse CDF of the logistic distribution, resulting in a 

model known as a logistic regression. Please note that the inverse (standard) normal 

CDF is also commonly-used, resulting in probit regression. 

 

We can write a logistic regression model as follows: 

 

𝑦𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑖𝑙𝑙𝑖(𝜋𝑖) 

𝑙𝑜𝑔 (
𝜋𝑖

1 − 𝜋𝑖
) = 𝑋𝑖𝛽 

Here the logit function of πi is modelled by predictors Xi and corresponding 

coefficients β. The reason this function is modelled rather than simply πi is that the 

product Xiβ (which is known as the linear predictor) can take any value, and so 

modelling πi directly can result in predicted probabilities less than 0 and greater than 

1! 

 

Models similar to those we explored above, namely the single proportion and the 

comparison of two proportions, can be fitted in this framework by careful selection of 

predictor variables, as we discuss next. 
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3.3.1 A single proportion in the logistic regression framework 

 

The simplest logistic regression model is created by including just an intercept in the 

linear predictor. This model basically fits a single proportion to a set of data and the 

coefficient β can be back-transformed to this underlying proportion π as follows: 

 

𝜋 =
𝑒𝛽

1+𝑒𝛽. 

 

The estimate of π obtained via this transformation will be the same as the estimate 

obtained in the single proportion model: i.e. the number of successes out of the 

number of trials. The difference when fitting a logistic regression model is that the 

parameter β is estimated along with its standard error, and so we have the option of 

using a different normal approximation by assuming β is normally-distributed rather 

than π. In reality, neither of these quantities is truly normally-distributed, but making 

the assumption for β, rather than π, links in with further logistic regression models 

and leads to the use of Wald tests for testing significance. 

 

We will now investigate how we can use MLPowSim to determine power for various 

sample sizes for this model, using the Bangladeshi dataset. As discussed earlier, we 

are trying to establish a sample size to detect that the actual usage of contraceptives is 

less than 50%, based on our belief that the actual usage is 40%. For a logistic 

regression model, the proportion 40% corresponds to a value of -0.4055 for β. We are 

fortunate that 50% corresponds to 0, and so we only need to test whether β is less than 

0, which is the standard test in MLPowSim. Note: if you wanted to check whether the 

proportion is different from another value, you would need to modify the macros 

produced by MLPowSim to test whether the corresponding transformed value for β is 

in the intervals or not. 

 

Here are the inputs required in MLPowSim to fit this model using MLwiN: 

 

                            Welcome to MLPowSim 

 

Please input 0 to generate R code or 1 to generate MLwiN macros: 1 

 

    Please choose model type  

 

1. 1-level model   

2. 2-level balanced data nested model  

3. 2-level unbalanced data nested model  

4. 3-level balanced data nested model  

5. 3-level unbalanced data nested model  

6. 3-classification balanced cross-classified model  

7. 3-classification unbalanced cross-classified model  

 

Model type : 1 

Please input the random number seed: 1 

Please input the significant level for testing the parameters: 0.025 

Please input number of simulations per setting: 1000 

 

                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 1 

Please input link function [0 – logit, 1 – probit, 2- cloglog] : 0 
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Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

Do you want to include any explanatory variables in your model (1=YES  0=NO)? 0 

 

                          Sample size set up  

 

Please input the smallest sample size : 30 

Please input the largest sample size : 300 

Please input the step size: 30 

 

                             Parameter estimates 

 

Please input estimate of beta_0: -0.4055 

 

Files to perform power analysis for the 1 level model with the following sample criterion have been 

created 

Sample size starts at 30 and finishes at 300 with the step size  30 

1000 simulations for each sample size combination will be performed 

 

Press any key to continue… 

 

Note, that whilst our hypothesis is one-sided (i.e. we’re predicting actual usage is less 

than 50%, rather than more), we have chosen a significance level of 0.025 rather than 

the more common 0.05. This is because it corresponds to a two-sided test of 

significance at level 0.05 which is the more commonly used hypothesis in practice. 

 

Having set up the macros we can now run them in MLwiN. You will need to change 

the directories as before, so that the current directory is the directory that contains the 

macros (see Section 1.4). After the macros run, which can take a while, we will get 

the following output in the View/Edit Data window if we select columns `spow0’, 

`zpow0’ and `Samplesize’. 

 

 
 

Here we can see that to get a power of 0.8, a sample size of somewhere between 180 

and 210 is required, with a linear interpolated estimated sample size of 201 from the 
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standard error method. This is similar to the 194 suggested by the formulae in Section 

3.1, but of course we would not expect identical values given that different normal 

approximations are used. 

 

3.3.2 Comparing two proportions in the logistic regression framework 

 

To fit a model that investigates the difference between two proportions in the logistic 

regression framework, we will need to include a second predictor in the linear 

predictor that identifies whether or not an individual woman is in the urban group. 

The model is then 

 

𝑦𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑖𝑙𝑙𝑖(𝜋𝑖) 

𝑙𝑜𝑔 (
𝜋𝑖

1 − 𝜋𝑖
) = 𝛽0 + 𝛽1𝑈𝑟𝑏𝑎𝑛𝑖 

 

with β0 representing the transformed proportion of contraception usage for rural 

women, and β1 representing the (transformed) difference in proportion between urban 

and rural women. To conduct power calculations in MLPowSim for the specific case 

where we believe that 35% of rural women, and 50% of urban women, use 

contraceptives, we would use estimated effects of -0.619 for β0 to correspond to 35%, 

and 0.619 for β1, so that β0+β1=0 which corresponds to 50% of urban women. For the 

purposes of simulating samples of women, we will assume a binomial distribution for 

the urban indicator, with probability 0.3; if we are simply surveying women and 

recording their residence indicator, then this is a more realistic scenario than 

generating particular sample sizes in each category. 

 

The inputs in MLPowSim are then as follows: 

 

                            Welcome to MLPowSim 

 

Please input 0 to generate R code or 1 to generate MLwiN macros: 1 

 

    Please choose model type  

 

1. 1-level model   

2. 2-level balanced data nested model  

3. 2-level unbalanced data nested model  

4. 3-level balanced data nested model  

5. 3-level unbalanced data nested model  

6. 3-classification balanced cross-classified model  

7. 3-classification unbalanced cross-classified model  

 

Model type : 1 

Please input the random number seed: 1 

Please input the significant level for testing the parameters: 0.025 

Please input number of simulations per setting: 1000 

 

                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 1 

Please input link function [0 – logit, 1 – probit, 2- cloglog] : 0 

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 
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Do you want to include any explanatory variables in your model (1=YES  0=NO)? 1 

How many  explanatory variables do you want to include in your  model?  1 

Please choose a type for the predictor x1 (1=Binary  2=Continuous): 1 

Please input probability of a 1 for x1 : 0.3 

 

 

                          Sample size set up  

 

Please input the smallest sample size : 50 

Please input the largest sample size : 500 

Please input the step size: 25 

 

                             Parameter estimates 

 

Please input estimate of beta_0: -0.619 

Please input estimate of beta_1: 0.619 

 

 

Files to perform power analysis for the 1 level model with the following sample criterion have been 

created 

Sample size starts at 50 and finishes at 500 with the step size  25 

1000 simulations for each sample size combination will be performed 

 

Press any key to continue… 

 

After running the macros in MLwiN, and then selecting columns `spow0’, `spow1’, 

`zpow0, `zpow1’ and `Samplesize’, the View/Edit Data window should look as 

follows: 
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Here the columns headed ‘zpow0’ and ‘spow0’ give powers for β0, which corresponds 

to testing that the probability that rural women use contraceptives is less than 0.5; 

with around 125 women, this power reaches 0.8. The more interesting parameter is β1, 

and we see that we need a sample of between 400 to 425 women to establish a 

difference between the probabilities of using contraceptives with a power of 0.8; this 

approximates the 432 that was calculated in Section 3.2 using the different normal 

approximation. 

 

As with the normal response models in Section 2, we can perform power calculations 

for further categorical predictors and continuous predictors as well, but for brevity we 

do not give examples here, other than noting the inputs in MLPowSim will be very 

similar. 

 

We will now move on to describe multilevel extensions of the binary response model. 

 

3.4 Multilevel logistic regression models 

 

If we return to our example dataset of Bangladeshi contraceptive use, we have now 

established how many women we need to survey to test two simple hypotheses with a 
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certain power. The modelling so far has assumed that we can randomly sample 

women from the population; in practice, however, we are more likely to take samples 

from specific places, in which case we will have a structure of women nested within 

districts. It is likely that women from the same district will have similar probabilities 

of using contraceptives, and so we will not end up with an independent random 

sample. We can take this into account by fitting a random effect for district in our 

logistic regression model, as follows: 

 

𝑦𝑖𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑖𝑙𝑙𝑖(𝜋𝑖𝑗) 

𝑙𝑜𝑔 (
𝜋𝑖𝑗

1 − 𝜋𝑖𝑗
) = 𝛽0 + 𝑢𝑗 , 𝑢𝑗~𝑁(0, 𝜎𝑢

2) 

Here j indexes district, i indexes women within each district, β0 is the overall average 

(transformed) proportion, and uj represents district effects. From the real data we will 

again assume that our believed proportion is 0.4 which corresponds to a value of 

-0.4055 for β0, and we will assume a variance of 0.25 for the clusters. The inputs in 

MLPowSim are then as follows: 

 

                            Welcome to MLPowSim 

 

Please input 0 to generate R code or 1 to generate MLwiN macros: 1 

 

    Please choose model type  

 

1. 1-level model   

2. 2-level balanced data nested model  

3. 2-level unbalanced data nested model  

4. 3-level balanced data nested model  

5. 3-level unbalanced data nested model  

6. 3-classification balanced cross-classified model  

7. 3-classification unbalanced cross-classified model  

 

Model type : 2 

Please input the random number seed: 1 

Please input the significant level for testing the parameters: 0.025 

Please input number of simulations per setting: 1000 

 

                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 1 

Please input link function [0 – logit, 1 – probit, 2- cloglog] : 0 

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1 

Please input Method [0 – MQL, 1 - PQL]: 0 

Please input order [1 – 1st, 2 – 2nd]: 1 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

Do you want to have a random intercept in your model (1=YES  0=NO )? 1 

Do you want to include any explanatory variables in your model (1=YES  0=NO)? 0 

 

                          Sample size set up  

 

Please input the smallest number of units for the second level: 10 

Please input the largest number of units for the second level: 50 

Please input the step size for the second level: 5 

Please input the smallest number of units for the first level per second level: 10 

Please input the largest number of units for the first level per second level: 10 

Please input the step size for the first level per second level: 1 
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                             Parameter estimates 

 

Please input estimate of beta_0: -0.4055 

Please input estimate of sigma^2_u: 0.25 

 

Files to perform power analysis for the 2 level nested model with the following sample criterion have 

been created 

Sample size in the first level starts at 10 and finishes at 10 with the step size  1 

Sample size starts at 10 and finishes at 50 with the step size  5 

1000 simulations for each sample size combination will be performed 

 

Press any key to continue… 

 

We have here decided to adopt a sampling scheme of 10 women from each district 

that is visited, and so the sample size that we are varying is the number of districts to 

visit. One thing to note here is that we have two additional questions with regard to 

the estimation method. For binary response multilevel models, MLwiN does not give 

maximum likelihood estimates, but instead gives quasi-likelihood estimates. There are 

two types of quasi-likelihood method available: marginal quasi-likelihood (MQL) and 

penalized quasi-likelihood (PQL). These methods use a Taylor series approximation 

and the order of this approximation can also be altered. Firstly we will show results 

for the simplest method: MQL 1. 

 

If we look at columns `spow0’, `zpow0’, `N-level 1’ and `N-level 2’ we see the 

following: 

 

 
 

Here we see that to get a power of 0.8, we will need to sample 30-35 districts, which 

translates to 300-350 women in total. This compares with only 201 women when we 

assume no district effects, which shows the importance of accounting for clustering in 

power calculations. One other thing to note is that the two methods of calculating the 

power give slightly different answers. This is better illustrated by graphs, which can 

be viewed by performing the following: 
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The graphs that appear should look like this: 

 

 
 

Here we see that the smoother SE method tends to give higher power values than the 

0/1 method. In this case it is probably better to use the 0/1 method, because the SE 

method only works well if the estimation method is unbiased, and it has been shown 

previously that 1st order MQL estimation tends to underestimate fixed effects (e.g. 

Goldstein and Rasbash, 1996), and hence their standard errors, thus inflating the 

power. 

 

We will now look at 2nd order PQL estimation. To do this we again run MLPowSim, 

but this time answer 1, when prompted, for PQL and 2 for 2nd order estimation. Once 

more, we run the resulting macros in MLwiN and look at columns `spow0’, `zpow0’, 

`N-level 1’ and `N-level 2’ in the View/Edit Data window, where we see the 

following: 

 

Select Open Macro from the File menu. 

Select the macro file ‘graphs.txt’ from the list and click on the Open button. 

Click on the Execute button on the macro window. 

Select Customised Graph(s) from the Graphs menu 

Select Apply from the Customised Graph window. 
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We can also look at the graphs for this estimation method by repeating the boxed 

instructions given above: 
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Here we see better agreement between the two methods of calculating power. This 

makes sense, since PQL is less biased than MQL, and the bias will only be noticeable 

in designs with very large cluster variability. 

 

3.5 Multilevel logistic regression models in R 

 

Power calculations for all the models outlined above can also be conducted using R, 

with generally little change in MLPowSim user input. For illustrative purposes, here 

we will outline power calculations for a multilevel logistic regression model in R. 

Compared to MLwiN, R can use PQL but also a different estimation method called 

Adaptive Gaussian Quadrature (AGQ) which requires a number of quadrature points 

with the more resulting in a better approximation but being harder to run. Here we 

will use PQL which can be chosen by specifying 0 to the number of quadrature points 
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input as AGQ has problems with this example and the small sample sizes. The inputs 

in MLPowSim are as follows: 

 

                            Welcome to MLPowSim 

 

Please input 0 to generate R code or 1 to generate MLwiN macros: 0 

 

    Please choose model type  

 

1. 1-level model   

2. 2-level balanced data nested model  

3. 2-level unbalanced data nested model  

4. 3-level balanced data nested model  

5. 3-level unbalanced data nested model  

6. 3-classification balanced cross-classified model  

7. 3-classification unbalanced cross-classified model  

 

Model type : 2 

Please input the random number seed: 1 

Please input the significant level for testing the parameters: 0.025 

Please input number of simulations per setting: 1000 

 

                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 1 

Please input link function [0 – logit, 1 – probit, 2- cloglog] : 0 

Please input number of quadrature points(>=0, 1 corresponds to Laplace approximation) : 0 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

Do you want to have a random intercept in your model (1=YES  0=NO )? 1 

 

                            Predictor(s) Input 

 

Do you want to include any explanatory variables in your model (1=YES  0=NO)? 0 

 

                          Sample size set up  

 

Please input the smallest number of units for the second level: 10 

Please input the largest number of units for the second level: 50 

Please input the step size for the second level: 5 

Please input the smallest number of units for the first level per second level: 10 

Please input the largest number of units for the first level per second level: 10 

Please input the step size for the first level per second level: 1 

 

                             Parameter estimates 

 

                     Fixed Effects Input 

 

Please input estimate of beta_0: -0.4055 

  

                     Random Effects Input 

 

Please input estimate of sigma^2_u: 0.25 

 

                    Final sample size check  

The second level:  start=10   end=50  step size=5 

The first level:  start=10   end=10 step size=1 

Do you want to continue (YES=1 , NO=0)? 1 

Do you want to have the CI for the power in your output (YES=1 , NO=0)? 1 
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Having responded to all the questions in MLPowSim, we now need to fire up the R 

package and run the macro file powersimu.r (see Section 1.5 for details on how to do 

this). Please note that R will take considerably longer than MLwiN to run this model, 

but will give you progress updates by letting you know each time 10 iterations are 

complete. Upon finishing all iterations, R will finish running the code, and the results 

will be stored in a file called powerout.txt. We can view the results by typing the 

name of the data frame (output) saved by the commands we have just executed in the 

R console: 

 

> output 

N  n  zLb0            zpb0           zUb0           sLb0           spb0          sUb0 

10  10  0.333  0.363  0.393  0.347  0.354  0.363 

15  10  0.430  0.461  0.492  0.497  0.505  0.514 

20  10  0.581  0.611  0.641  0.608  0.617  0.626 

25  10  0.679  0.707  0.735  0.708  0.717  0.725 

30  10  0.755  0.781  0.807  0.776  0.784  0.791 

35  10  0.806  0.829  0.852  0.838  0.844  0.850 

40  10  0.835  0.857  0.879  0.881  0.886  0.890 

45  10  0.891  0.909  0.927  0.919  0.923  0.926 

50  10  0.929  0.943  0.957  0.946  0.949  0.951 

 

Here we see that R gives powers of 0.829 and 0.844 for 35 districts, which compares 

favourably with powers of 0.838 and 0.847 from MLwiN. 

 

MLPowSim can fit all the data structures covered in Chapter 2 using binary responses 

as well as normally distributed responses.  For the sake of brevity we will not, 

however, give examples of unbalanced data structures, three level models and cross-

classified models. Instead we move onto count data. 

 

4 Count Data 

We have now considered modelling both continuous and binary responses and 

calculating power calculations for such models. Clustered binary responses can also 

be considered as counts. If we assume we have collected pass/fail exam responses for 

children within a classroom, we would generally model the data as binary to allow the 

inclusion of predictor variables for the individual children, for example gender or 

birth date, to see if they influence whether the child passes. If, however, we have no 

pupil-level predictors, then we could model the proportion that pass using a (general) 

Binomial distribution with parameters ni (the number of pupils in classroom i (that is 

known)) and pi (the probability of passing for classroom i which we will model using 

classroom and school level predictors). 

 

In MLPowSim we do not explicitly deal with general Binomial modelling as it is less 

common than the use of the Bernouilli (Binomial when n=1) distribution for binary 

data. It is also always possible to expand a single general Binomial response into a 

series of Bernouilli responses each with the same probability.  

 

One can also think of the number of pupils passing the exam as a count response and 

model these individual counts using a different distribution designed for such 
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responses, for example a Poisson distribution. We encounter two problems here: 

firstly, although the number passing is indeed a count, it has a finite upper limit – the 

number of pupils in the school. This means that through a Poisson model we will have 

a positive probability of more pupils passing than are present in the class. Secondly, if 

we model the counts without accounting for the class-size we will generally find the 

unsurprising result that larger classes have more pupils passing! We will discuss this 

further in later sections. 

 

Other examples of count data are the number of heavy good vehicles (HGVs) passing 

a road junction in an hour and the number of cancer cases of a particular type in a 

population over a 10 year period. In the first example there will be a finite number of 

HGVs in the area, but the number is unknown, and also each HGV can pass the 

junction more than once during our survey period and so we would not consider this 

as a proportion. In the second example, we might be able to work out the population 

size for the population, however the incidence rate of most cancers is (thankfully) 

very small, and so the Poisson distribution is a good approximation for the Binomial 

in such cases. 

 

4.1  Modelling rates 

 

Both the illustrative examples of HGVs and cancer cases have one thing in common: 

the response is a count over a fixed time period. In reality, the Poisson distribution is 

generally used to model event rates: for example HGVs per hour. If the time periods 

for each measurement (or the population size, in the case of the cancer example we 

considered) are the same size, then there isn’t a big distinction between rates and 

counts. If, however, the sizes associated with each response are different (which is 

often the case when dealing with populations) then there are methods to adjust for 

these different sizes via what is known as an offset. We will consider this further 

below, and in more detail in Section 4.4.  There are standard formulae for sample size 

calculations for models comparing a single rate to a hypothesized value, and for 

comparing two rates. These formulae are very similar to those for continuous 

Normally-distributed data, but with both the variances and means replaced by the 

rates. Here we should recall that the Poisson distribution has one parameter, λ, and 

both the mean and variance of a Poisson (λ) distribution are λ. We will now describe a 

1-level Poisson model to illustrate the case of two rates. 

 

4.2  Comparison of two rates 

 

We will here consider an example of traffic control. Let’s assume we believe that a 

stretch of minor road experiences, on average, 10 HGVs per hour travelling along it 

during the peak period of 7am to 10am. Due to road works to another road, local 

people believe that this will increase to 15 HGVs per hour during this period, and they 

want to petition the authorities to put safety measures in place whilst the roadworks 

are taking place. They want to know how many periods they would need to watch the 

road, counting HGVs, to show an increase in HGV traffic. 

 

The standard formula for the sample size is  
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𝑛 ≥
(𝑍𝛽 + 𝑍𝛼/2)2(𝜆𝑎 + 𝜆𝑏)

(𝜆𝑎 − 𝜆𝑏)2
=

(0.842 + 1.96)2(15 + 10)

(15 − 10)2
= 7.85 

where λb and  λa are the expected rates before and after the road works start, and so 8 

hours of watching both before and after (i.e. 16 hours in total) will suffice to gain a 

power of at least 0.8 of detecting a significant increase in traffic. 

 

We will now show how this model can fit into a Poisson modelling framework. 

 

4.3  Poisson log-linear regressions 

 

For Poisson models we need to relate a rate (that has to be positive) to predictor 

variables in such a way that we do not predict rates that are negative. We do this by 

modelling the log of the rate as a linear function of predictor variables in what is 

known as a log-linear model and can be described as follows: 

 

𝑦𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖) 
𝑙𝑜𝑔( 𝜆𝑖) = 𝑋𝑖𝛽 

 

Here the exponentials of the β coefficients represent multiplicative effects to the rate 

as we would predict λi as exp(Xiβ). 

 

We can fit a model with different rates for two groups as follows: 

 

𝑦𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖) 
𝑙𝑜𝑔( 𝜆𝑖) = 𝛽0 + 𝛽1𝐴𝑓𝑡𝑒𝑟𝑖 

 

Here Afteri is an indicator variable that takes value 1 if the hour was after the 

roadworks started and 0 if the hour was before the roadworks started. We now need to 

link the effect sizes β to the expected rates for the two periods. For the period before 

the road works we expect 10 HGVs per hour and so exp(β0)=10 so β0=loge(10)=2.303. 

For the period after the road works we expect 15 HGVs and so exp(β0+ β1)=15, β0+ 

β1=loge(15)=2.708 and so β1=2.708-2.303 = 0.405. 

 

To test for no increase we are interested in whether β1 is greater than 0. We will now 

run MLPowSim to create the macros for MLwiN to perform the power calculation. 

 

                            Welcome to MLPowSim 

 

Please input 0 to generate R code or 1 to generate MLwiN macros: 1 

 

    Please choose model type  

 

1. 1-level model   

2. 2-level balanced data nested model  

3. 2-level unbalanced data nested model  

4. 3-level balanced data nested model  

5. 3-level unbalanced data nested model  

6. 3-classification balanced cross-classified model  

7. 3-classification unbalanced cross-classified model  

 

Model type : 1 
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Please input the random number seed: 1 

Please input the significant level for testing the parameters: 0.025 

Please input number of simulations per setting: 1000 

 

                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 2 

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

Do you want to include any explanatory variables in your model (1=YES  0=NO)? 1 

How many  explanatory variables do you want to include in your  model?  1 

Please choose a type for the predictor x1 (1=Binary  2=Continuous): 1 

Please input probability of a 1 for x1 : 0.5 

 

 

                          Sample size set up  

 

Please input the smallest sample size : 4 

Please input the largest sample size : 40 

Please input the step size: 2 

 

                             Parameter estimates 

 

Please input estimate of beta_0: 2.303 

Please input estimate of beta_1: 0.405 

 

 

Files to perform power analysis for the 1 level model with the following sample criterion have been 

created 

Sample size starts at 2 and finishes at 40 with the step size  2 

1000 simulations for each sample size combination will be performed 

 

Press any key to continue… 

 

It should be noted that here we are starting with two survey periods and working up to 

40. Due to restrictions in how this is set up in MLPowSim, we have to give a 

probability that each period is before or after. This is NOT what we want here since, 

in the case of small samples especially, we would likely generate some simulated 

datasets where all periods are before, or all periods are after, the roadworks, and these 

would be useless for testing our hypothesis (i.e. that the rate of HGVs passing is 

greater after the roadworks have begun, than before). Consequently, we will need to 

slightly modify the macros produced. If we load up the file setup.txt in a text editor 

we can find the line that produces the predictor that indicates whether the period is 

before, or after. This line is as follows: 

 

BRAN b23 c11 0.500000 1 

 

We can remove this line and place the following three lines before the line LOOP b40 

1 b41 

 

CALC b24 = b23/2 

CODE 2 1 b24 c11 

CALC c11 = c11 – 1 
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Note that these lines firstly work out the number of pairs of survey periods, and then 

generate a predictor that labels the pairs and place this in c11. The CODE line uses 

the labels 1 and 2, and so to use the labels 0 and 1 to indicate before and after, we 

subtract 1 from c11. It is important after making these changes to ensure you save 

setup.txt. 

 

If we now run the macro simu.txt in MLwiN, changing directory as usual, and open 

the View/Edit Data window to view columns `spow1’, `zpow1’ and `Samplesize’, to 

see the sample size and power estimates for the difference parameter β1 from the two 

methods, we get the following: 

 

 
 

Here we see that a power of 0.8 is reached when we have roughly 16 observations, i.e. 

8 in each group which agrees with the formulae given previously. 

 

4.1.1 Using R 
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For 1-level Poisson models (and in fact for 1-level Binomial models) it turns out that 

using R is quicker than MLwiN as we can call a function designed specifically for 

fitting a 1-level model. If we initially select 0 for R when prompted in MLPowSim, 

we can enter the same inputs as above, although for R we will not be asked which 

estimation method we require. As above, we will again need to modify the code to 

create the balanced x predictor, and we do this by removing the following line in 

outputted file powersimu.r (NB we can inactivate this line of code by preceding it 

with ##, as shown below): 

 

x[,2]<-rbinom(length,1,xprob[2]) 

  

and replacing it with the following: 

 

  ##x[,2]<-rbinom(length,1,xprob[2]) 

  zer <- rep(0,length/2) 

  one <- rep(1,length/2) 

  x[,2] <- c(zer,one) 

 

If we run R, and then look at the output, we see the following estimates for the β1 

parameter (note here we don’t show the estimates for β0): 

 

> output 

n  zLb1   zpb1   zUb1  sLb1   spb1   sUb1 

4  0.258  0.286  0.314  0.277  0.280  0.282 

6  0.383  0.414  0.445  0.394  0.397  0.399 

8  0.470  0.501  0.532  0.500  0.503  0.506 

10  0.548  0.579  0.610  0.595  0.598  0.601 

12  0.664  0.693  0.722  0.672  0.674  0.676 

14  0.729  0.756  0.783  0.739  0.741  0.744 

16  0.771  0.796  0.821  0.795  0.797  0.799 

18  0.824  0.846  0.868  0.841  0.842  0.844 

20  0.876  0.895  0.914  0.877  0.878  0.879 

22  0.910  0.926  0.942  0.905  0.906  0.907 

24  0.919  0.934  0.949  0.928  0.929  0.929 

26  0.926  0.941  0.956  0.945  0.946  0.947 

28  0.962  0.972  0.982  0.958  0.959  0.959 

30  0.968  0.977  0.986  0.969  0.969  0.970 

32  0.963  0.973  0.983  0.977  0.977  0.978 

34  0.975  0.983  0.991  0.983  0.983  0.983 

36  0.989  0.994  0.999  0.987  0.987  0.988 

38  0.986  0.992  0.998  0.991  0.991  0.991 

40  0.994  0.997  1.000  0.993  0.993  0.993 

 

Here again we see that we need approximately 8 observations in each group to get a 

power of 0.8 as we saw both theoretically and using MLwiN. 
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4.4  Random effect Poisson regressions 

 

We will here consider another example that appears in the MLwiN User’s Guide 

(Rasbash et al, 2004). The melanoma mortality dataset (Langford, Bentham & 

McDonald, 1998) contains data on the number of male deaths due to malignant 

melanoma in various regions of Europe over a 10 year period. The dataset has three 

levels, with individual counts for counties nested within regions of 9 European 

countries. For the purpose of our modelling example here, we will simply consider the 

two levels of counties nested within regions, and will consider the effect of UVB 

exposure on the rates of melanoma. UVB exposure is measured as the amount of 

UVB reaching the surface of the earth in each county, and this data is centred. 

 

Running the two-level model in MLwiN (1st order MQL estimation) we get the 

following output: 

 

 
 

So we actually see (perhaps surprisingly) a negative effect of UVB exposure on the 

number of melanoma cases. Note that we are purely using this example to illustrate a 

certain type of model, but any reader interested in why this happens in this dataset 

should read the Langford et al. paper; our interest here is in performing a sample size 

calculation to determine how many counties in how many regions we would need to 

sample to find a significant effect. In the real dataset there are 354 counties in 78 

regions, i.e. roughly 5 per region, so here we will consider varying the number of 

regions while maintaining a balanced design of 5 counties in each region. 

 

One thing to note in the above model is that the population size of counties varies, and 

so we are using an offset term to convert the number of cases to a rate response. In 

fact, as cancers are rare, rather than use the (logged) population size as an offset, 

expected numbers of cases are used instead. These are calculated by taking the total 

number of cases and working out how many cases we would expect in each county if 
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there was an equal risk for each person (in fact, information on sex and age 

demographics in each region are usually used to calculate more accurate expected 

counts). Therefore, in order to replicate the model for the sample size calculation, we 

will need to modify the standard macro generated by MLPowSim to include an offset 

term. 

 

If we plot a histogram of the 354 expected counts, we get the following: 

 

 
 

Basically, a fairly skewed distribution; taking logs of the data we get: 
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This is slightly longer-tailed than a normal distribution (compare the histogram with 

the curve in the figure above), however the normal is nevertheless a reasonable 

approximation. For each observation we will therefore generate a normally distributed 

offset from a Normal (2.9,1) distribution. 

 

Firstly, however, we need to run MLPowSim to generate the macro code without the 

offset. To get information on the (centred) variable uvbi we first fit a 2-level model to 

see where the variance in this predictor lies: 
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From this we will use 0 as the mean (as the data is centred) and 0.4 and 22.4 as the 

two levels of variability. These variances make sense as the UVB hitting the earth 

over a region is going to be fairly constant, while between regions it can vary a lot.  

The inputs to MLPowSim are therefore as follows: 

 

                            Welcome to MLPowSim 

 

Please input 0 to generate R code or 1 to generate MLwiN macros: 1 

 

    Please choose model type  

 

1. 1-level model   

2. 2-level balanced data nested model  

3. 2-level unbalanced data nested model  

4. 3-level balanced data nested model  

5. 3-level unbalanced data nested model  

6. 3-classification balanced cross-classified model  

7. 3-classification unbalanced cross-classified model  

 

Model type : 2 

Please input the random number seed: 1 

Please input the significant level for testing the parameters: 0.025 

Please input number of simulations per setting: 1000 

 

                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 2 

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1 

Please input Method [0 - MQL, 1 - PQL] : 0 

Please input order [1 - 1st, 2 - 2nd] : 1 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

Do you want to have a random intercept in your model (1=YES  0=NO )? 1 

Do you want to include any explanatory variables in your model (1=YES  0=NO)? 1 

How many  explanatory variables do you want to include in your  model?  1 

Please choose a type for the predictor x1 (1=Binary  2=Continuous): 2 
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Assuming normality, please input its parameters here: 

The mean of the predictor x1: 0 

The variance of the predictor x1 at level 1: 0.4 

The variance of the predictor x1 at level 2: 22.4 

Do you want the coefficient associated with explanatory variable x1 to be random (1=YES  0=NO) ? 0 

 

                          Sample size set up  

 

Please input the smallest number of units for the second level: 20 

Please input the largest number of units for the second level: 80 

Please input the step size for the second level: 5 

Please input the smallest number of units for the first level per second level: 5 

Please input the largest number of units for the first level per second level: 5 

Please input the step size for the first level per second level: 1 

 

                             Parameter estimates 

 

Please input estimate of beta_0: -0.05 

Please input estimate of beta_1: -0.04 

Please input estimate of sigma^2_u: 0.2 

 

 

Files to perform power analysis for the 2 level nested model with the following sample criterion have 

been created 

Sample size in the first level starts at 5 and finishes at 5 with the step size  1 

Sample size in the second level starts at 20 and finishes at 80 with the step size 5  

1000 simulations for each sample size combination will be performed 

 

Press any key to continue… 

 

We now need to add some code to include the offset; this variable will be added into 

column c6. We make changes to the macro setup.txt, adding extra code around the 

line 

 

LOOP b40 1 b41 

 

as shown below (added lines in italics) 

 

LFUN 3 

DOFF 1 c6 

LOOP b40 1 b41 

   NRAN b23 c8 

   CALC c6 = c8+2.9 

   CALC ‘offs’ = c6 

   NRAN b22 c990 

 

Note that MLwiN will assign another column called ‘offs’ to contain the offsets and 

so it is important not only to say that there is an offset via the DOFF command but 

also to set the ‘offs’ column at each iteration. 

 

We also need to add the offset into the simulations by changing   

 

  SIMU c5 

 

to read (again, additional line in italics) 
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   SIMU c5 

   CALC c5= c5+c6 

 

so that the Poisson random numbers generated also include the offset. We then save 

the macro setup.txt and run the macro simu.txt in MLwiN.  

 

If we bring up the View/Edit Data window and select columns `spow1’, `zpow1’, `N-

level 1’ and `N-level 2’, then once the macro has been run then we will see the 

following: 

 

 
 

It is worth noting that for non-normal data the standard-error method doesn’t work so 

well with estimation methods (like MQL1) that give biased estimates, however here 

we see reasonable agreement between the power estimates in zpow1 and spow1, 

suggesting that this isn’t such a problem for this Poisson model. The simulations 

suggest that between 35 and 40 regions should be enough to get the desired power of 

0.8 when following cancer rates for a 10-year period. The user could also try fitting 

the models using PQL2, but we omit the details here. 

 

4.5  Further thoughts on Poisson data 

 

In the examples in this chapter we have seen that it is possible to alter the output from 

MLPowSim to construct power calculations for models that do not naturally fit into 

the framework of those covered by the software. In the traffic example we saw how to 
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construct a predictor variable that has a regular form rather than one that is generated 

from a specified probability distribution. In the melanoma example we saw how to 

include an offset in a Poisson model to deal with counts from different size 

populations. Disease mapping data, of which the melanoma dataset is an example, are 

often fitted with spatially-correlated random effects, either using multiple membership 

models or CAR models. Power calculations for these models are beyond the scope of 

the current version of MLPowSim but may be included (subject to funding) in later 

developments. 

 

If we return to the melanoma dataset, it’s worth noting that we can alter the sample 

size by changing more than just one aspect of the study design. Up to now, we have 

been looking at the effect of varying the number of counties for which data is 

collected (based on a 10-year collection period), however we could also look at 

varying the collection period length. We have seen that the modelling contains an 

offset that contains the (log of the) expected cases in a 10-year period. If we assume 

the probability of a case is uniform over that period, then we would expect half as 

many cases in a 5-year period. If we translate this into a distribution for the log of the 

expected counts we find that a Normal with a mean of 2.2, and a variance (once 

again) of 1, fits the bill. To fit such a model we simply need to modify one line in the 

macro setup.txt : 

 

   CALC c6 = c8+2.9   becomes   CALC c6 = c8+2.2 

 

We can then rerun the macros in MLwiN to get the following results: 
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Here we now require 40 to 45 regions to get a power of 0.8 (as opposed to 35 to 40 

when we study the regions over 10 years). So we see that we can reduce the length of 

the study by increasing the number of regions and still get a similar power.  

 

5 Code Details, Extensions and Further work 

In this chapter we will firstly use an example to illustrate what the code generated by 

MLPowSim does, line by line. We will then employ this example to demonstrate how 

we might change the code to find power calculations for models that do not fit the 

standard framework. Finally, we will briefly discuss a further Bayesian method that 

creates power calculations using prior distributions for effect sizes, rather than point 

estimates (described in Wang and Gelfand, 2002). 

 

5.1 An example using MLwiN 

 

In this section, we will return to the tutorial example considered in Chapter 2. There 

we considered a variance components model with three predictors, but here we will 

ignore the London Reading Test (LRT) predictor, which needed a very small sample 

size due to its high correlation with the outcome. Instead, we will just focus on two 

gender-related predictors: pupil gender and school gender. The observed effects in the 

real dataset are different from those in the three predictor model since – when we do 

not include an intake measure – they represent effects of gender and school gender on 

raw attainment, rather than progress. Here we will use the actual estimates we 

obtained in the tutorial example, and we will give all the inputs for the model, so that 

we can see where the numbers come from when we look at the macros in detail. 

 
 

                            Welcome to MLPowSim 

 

Please input 0 to generate R code or 1 to generate MLwiN macros: 1 

 

    Please choose model type  

 

1. 1-level model   

2. 2-level balanced data nested model  

3. 2-level unbalanced data nested model  

4. 3-level balanced data nested model  

5. 3-level unbalanced data nested model  

6. 3-classification balanced cross-classified model  

7. 3-classification unbalanced cross-classified model  

 

Model type : 2 

Please input the random number seed: 1 

Please input the significant level for testing the parameters: 0.025 

Please input number of simulations per setting: 1000 

 

                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0 

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

Do you want to have a random intercept in your model (1=YES  0=NO )? 1 
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Do you want to include any explanatory variables in your model (1=YES  0=NO)? 1 

How many  explanatory variables do you want to include in your  model?  2 

Please choose a type for the predictor x1 (1=Binary  2=Continuous  3=all MVN): 3 

Assuming multivariate normality, please input its parameters here: 

The mean of the predictor x1: 0.6 

The mean of the predictor x2: 0.462 

The variance matrix of the predictors at level 1 

The element [1,1] : 0.120 

The element [2,1] : 0 

The element [2,2] : 0 

The variance matrix of the predictors at level 2 

The element [1,1] : 0.125 

The element [2,1] : 0.045 

The element [2,2] : 0.249 

Do you want the coefficient associated with explanatory variable x1 to be random (1=YES  0=NO) ? 0 

Do you want the coefficient associated with explanatory variable x2 to be random (1=YES  0=NO) ? 0 

 

                          Sample size set up  

 

Please input the smallest number of units for the second level: 20 

Please input the largest number of units for the second level: 300 

Please input the step size for the second level: 20 

Please input the smallest number of units for the first level per second level: 40 

Please input the largest number of units for the first level per second level: 40 

Please input the step size for the first level per second level: 10 

 

                             Parameter estimates 

 

Please input estimate of beta_0: -0.226 

Please input estimate of beta_1: 0.257 

Please input estimate of beta_2: 0.146 

Please input estimate of sigma^2_u: 0.156 

Please input estimate of sigma^2_e: 0.839 

 

Files to perform power analysis for the 2 level nested model with the following sample criterion have 

been created 

Sample size in the first level starts at 20 and finishes at 300 with the step size 20 

Sample size in the second level starts at 40 and finishes at 40 with the step size 10  

1000 simulations for each sample size combination will be performed 

 

Press any key to continue… 

 

If we run the macros in MLwiN, and then highlight columns spow1, spow2, zpow1, 

zpow2, and N-level 2 in the View/Edit Data window, we will see the following: 
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Here we see that the gender predictor needs very few (20 or less) schools to gain a 

power of 0.8 (zpow1 & spow1), whilst the school gender predictor needs at least 260 

schools and maybe even 280 to gain this power (zpow2 & spow2). We will now 

examine, in detail, the corresponding macros: 

 

5.1.1 The simu.txt macro 

 

The simu.txt macro code for this example is as follows: 

 

NOTE MLwiN macro code generated by MLPowSim 

NOTE This is outer code to be run directly in MLwiN 

NOTE You will also need simu2.txt, setup.txt and analyse.txt 

INIT 5 5000 5000 3 40 

MARK 0 

SEED 1 

ERASE C994-C998 

NOTE setup the values of beta, sigma2u, sigma2e etc. 

JOIN C998 -0.226000 C998 

JOIN C998 0.257000 C998 

JOIN C998 0.146000 C998 

JOIN C996 0.156000 C996 

JOIN C996 0.839000 C996 

NOTE put MVN variances for predictors in model 

JOIN c994 0.120000 c994 

JOIN c994 0.000000 c994 

JOIN c994 0.000000 c994 

JOIN c995 0.125000 c995 

JOIN c995 0.045000 c995 

JOIN c995 0.249000 c995 
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LINK 10 G40 

LINK 2 G21 

LINK 3 G22 

LINK 3 G23 

LINK 3 G24 

LINK 3 G25 

LINK 3 G26 

LINK 3 G27 

LINK 3 G31 

LINK 3 G32 

LINK 3 G33 

LINK 2 G34 

LINK 0 G40 

NAME G21[1] "N-level 1" 

NAME G21[2] "N-level 2" 

NAME G22[1] "zpow0" 

NAME G23[1] "zlow0" 

NAME G24[1] "zupp0" 

NAME G25[1] "spow0" 

NAME G26[1] "slow0" 

NAME G27[1] "supp0" 

NAME G22[2] "zpow1" 

NAME G23[2] "zlow1" 

NAME G24[2] "zupp1" 

NAME G25[2] "spow1" 

NAME G26[2] "slow1" 

NAME G27[2] "supp1" 

NAME G22[3] "zpow2" 

NAME G23[3] "zlow2" 

NAME G24[3] "zupp2" 

NAME G25[3] "spow2" 

NAME G26[3] "slow2" 

NAME G27[3] "supp2" 

CALC b41 = 1000 

LOOP b22 20 300 20 

   OBEY simu2.txt 

ENDL 

MARK 1 

 

MLwiN uses three storage devices: firstly columns, which begin with the letter ‘c’ 

(but which can also be named), and which contain a vector of numbers, and secondly 

boxes, which begin with the letter ‘b’, and contain single numbers. Thirdly there are 

groups (of columns) which begin with the letter ‘G’ and are a device to refer to 

columns that are grouped together. The advantage of the grouping device is that you 

do not need to specify column numbers and it avoids overwriting existing columns. 

 

The macro code contains some housekeeping commands so the INIT command 

initialises the numbers of levels, columns etc. and in particular increases the number 

of columns to 5000. Then the MARK command simply stops the macro giving 

warning messages each time it overwrites a column. 

 

The NOTE command in MLwiN allows us to provide comments, for our own 

reference as is done at the top of this file. The macro begins by setting the random 

number seed (SEED command) to the value inputted in MLPowSim. Then the 

columns c994-c998 are erased in case other macros have been run previously. The 

fixed effect estimates for the simulation are then stacked in column C998 using the 
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JOIN command, as are the variance estimates in C996. Next the (lower diagonal) 

variance matrices for the two predictor variables are stacked in c994 and c995 for 

levels 1 and 2, respectively. 

 

The LINK command is then used to specify the lengths of several groups in terms of 

numbers of columns with the NAME command used to give names to the columns 

within the groups to aid the viewer when inspecting the output. These contain the 

sample size at each level (N-level 1 or 2), and the power estimates (pow), together 

with upper (upp) and lower (low) intervals, for the intercept (0) and predictors (1 and 

2) (for both standard error (s) and zero/one method (z)). Note that G40 is in fact not 

used in this macro but may be used elsewhere in MLwiN so the 2 calls to G40 simply 

block off 10 columns not to be used by other groups. 

 

The number of simulations to be executed per setting (1000) is then stored in box b41. 

A loop is then run over the numbers of level 2 units, which at each pass through the 

loop are stored in box b22. Here the command LOOP b22 20 300 20 means looping 

starts from value 20 and steps through the loop in multiples of 20 until we reach 300. 

The OBEY command within the loop then calls another macro (simu2.txt) which will 

be run each time through the LOOP. Note that one feature of the MLwiN macro 

language is that only one LOOP can be present in each macro hence the need for 

additional macro files that are called via the OBEY command. We next look at the 

macro simu2.txt. 

 

5.1.2 The simu2.txt macro 

 

The simu.txt macro sets up looping through the desired numbers of highest level (in 

this case level 2) units. For one-level models, this macro will call straight through to 

the setup macro, whilst for three-level models there will be both a simu2 and a simu3 

macro. In our case, the simu2 macro allows looping through the numbers of level 1 

units to be considered within the level 2 units, and the code, in simu2, looks like this: 

 

NOTE MLwiN macro code generated by MLPowSim 

NOTE This code simply covers second level of looping! 

LOOP b21 40 40 10 

   OBEY setup.txt 

ENDL 

 

Here b21 will store the number of level 1 units per level 2 unit, and since here we 

only consider 40, we have a loop running from 40 to 40 which will simply set b21 to 

40 and be performed once. The file then calls the setup macro which does most of the 

work. 

 

5.1.3 The setup.txt macro 

 

As the name suggests, the setup macro sets up the data structures for the simulations, 

and runs the models. The code is as follows: 

 
NOTE MLwiN macro code generated by MLPowSim 

NOTE b21 - number of level per level 2, b22 - number of level 2 



 

 135 

CALC b23 = b21*b22 

ERASE c1011 c1012 

GENErate 1 b23 c1 

CODE b22 b21 1 c2 

PUT b23 1 c4 

PUT b23 1 c5 

NAME c1 'l1id' c2 'l2id' c4 'cons' c5 'resp' 

CLEAr 

RESP c5 

IDEN 2 c2 

IDEN 1 c1 

EXPL 1 c4 

SETV 1 c4 

SETV 2 c4 

PUT b23 1 c11 

ADDT c11 

PUT b23 1 c12 

ADDT c12 

ERROR 0 

BATCH 1 

LOOP b40 1 b41 

   MRAN b22 c995 c601-c602 

   REPE b21 c601 c621 

   REPE b21 c602 c622 

   MRAN b23 c994 c11-c12 

   CALC c11 = 0.600000 + c11 +c621 

   CALC c12 = 0.462000 + c12 +c622 

   PICK 1 c998 b51 

   EDIT 1 c1098 b51 

   PICK 2 c998 b51 

   EDIT 2 c1098 b51 

   PICK 3 c998 b51 

   EDIT 3 c1098 b51 

   PICK 1 c996 b51 

   EDIT 1 c1096 b51 

   PICK 2 c996 b51 

   EDIT 2 c1096 b51 

   PUT b23 1 c5 

   SIMU c5 

   METH 1 

   START 

   JOIN c1098 c1096 c1011 c1011 

   SEPICK c1001 

   JOIN c1001 c1012 c1012 

ENDL 

OBEY analyse.txt 

PAUSE 1 

 

As can be seen, there is slightly more to this macro. The first CALC command puts 

the total number of pupils into box b23. The ERASE command empties some 

columns that will be used later. The command GENE 1 b23 c1 creates a column that 

contains the sequence of numbers from 1 to b23, representing the level 1 identifiers. 

Next, the CODE command will create a column of b21 repeats of the numbers 

between 1 and b22: i.e. will create a column of level 2 identifiers. The two PUT 

commands then create constant columns, one for the intercept and one for the 

response, which will later be replaced with a simulated response. 
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The NAME command labels the columns created, the CLEAR command clears any 

existing model and the RESP command tells MLwiN that the response variable is 

stored in column c5. The IDEN commands give the columns that contain the level 2 

and level 1 identifiers. The EXPL command sets the intercept as a predictor variable, 

and the two SETV commands then include residuals at level 1, and random intercepts 

at level 2, respectively. 

 

The combinations of PUT and ADDT commands create columns for the two 

predictors (gender and school gender) which, before simulating, are simply given 

constant values, and adds these predictors into the model. The command ERROR 0 

tells MLwiN to continue running the macro regardless of error messages, and the 

BATCH 1 command tells MLwiN that we are running in batch mode: i.e. from a 

macro.  

 

We then LOOP through the b41 simulations for this setting (in this example b41 is 

1000). The code inside the LOOP will create a simulated dataset, run the model, and 

then store the output as described below. 

 

The first MRAN command generates b22 pairs of random (zero mean) multivariate 

normal-distributed variables in columns c601 and c602, using the (lower diagonal) 

variance matrix stored in c995: i.e. it creates the school-level parts of the two 

predictors. The two REPEat commands then match these school-level parts to the 

dataset in columns C621 and C622, respectively. The second MRAN command 

generates b23 pairs of random (zero mean) multivariate normal-distributed variables 

in columns c11 and c12, using the (lower diagonal) variance matrix stored in c994: 

i.e. it creates the student-level parts of the two predictors. The 2 CALC commands 

then create the whole predictor variables in c11 and c12, by adding their means to the 

student and school parts. 

 

There are then a whole list of PICK and EDIT commands; these basically transfer the 

fixed effect and variance parameters for the simulation from their stored columns 

(c996 and c998) to the columns c1096 and c1098. These are special columns in 

MLwiN, containing the estimates for the variances and fixed effects (respectively) for 

the current fitted model. We copy the values in here so that we can run the SIMU 

command; this will create a response variable in C5 based on the values in c1096 and 

c1098, and the currently-set-up model. 

 

We then have the METH 1 command which confirms that we are to use IGLS 

estimation, and the START command which fits the model to the current simulated 

data using IGLS. The two JOIN commands then take the estimates (fixed effects and 

variances) and their standard errors via the SEPICK command, respectively, for this 

simulation and place them into columns c1011 and c1012. It would be possible here 

to only store the fixed effects estimates and their standard errors, since that is all we 

will use, but for completeness the variances are stored. The LOOP then ends with the 

ENDL command, and after the 1000 simulations are run the analyse.txt macro is 

called to create power estimates from the output. 

 

The macro ends with a PAUSE 1 command which, for a split second, gives back 

control to the screen, and hence updates all the windows so that we can observe 

progress of the macro in the Data window. It is worth noting that if the macros have 
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come up with a numerical error while model-fitting, which is possible for example 

when we have small sample sizes and random slopes models, then this error will be 

displayed when the PAUSE 1 command is reached; here, the effect of the error-

suppressing ERROR 0 command will be nullified at this point. If you have this 

problem, it will be sensible to either increase the size of your smaller simulation 

designs, or remove the PAUSE 1 command so that MLwiN will perform all 

simulations before displaying the error message. 

 

 

5.1.4 The analyse.txt macro 

 

The analyse.txt macro takes the output from one set of simulations and calculates 

power estimates and confidence intervals for these estimates. The code is as follows: 

 
NOTE MLwiN macro code generated by MLPowSim 

CODE 5 1 b41 c1002 

SPLIT c1011 c1002 G31 G34 

SPLIT c1012 c1002 G32 G34 

NOTE calculate IGLS interval coverage 

NED 0.975000 b42 

JOIN "N-level 1" b21 "N-level 1" 

JOIN "N-level 2" b22 "N-level 2" 

CALC c1005= G31[1] + b42*G32[1] 

CALC c1006= c1005<0 

AVER c1006 b202 b203 b204 

JOIN "zpow0" b203 "zpow0" 

CALC b204 = (b203)*(1-b203)/b41 

CALC b205 = b203-b42*sqrt(b204) 

JOIN "zlow0" b205 "zlow0" 

CALC b205 = b203+b42*sqrt(b204) 

JOIN "zupp0" b205 "zupp0" 

CALC c1005= G31[2] - b42*G32[2] 

CALC c1006= c1005>0 

AVER c1006 b202 b203 b204 

JOIN "zpow1" b203 "zpow1" 

CALC b204 = (b203)*(1-b203)/b41 

CALC b205 = b203-b42*sqrt(b204) 

JOIN "zlow1" b205 "zlow1" 

CALC b205 = b203+b42*sqrt(b204) 

JOIN "zupp1" b205 "zupp1" 

CALC c1005= G31[3] - b42*G32[3] 

CALC c1006= c1005>0 

AVER c1006 b202 b203 b204 

JOIN "zpow2" b203 "zpow2" 

CALC b204 = (b203)*(1-b203)/b41 

CALC b205 = b203-b42*sqrt(b204) 

JOIN "zlow2" b205 "zlow2" 

CALC b205 = b203+b42*sqrt(b204) 

JOIN "zupp2" b205 "zupp2" 

NOTE calculate IGLS SE method 

AVER G32[1] b202 b203 b204 b205 

CALC b206= b203+b42*b205 

CALC b207= b203-b42*b205 

CALC b203=(-0.226000)/b203 

CALC b203 = b203+b42 

CALC b206=(-0.226000)/b206 
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CALC b206 = b206+b42 

CALC b207=(-0.226000)/b207 

CALC b207 = b207+b42 

NPRO b203 b204 

JOIN "spow0" b204 "spow0" 

NPRO b206 b204 

JOIN "slow0" b204 "slow0" 

NPRO b207 b204 

JOIN "supp0" b204 "supp0" 

AVER G32[2] b202 b203 b204 b205 

CALC b206= b203+b42*b205 

CALC b207= b203-b42*b205 

CALC b203=0.257000/b203 

CALC b203 = (-1)*b203+b42 

CALC b206=0.257000/b206 

CALC b206 = (-1)*b206+b42 

CALC b207=0.257000/b207 

CALC b207 = (-1)*b207+b42 

NPRO b203 b204 

JOIN "spow1" b204 "spow1" 

NPRO b206 b204 

JOIN "slow1" b204 "slow1" 

NPRO b207 b204 

JOIN "supp1" b204 "supp1" 

AVER G32[3] b202 b203 b204 b205 

CALC b206= b203+b42*b205 

CALC b207= b203-b42*b205 

CALC b203=0.146000/b203 

CALC b203 = (-1)*b203+b42 

CALC b206=0.146000/b206 

CALC b206 = (-1)*b206+b42 

CALC b207=0.146000/b207 

CALC b207 = (-1)*b207+b42 

NPRO b203 b204 

JOIN "spow2" b204 "spow2" 

NPRO b206 b204 

JOIN "slow2" b204 "slow2" 

NPRO b207 b204 

JOIN "supp2" b204 "supp2" 

 

Here there is a lot of repetition, since there are three fixed effect parameters to deal 

with. The first CODE command is to create indicator columns, so that the individual 

parameter estimates (in c1011) and their standard errors (in c1012) can be extracted. 

The two SPLIT commands perform this extraction, and put the estimates in groups 

G31 and G34, and their standard errors in groups G32 and G34. 

 

Next, the NED command finds the correct value from the normal distribution to 

represent the desired significance level; since we have set the significance level at 

0.025,  this is set at 0.975 (1-0.025). The following two JOIN commands store the 

numbers of level 1 and 2 units in the appropriate columns for this set of simulations, 

respectively for output purposes. We then have 2 CALC commands, followed by an 

AVER command and a JOIN command. The first CALC creates upper limits for the 

confidence intervals (as the predicted effect is negative) and stores them in c1005, the 

second CALC then evaluates how many of these upper limits are themselves negative 

(i.e. we evaluate whether the confidence interval contains 0 or not): if an upper limit 

doesn’t contain 0 then a value of 1 is stored in c1006, whereas if it does contain 0 then 
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a value of 0 is stored. The AVER command calculates the average of the 0/1 values, 

which is the 0/1 method of estimating power; this is then stored in b203.  Finally, the 

JOIN command adds this estimate to the column (in this case “zpow0”) which will 

contain the stacked list of powers for the various settings. 

 

The next 5 lines calculate the standard error of this power estimate based on a 

Bernouilli assumption (in b204), and create lower and upper confidence intervals 

which are stored initially in b205 before being stacked in “zlow0” and “zupp0”, 

respectively. The 9 lines for the intercept parameter are then repeated for the two 

predictors, with the lower limits being used, since the predicted effects are positive. 

This will take us to the NOTE command and finish the O/1 method. 

 

For the SE method, we start by finding the average of the estimated standard errors. 

We begin with the intercepts, using G32[1], and store the result in b203, along with 

normally-distributed confidence limits stored in b206 and b207. The two lines CALC 

b203 = (-0.226000)/b203 and CALC b203 = b203+b42 then construct a value in b203 

which, when converted to a normal probability, will give the power. Similar lines are 

given for the two confidence limits. The 3 pairs of NPRO and JOIN commands then 

calculate and stack the powers for the SE method in “spow0”, with the lower limits in 

“slow0”, and the upper limits in “supp0”. 

 

These 15 lines are all for the intercept parameter, and similar lines are then given for 

the two predictors, which takes us to the end of macro. The ending of the macro will 

result in a return to the setup macro, where we will run through the next scenario of 

pupil and school numbers, with the analyse macro being called once per scenario. 

 

5.1.5 The graph.txt macro 

 

The graphs macro is an additional macro which can assist the user in graphing their 

power calculations. It is called after the macros have run, and produces graphs like the 

ones shown below: 

 



 

 140 

 

 
 

Basically, for each predictor and each method, three lines are drawn giving the mean 

power curve and confidence intervals. The macro is rather repetitive and so here we 

give just the code that produces the lines for the 0/1 method, and the intercept: 

 

NOTE MLwiN macro code generated by MLPowSim 

NOTE can be run after finishing execution to give graphs 

GIND 1 1 

GYCO "zpow0" 

GXCO "N-level 2" 

GTYP 1 

GCLR 1 

CALC "zlow0" = "zpow0" - "zlow0" 

GYER 1 "zlow0" 

GYER 2 "zlow0" 

GETY 1 

 

The commands, in sequence, give the display and line number in GIND, and the 

columns to plot in GYCO and CXCO; GTYP 1 gives a line graph, and GCLR 1 gives 

colour 1 (dark blue). The CALC command constructs the difference between the 

mean and the upper limit to use as errors. Note that for the SE method, we do not have 

symmetric errors, and so there will be two CALC commands. The two GYER 
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commands then state that the upper and lower errors are in “zlow0”. The GETY 

command sets error plotting to lines, as opposed to bars.  

 

5.2 Modifying the example in MLwiN to include a multiple category 

predictor 

 

Again, using the education-based example we employed in the preceding section, here 

we will look at how we might alter the code produced by MLPowSim to better 

represent the predictors in the model. Our modifications will need to take account of 

the following three factors: 

 

(i) in reality, the school gender takes 3 values, representing mixed schools, girls’ 

schools and boys’ schools.  We would typically fit this as a pair of indicator 

vectors that signify whether a school is a girls’ school or not, and whether a 

school is a boys’ school or not; 

 

(ii) the gender predictor is strongly related to the school gender predictor, and if 

the school is single sex, then the gender predictor is determined for all the 

school’s pupils; 

 

(iii) the school gender predictor would normally be tested using a deviance test 

rather than separate Z tests for each category. 

 

We will show how to modify the code to cater for each of these features, building up 

from the initial macros that can be generated by MLPowSim, which is where we start 

our discussion. 

 

5.2.1 Initial macros 

 

Although the code given previously is similar to our modelling situation, and we 

could in theory start from that, in practice it will be easier to start by assuming that we 

have two school gender predictors, representing girls’ schools and boys’ schools. It is 

also better to assume independence between the three predictors. To do this we need 

to change two parts of the macros we employed earlier. Firstly, when defining the 

predictors, we will have: 

 

How many explanatory variables do you want to include in your  model?  3 

Please choose a type for the predictor x1 (1=Binary  2=Continuous  3=all MVN): 1 

Please input probability of a 1 for x1 : 0.6 

Please choose a type for the predictor x2 (1=Binary  2=Continuous): 2 

Assuming normality, please input its parameters here: 

The mean of the predictor x2: 0.15 

The variance of the predictor x2 at level 1: 0 

The variance of the predictor x2 at level 2: 0.13 

Please choose a type for the predictor x3 (1=Binary  2=Continuous): 2 

Assuming normality, please input its parameters here: 

The mean of the predictor x3: 0.30 

The variance of the predictor x1 at level 1: 0 

The variance of the predictor x1 at level 2: 0.21 

Do you want the coefficient associated with explanatory variable x1 to be random (1=YES  0=NO) ? 0 
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Do you want the coefficient associated with explanatory variable x2 to be random (1=YES  0=NO) ? 0 

Do you want the coefficient associated with explanatory variable x3 to be random (1=YES  0=NO) ? 0 

 

 

In the real data there are twice as many girls’ schools than boys’ schools, and we want 

to specify these as level 2 variables; this can only be done in MLPowSim if we 

assume the predictors are continuous, as we have specified in our input above. 

 

Secondly, we need to alter the expected estimates to cater for the additional predictor, 

as follows: 

 

                             Parameter estimates 

 

Please input estimate of beta_0: -0.228 

Please input estimate of beta_1: 0.262 

Please input estimate of beta_2: 0.191 

Please input estimate of beta_3: 0.123 

Please input estimate of sigma^2_u: 0.155 

Please input estimate of sigma^2_e: 0.839 

 

Here, most of the estimates have changed little from the model with a common single-

sex school effect, however the 0.146 effect of single sex school has been split into a 

stronger (0.191) boys’ school effect, and a slightly weaker (0.123) girls’ school effect. 

To confirm that you have the correct macros running, they should give the following 

output in MLwiN: 
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Here, we see results similar to those in Section 5.1, indicating that we need very few 

schools to detect a gender effect (spow1) but far more schools to detect school gender 

effects. We see that the girls’ school effect (spow3) has less power than the boys’ 

school effect (spow2); this is due, in the main, to the estimate for boys’ schools being 

bigger in magnitude than the estimate for girls’ schools. 

 

5.2.2 Creating a multiple category predictor 

 

The results above are based on assuming two independent continuous level 2 

predictors to represent the two single sex school categories. This is problematic, since 

the continuous predictors will have more information than the binary predictors, and 

so the power calculations may be overoptimistic. Here, we will alter the code in the 

macro setup.txt to convert these two continuous predictors to a multinomial variable 

that corresponds to two dummy variables. Below is the start of the inner loop code in 

setup.txt where added lines have been included in italics, and removed lines are 

superseded with a NOTE command (although in reality it might be easier to simply 

delete the commands): 

 

LOOP b40 1 b41 

   BRAN b23 c11 0.600000 1 

   URAN b22 c989 

   CALC c990 = c989< 0.15 

   NOTE NRAN b22 c990 

   NOTE CALC c990 = c990*0.360555 

   NOTE REPE b21 c990 c991 

   NOTE NRAN b23 c12 

   NOTE CALC c12 = 0.150000 + c12*0.000000 + c991 

   REPE b21 c990  c12  

   NOTE NRAN b22 c990 

   NOTE CALC c990 = c990*0.458258 

   CALC c990 = (c989 > 0.15)&(c989 < 0.45) 

   NOTE REPE b21 c990 c991 

   NOTE NRAN b23 c13 

   REPE b21 c990 c13  

   NOTE CALC c13 = 0.300000 + c13*0.000000 + c991 

 

If we save these changes to setup.txt and rerun the macros we will get the following 

results: 
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So here we see that when we truly use a multinomial distribution, the powers obtained 

are smaller. We next need to tie up the gender predictor with the school gender 

predictor. 

 

5.2.3 Linking gender to school gender 

 

So far, the modelling has assumed independence between gender and school gender, 

which means that the code will generate simulated datasets where single sex schools 

have both boys and girls. We will now change the macro so that for girls’ schools all 

pupils are girls and for boys’ schools all pupils are boys. In the mixed schools, 48.8% 

of pupils are girls, and school identifier only explains about 10% of the variability in 

pupil gender. With regard to the gender predictor, we will assume that for mixed 

schools we have a probability of 0.5 for each pupil being a girl. Once more, we need 

to modify the file setup.txt to implement this change (the lines of code we have added 

are again in italics and for space we have not put all the lines beginning NOTE): 

 

LOOP b40 1 b41 

   NOTE BRAN b23 c11 0.600000 1 

   BRAN b23 c11 0.5 1 

   URAN b22 c989 

   CALC c990 = c989< 0.15 

   REPE b21 c990  c12  
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   CALC c990 = (c989 > 0.15)&(c989 < 0.45) 

   REPE b21 c990 c13  

   CALC c11 = c13 + c11*((c12==0)&(c13==0)) 

 

Here we have changed 2 lines. Firstly we have updated the probability of being a girl 

to 0.5, as this now corresponds to mixed schools only. Secondly, whilst the gender 

response is created as before, in the last line its value is only taken if both c12 and c13 

are 0: i.e. only for mixed schools. Otherwise, all pupils have gender 1 for girls’ 

schools, and gender 0 for boys’ schools. If we again run the macros with these 

changes, we will get the following results: 

 

 
 

Here we see that the power for the gender predictor reduces when we use this better 

simulation of the predictors. Again, this makes sense, since for the single sex schools 

you will not be able to separate both the gender effect and the school gender effect, 

and so for the gender predictor you are relying on the mixed effect schools. The 

school gender power is also slightly reduced for the same reasons. 

 

5.2.4 Performing a deviance test 

 

Generally one would test the inclusion of a group of predictors as a group using a 

single test. For example, we would often use a deviance test in which we record the 
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difference in deviance (-2*loglike) between models fitted both with, and without, the 

terms to be tested. To do this here, we will use the LIKE command to store the 

deviance for each model. We will need to change both the setup.txt macro and the 

analyse.txt macro. 

 

With regard to the setup.txt macro, we need to change one line at the top as follows: 
 

ERASE c1011 c1012 c1013  

 

(i.e. the addition of c1013 to the existing line), together with the following changes to the 

bottom of setup.txt macro: 

 

   SIMU c5 

   METH 1 

   EXPL 0 c12 

   EXPL 0 c13 

   START  

   LIKE b52 

   EXPL 1 c12 

   EXPL 1 c13 

   START 

   LIKE b53 

   CALC b53 = b52 - b53 

   JOIN c1098 c1096 c1011 c1011 

   SEPICK c1001 

   JOIN c1001 c1012 c1012    

   JOIN c1013 b53 c1013 

ENDL 

 

Here we have added several commands to change the model, fitting the model with, 

and without, the two school gender predictors. We will then store the difference in 

deviance in c1013. We need to add some code to the bottom of analyse.txt to deal 

with the deviance test results. Here we will hardwire things for our example, and 

assume we are interested in the 0.025 significance level again (i.e. a 2-sided test with 

a significance level of 0.05). The change in deviance follows a chi-squared 

distribution with 2 degrees of freedom; the 0.975 value is 7.38, and so we will use this 

in the macro. The following lines are added to the bottom of analyse.txt: 

 

CALC c1014 = c1013 > 7.38 

AVER c1014 b202 b203 b204 b205 

JOIN c235 b203 c235 

 

Here we have a 0/1 approach which we store in column c235. These macros will take 

longer to run as they fit two models for each simulated dataset. The results of running 

the macros after these changes can be seen below: 
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Here we see that the power values from the deviance test (c235) start lower than the 

two independent Z test powers, as might be expected. Then, as the sample size 

increases, the power sits somewhere between the power when testing the 2 individual 

school gender terms. 

 

5.3 An example using R 

 
As discussed elsewhere in this document, MLPowSim can create either MLwiN 

macros, or R code, as specified by the user. Above, we discussed editing the outputted 

MLwiN macros to accommodate models which cannot be specified in the 

MLPowSim interface; here, we will do the same for the R code produced. 

 

5.3.1 The R code produced by MLPowSim: powersimu.r 

 

We will again consider the example studied in Section 5.1. In MLPowSim, if we 

request output for R rather than MLwiN, and then enter the same inputs as in Section 

5.1 (requesting ML estimation, and asking for the confidence intervals to be included 

in the output), the code (saved in a file called powersimu.r) produced will be as 

follows: 

 
 

###     A programme to obtain the power of parameters in 2 level 

#       balanced model  with  Normal response 

#                    generated on 30/01/23 

###~~~~~~~~~~~~~~~~~    Required packages  ~~~~~~~~~~~~~~~~~~~~~### 
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library(MASS) 

library(lme4) 

###~~~~~~~~~~~~~~~~~~~     Initial inputs    ~~~~~~~~~~~~~~~~~~~~### 

 

set.seed(1) 

siglevel <- 0.025 

z1score <- abs(qnorm(siglevel)) 

simus <- 1000 

n1low <- 40 

n1high <- 40 

n1step <- 10 

n2low <- 20 

n2high <- 300 

n2step <- 20 

npred <- 2 

randsize <- 1 

beta <- c(-0.226000, 0.257000, 0.146000) 

betasize <- length(beta) 

effectbeta <- abs(beta) 

sgnbeta <- sign(beta) 

randcolumn <- 0 

meanpred <- c(0, 0.600000, 0.462000) 

varpred <- matrix(c(0.120000, 0.000000, 0.000000, 0.000000), npred, npred) 

varpred2 <- matrix(c(0.125000, 0.045000, 0.045000, 0.249000), npred, npred) 

sigma2u <- matrix(c(0.156000), randsize, randsize) 

sigmae <- sqrt(0.839000) 

n1range <- seq(n1low, n1high, n1step) 

n2range <-seq(n2low, n2high, n2step) 

n1size <- length(n1range) 

n2size <- length(n2range) 

totalsize <- n1size*n2size 

finaloutput <- matrix(0, totalsize, 6*betasize) 

rowcount <- 1 

##-----------------        Inputs for model fitting       -----------------## 

 

fixname <- c("x0", "x1", "x2") 

fixform <- "1+x1+x2" 

randform <- "(1|l2id)" 

expression <- paste(c(fixform, randform), collapse="+") 

modelformula <- formula(paste("y ~", expression)) 

data <- vector("list", 2+length(fixname)) 

names(data) <- c("l2id", "y", fixname) 

 

#####--------- Initial input for power in two approaches ----------------##### 

 

powaprox <- vector("list", betasize) 

names(powaprox) <- c("b0", "b1", "b2") 

powsde <- powaprox 

 

cat("     The programme was executed at", date(),"\n") 

cat("--------------------------------------------------------------------\n") 

 

for (n2 in seq(n2low, n2high, n2step)) { 

  for (n1 in seq(n1low, n1high, n1step)) { 

 

    length <- n1*n2 

    x <- matrix(1, length, betasize) 

    z <- matrix(1, length, randsize) 

    l2id <- rep(c(1:n2), each=n1) 

    sdepower <- matrix(0, betasize, simus) 

    powaprox[1:betasize] <- rep(0,betasize) 

    powsde <- powaprox 

 

    cat(" Start of simulation for sample sizes of ", n1, " micro and ", n2, "macro 

units\n") 

    for (iter in 1:simus) { 

 

      if (iter/10 == floor(iter/10)) { 

        cat(" Iteration remain=", simus-iter,"\n") 

      } 

      ## +++++++++++++++++++       Set up X matrix       +++++++++++++++++++  ## 

 

      micpred <- mvrnorm(length, meanpred[-1], varpred) 

      macpred <- mvrnorm(n2, rep(0, npred), varpred2) 

      x[, (2:dim(x)[2])] <- micpred+macpred[l2id, ] 

      ##--------------------------------------------------------------##  

      e <- rnorm(length, 0, sigmae) 
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      u <- mvrnorm(n2, rep(0, randsize), sigma2u) 

      fixpart <- x %*% beta 

      randpart <- rowSums(z*u[l2id, ]) 

      y <- fixpart+randpart+e 

      ##-------------------        Inputs for model fitting       ---------------## 

 

      data$l2id <- as.factor(l2id) 

      data$y <- y 

      data$x0 <- x[, 1] 

      data$x1 <- x[, 2] 

      data$x2 <- x[, 3] 

      ###~~~~~~~~~~      Fitting the model using lmer funtion    ~~~~~~~~~~### 

 

      (fitmodel <- lmer(modelformula, data, REML=FALSE)) 

 

      ######~~~~~~~~~~   To obtain the power of parameter(s) ~~~~~~~~~~###### 

 

      estbeta <- fixef(fitmodel) 

      sdebeta <- sqrt(diag(vcov(fitmodel))) 

      for (l in 1:betasize) 

      { 

        cibeta <- estbeta[l]-sgnbeta[l]*z1score*sdebeta[l] 

        if (beta[l]*cibeta > 0) powaprox[[l]] <- powaprox[[l]]+1 

        sdepower[l, iter] <- as.numeric(sdebeta[l]) 

      } 

 

      ##-------------------------------------------------------------------------## 

    } ##  iteration end here 

 

    ###---------                  Powers and their CIs             ---------### 

 

    for (l in 1:betasize) { 

 

      meanaprox <- powaprox[[l]] <- unlist(powaprox[[l]]/simus) 

      Laprox <- meanaprox-z1score*sqrt(meanaprox*(1-meanaprox)/simus) 

      Uaprox <- meanaprox+z1score*sqrt(meanaprox*(1-meanaprox)/simus) 

      meansde <- mean(sdepower[l,]) 

      varsde <- var(sdepower[l,]) 

      USDE <- meansde-z1score*sqrt(varsde/simus) 

      LSDE <- meansde+z1score*sqrt(varsde/simus) 

      powLSDE <- pnorm(effectbeta[l]/LSDE-z1score) 

      powUSDE <- pnorm(effectbeta[l]/USDE-z1score) 

      powsde[[l]] <- pnorm(effectbeta[l]/meansde-z1score) 

 

 

      ###---------   Restrict the CIs within 0 and 1   ---------## 

      if (Laprox < 0) Laprox <- 0 

      if (Uaprox > 1) Uaprox <- 1 

      if (powLSDE < 0) powLSDE <- 0 

      if (powUSDE > 1) powUSDE <- 1 

 

      finaloutput[rowcount, (6*l-5):(6*l-3)] <- c(Laprox, meanaprox, Uaprox) 

      finaloutput[rowcount, (6*l-2):(6*l)] <- c(powLSDE, powsde[[l]], powUSDE) 

 

    }  

 

    ###~~~~~~~~~~    Set out the results in a data frame    ~~~~~~~~~~### 

 

    rowcount <- rowcount+1 

    cat("--------------------------------------------------------------------\n") 

  } ## end of the loop  over the first level 

} ## end of the loop  over the second level 

 

###---------         Export output in a file                      ---------### 

 

finaloutput <- as.data.frame(round(finaloutput, 3)) 

output <- data.frame(cbind(rep(n2range, each=n1size), rep(n1range, n2size), 

finaloutput)) 

names(output) <- c("N", "n", "zLb0", "zpb0", "zUb0", "sLb0", "spb0", "sUb0", "zLb1", 

"zpb1", "zUb1", "sLb1", "spb1", "sUb1", "zLb2", "zpb2", "zUb2", "sLb2", "spb2", 

"sUb2") 

write.table(output, "powerout.txt", sep="\t ", quote=FALSE, eol="\n", dec=".", 

col.names=TRUE, row.names=FALSE, qmethod="double") 
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As can be seen, the code is organised into various sections, and we will now look at 

each of these in turn. 

 

5.3.1.1 “Required packages”  

 

The first line(s) of code in powersimu.r (not including comments, which in the R 

language are denoted by a # sign) specify the packages that are required for the 

subsequent code to execute correctly: in this case MASS (for the mvrnorm function) 

and lme4 (note that it is not necessary to load the package lme4 to fit one-level 

models, since the command glm is used for model fitting, and this is already available 

in the stats package that is automatically installed with R). 

 

5.3.1.2  “Initial Inputs” 

 

The next section of code includes some of the variables and objects which will be 

used as inputs in later commands and functions.  The first line (set.seed) declares the 

random seed, i.e. the value for the random number generator.  The significance level 

is specified in the second line (siglevel); in this example, it is set to 0.025 (for a 2-

sided test with a significance level of 0.05). The third line (z1score) represents the 

absolute value of the quantile of the standard Normal distribution evaluated at the 

specified significance level.  Next the number of simulations to be conducted, for 

each sample size combination, is declared (simus). 

 

Lines 5 to 10 specify the minimum sample size (low), maximum sample size (high), 

and intervening step size (step) for each level (n1 and n2).  Line 11 (npred) specifies 

the number of fixed predictors (not including the intercept), whilst the following line 

(randsize) specifies the number of unique elements in the variance matrix at level 2. 

 

Next, the fixed coefficients are stored in the vector variable beta, with the next three 

lines indicating the length (betasize), effect size (effectbeta) and sign (sgnbeta) of this 

vector. The last of these variables is required in order to obtain the confidence 

intervals for the power estimates calculated using the zero/one method (e.g. see 

Section 1.4.1). 

 

The variable randcolumn is only important for random slopes models, and so here is 

set to zero.  The next three lines (meanpred, varpred & varpred2) store the mean and 

variances of the predictors (at the first and second levels). The following two lines 

(sigma2u & sigmae) define the variances of the residuals at the second and first 

levels, respectively. 

 

The range of sample units at each level, along with their length (i.e. how many 

different sizes of sample units there are at each level), are then specified in the next 

few lines (n1range, n2range, n1size & n2size). From these sample ranges, the total 

number of sample size combinations is determined, and this is saved as the variable 

totalsize.  

 

Next, the variable finaloutput defines a matrix structure, with the columns 

representing the power estimates, together with corresponding confidence intervals, 
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generated from each of the two different methods (i.e. zero/one and standard error), 

with a separate row for each sample unit combination. The final line in this section of 

code, rowcount, acts as a counter. 

 

5.3.1.3 “Inputs for model fitting” 

 

The next section of code creates a structure for the grouped data which will be used as 

an argument when fitting the model using the function lmer; the grouped data 

structure consists of a formula and a data set (a list of named numeric vectors). The 

predictors are specified by the variable fixname, and the model formula is then created 

by combining the forms of the fixed and random parts (fixform, randform, 

expression). If further explanation is required, we recommend that the reader consults 

the relevant available documentation discussing model formulae in mixed effect 

models in R (e.g. Pinheiro and Bates (2000)). 

 

Finally, we build a data structure (modelformula & data) and assign relevant names 

(names), so that at the end of this section we have a grouped data structure consisting 

of the formula for the hierarchical structure, together with the names of the variables 

in the data. Note that in each simulation, the dataset changes, whilst the formula and 

names of the variables remains fixed. 

 

5.3.1.4 “Initial inputs for power in two approaches” 

 

The next section of code creates two lists of vectors corresponding to the zero/one and 

standard error method, and gives their corresponding column names the same names 

as the fixed parameters in the model. In our current example, the parameters are b0, 

b1 and b2. 

 

The function cat, which can be provided with other arguments (e.g. date), prints the 

material between the subsequent quotation marks; therefore, the next two lines print 

the time and date the code is run in R, above a long dashed line. 
 

We then start to loop (for) over the sample size units in the second and first levels, 

respectively. Note that the inner loop is over the lowest level. The total number of 

observations depends on the sample size combination, and this is calculated in the 

following lines (length). 

 

The design matrices for the fixed (x) and random (z) effects, respectively, are then 

initialised. In order to identify the structure of the grouped data, we create a vector for 

the second level (l2id), and use this as a grouping factor when fitting the model.  

Next, matrices are initialised to store the power estimates (sdepower, powaprox & 

powsde).  Then, just before the simulation starts, a message is printed (cat) declaring 

the current sample size combination being simulated. Using the if keyword, together 

with cat, the number of remaining iterations is then printed after every tenth iteration. 

 

5.3.1.5 “Set up X matrix” 
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The components of the design matrix are a mixture of random variables at different 

levels, and so in the next section of code we combine the random vectors generated 

for the first and second levels to create the predictors (micpred, macpred & x). If 

appropriate, we would derive the design matrix of the random effects in the next few 

sections; however, since we have only a random intercept in this example, with a 

design matrix consisting of a vector of ones, no such commands are included. 

 

We are now at the stage of creating the residuals at both levels, and deriving the 

response vector; therefore, we generate the random vector corresponding to the level 

one residual in the next line (e), and then simulate the level two residuals (u). Matrix 

manipulations are then used to build the fixed part (fixpart) and random part 

(randpart), which correspond to Xβ and ZU in mathematical formulae; these are then 

added to the level one residual to create the response vector, y. 

 

5.3.1.6 “Inputs for model fitting” 

 

We now save the generated objects (l2id, y & x) in the data list before fitting the 

model, allocating each element of the list to a corresponding object. 

 

5.3.1.7 “Fitting the model using lmer function” 

 

Immediately after storing all the required objects in our data list, we can fit the model 

(fitmodel) for the i-th iteration of the current simulation run. The model is fitted using 

the lmer function, along with any required arguments.  In this example, maximum 

likelihood estimation, ML, is used to fit the model.  However, by changing the REML 

= FALSE argument, other estimation methods, such as REML (the default method 

when calling the lmer function), can be applied instead. 

 

5.3.1.8 “To obtain the power of parameter(s)” 

 

In the next section of code we obtain our estimated powers by extracting the estimated 

fixed effects (estbeta) and their standard errors (sdebeta), before closing the loop. For 

the zero/one method of calculating power, we construct an upper/lower bound for the 

fixed effects (cibeta), whilst for the standard error method of calculating power, we 

just accumulate the standard errors of the estimated fixed effects (sdepower). The 

entire procedure is then set in a loop over the fixed effects in the model, and once this 

loop finishes, we are ready to go ahead to the next stage. 

 

5.3.1.9 “Powers and their CIs” 

 

The section of code which follows derives the power estimates and their confidence 

intervals. Here, for the zero/one method, the estimated power (meanaprox) is taken as 

the average of the 0s and 1s (powaprox) obtained for each simulation. Then, as this is 

a binary variable, the confidence interval (Laprox (lower) & Uaprox (upper)) is 

derived using a Normal approximation. For the standard error method, the mean 

(meansde) and variance (varsde) of the vector of the standard errors for the fixed 
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parameters is first derived, and then the confidence interval about the mean is 

obtained (USDE, LSDE). Finally, the mean (powsde) and its confidence interval 

(powLSDE, powUSDE) are plugged into the approximated formula 

 
𝛾

𝑆𝐸(𝛾)
≈ 𝑧1−𝛼 + 𝑧1−𝛽 

         

to obtain the approximated power and confidence intervals. 

 

Since the confidence intervals are approximate, the lower and upper bounds may be 

less than zero or greater than one, respectively, and therefore the next section of code 

(the four lines beginning with if) constrains such values to zero and one. 

  

The relevant information is then saved in the correct row and correct columns of the 

matrix object finaloutput. The row counter (rowcount) then increases by one, and the 

two loops over the sample units in the first and second level, respectively, end. 

 

5.3.1.10 “Export output in a file” 

 

In this final section of code the matrix object finaloutput is first converted to a data 

frame. Then, after adding two extra columns detailing the sample size units at each 

level (in the line beginning output), each column is identified with an appropriate 

name (names). Finally, the data frame output is saved into the text file powerout.txt  

via the write.table command. 
 

5.3.2 The output file produced by R: powerout.txt 

  

As mentioned earlier, MLPowSim produces R code output which it saves in a file 

called powersimu.r, an example of which we reviewed above. Once this code has run 

to completion in R (see Section 1.5.1 for details on how to execute the code), an 

output text file called powerout.txt is saved; this presents the estimated power and 

confidence intervals (if requested) for both the zero/one and standard error method. If 

we run the R code we have been discussing in this section, we get the following 

results (for details of how to view the estimates outputted by R, see Section 1.5.1; 

please note that here we only show a selected portion of the output): 

 

N zpb1 spb1 zpb2 spb2  

20 0.838 0.826 0.139 0.119  

40 0.978 0.983 0.213 0.191  

60 1 0.999 0.286 0.268  

80 1 1 0.333 0.341  

100 1 1 0.437 0.405  

120 1 1 0.482 0.475  

140 1 1 0.539 0.531  

160 1 1 0.603 0.587  

180 1 1 0.628 0.640  

200 1 1 0.696 0.687  

220 1 1 0.711 0.726  
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240 1 1 0.722 0.764  

260 1 1 0.774 0.794  

280 1 1 0.834 0.825  

300 1 1 0.840 0.847  

 

A quick look at the estimated powers indicates that they are similar to those we 

obtained earlier in MLwiN (see Section 5.1), especially those derived from the 

standard error method. 

 

As mentioned earlier, the R code produced by MLPowSim does not automatically 

produce plots of the power curves, and this task is left to the user. However, below we 

give an example of how one can go about plotting power curves in R. 

 

5.3.3 Plotting the output 

 

Unlike the output for MLwiN, MLPowSim does not generate R code to generate 

graphs (i.e. this task is left to the user).  Whilst it’s possible to plot the outputs using 

some simple graphics tools available in the MASS library, we provide an example here 

of how to do so using the lattice package: 

 
library(lattice) 

output <- read.table("powerout.txt", header =TRUE, sep = " ", dec = ".") 

method <- rep(c("Zero/one method","Standard error method"), each=length(n2range), times=betasize) 

sample <- rep(n2range, times=2*betasize) 

parameter <- rep(c("b0", "b1", "b2"), each=2*length(n2range)) 

power <- c(output$zpb0, output$spb0, output$zpb1, output$spb1, output$zpb2, output$spb2) 

Lpower <- c(output$zLb0, output$sLb0, output$zLb1, output$sLb1, output$zLb2, output$sLb2) 

Upower <- c(output$zUb0, output$sUb0, output$zUb1, output$sUb1, output$zUb2, output$sUb2) 

dataset <- data.frame(method, sample, parameter, Lpower, power, Upower) 

xyplot(power ~ sample | method*parameter, 

       data = dataset,  

       xlab = "Sample size of second level",  

       scales = list(x=list(tick.number=12, at=sample),  

       y = list(tick.number=12, at=seq(0,1,.1))), 

       as.table = TRUE, 

       subscripts = TRUE, 

       panel = function(x, y, subscripts) { 

                      panel.grid(h=15, v=15) 

                      panel.xyplot(x, y, type="l") 

                      panel.lines(dataset$sample[subscripts], dataset$Lpower[subscripts], lty=2, col=2) 

                      panel.lines(dataset$sample[subscripts], dataset$Upower[subscripts], lty=2, col=2) 

                     } 

) 

 

 

We’ll go through these function calls line by line, and then look at the resulting power 

curves. The first line loads the lattice package, which we will use for plotting the data. 

Then we load the file powerout.txt, and store this as a data.frame (output), keeping the 

column headings and the space between the columns and rows.  

 

Next, we create a data frame indicating the method used to obtain the power estimates 

(method; i.e. zero/one or standard error), the sample size combinations (sample), the 

parameters in the model (parameter), and the power estimates (power) with their 
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corresponding lower and upper confidence intervals (Lpower, Upower). These objects 

are then combined to form the data frame dataset. 

 

The command xyplot is then used to plot the output stored in the data frame. This 

command involves a number of arguments, including a formula which describes the 

form of the plot, together with arguments specifying the axis labels and tick markers. 

The panel function is then used to specify how each panel will be plotted; for 

example, the panel.lines command draws the confidence intervals as dashed lines 

around the estimated powers. 
 

After copying and pasting these lines into the R console, the following graph should 

appear. 
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5.4 Modifying the example in R to include a multiple category 

predictor 

 

5.4.1 Initial changes 

 

In this section we will look at how we might change the R code generated by 

MLPowSim. We will consider the same example we studied in Section 5.2, when we 

were adjusting macros in MLwiN. The input data which we repeat here is similar to 

that which appeared in Section 5.2.1, except that R, instead of MLwiN, is chosen, 

together with ML estimation, and also we start the sample size for the second level at 

60, instead of 20.   

 
 

                            Welcome to MLPowSim 

 

Please input 0 to generate R code or 1 to generate MLwiN macros: 0 

 

    Please choose model type  

 

1. 1-level model   

2. 2-level balanced data nested model  

3. 2-level unbalanced data nested model  

4. 3-level balanced data nested model  

5. 3-level unbalanced data nested model  

6. 3-classification balanced cross-classified model  

7. 3-classification unbalanced cross-classified model  

 

Model type : 2 

Please input the random number seed: 1 

Please input the significant level for testing the parameters: 0.025 

Please input number of simulations per setting: 1000 

 

                            Model setup  

 

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0 

Please enter estimation method [0 – REML, 1 - ML] : 1 

Do you want to include the fixed intercept in your model (1=YES  0=NO )? 1 

Do you want to have a random intercept in your model (1=YES  0=NO )? 1 

Do you want to include any explanatory variables in your model (1=YES  0=NO)? 1 

How many explanatory variables do you want to include in your  model?  3 

Please choose a type for the predictor x1 (1=Binary  2=Continuous  3=all MVN): 1 

Please input probability of a 1 for x1 : 0.6 

Please choose a type for the predictor x2 (1=Binary  2=Continuous): 2 

Assuming normality, please input its parameters here: 

The mean of the predictor x2: 0.15 

The variance of the predictor x2 at level 1: 0 

The variance of the predictor x2 at level 2: 0.13 

Please choose a type for the predictor x3 (1=Binary  2=Continuous): 2 

Assuming normality, please input its parameters here: 

The mean of the predictor x3: 0.30 

The variance of the predictor x1 at level 1: 0 

The variance of the predictor x1 at level 2: 0.21 

Do you want the coefficient associated with explanatory variable x1 to be random (1=YES  0=NO) ? 0 

Do you want the coefficient associated with explanatory variable x2 to be random (1=YES  0=NO) ? 0 

Do you want the coefficient associated with explanatory variable x3 to be random (1=YES  0=NO) ? 0 
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                          Sample size set up  

 

Please input the smallest number of units for the second level: 60 

Please input the largest number of units for the second level: 300 

Please input the step size for the second level: 20 

Please input the smallest number of units for the first level per second level: 40 

Please input the largest number of units for the first level per second level: 40 

Please input the step size for the first level per second level: 10 

 

                             Parameter estimates 

 

Please input estimate of beta_0: -0.228 

Please input estimate of beta_1: 0.262 

Please input estimate of beta_2: 0.191 

Please input estimate of beta_3: 0.123 

Please input estimate of sigma^2_u: 0.155 

Please input estimate of sigma^2_e: 0.839 

 

Running the generated R code in the R console will lead to the following output 

(which, again, we have abridged): 

 

N  spb1   spb2   spb3 

60  1   0.244   0.179 

80  1   0.310   0.222 

100  1   0.378   0.271 

120  1   0.431   0.309 

140  1   0.493  0.355 

160  1   0.545   0.398 

180  1   0.595   0.436 

200  1   0.640  0.475 

220  1   0.682   0.514 

240  1   0.722   0.549 

260  1   0.752   0.580 

280  1   0.781   0.609 

300  1   0.810  0.641 

 

5.4.2 Creating a multiple category predictor 

 

As mentioned in Section 5.2.2, there is currently no option in MLPowSim to specify a 

multinomial density when one is asked to choose a distribution for the predictor(s). In 

our example dataset it would be useful to assume a multinomial distribution for the 

school gender predictor. Here, we will look at how the R code produced by 

MLPowSim can be altered to accommodate such a model, by changing the 

independent continuous predictors to multinomial variables. Here, we change the 

design matrix as follows; in the section of code entitled To set up X matrix, we replace 

the following eight lines: 
 

      micpred <- rnorm(length, meanpred[3], sqrt(varpred[3])) 

      macpred <- rnorm(n2, 0, sqrt(varpred2[3])) 

      macpred <- rep(macpred, each=n1) 

      x[, 3] <- micpred+macpred 

      micpred <- rnorm(length, meanpred[4], sqrt(varpred[4])) 

      macpred <- rnorm(n2, 0, sqrt(varpred2[4])) 
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      macpred <- rep(macpred, each=n1) 

      x[, 4] <- micpred+macpred 

 

with these three lines: 

 
      macpred <- rmultinom(n2, 1, c(0.15, 0.30, 0.55)) 

      x[, 3] <- macpred[1, ][l2id] 

      x[, 4] <- macpred[2, ][l2id] 

 

There is no change in the first predictor, but the second (school gender) is constructed 

differently. First, we generate n2 multinomial variables of size one, with probabilities 

which corresponding to boys’ schools, girls’ schools and mixed schools, respectively. 

As can be seen, the first two probabilities correspond to the means of the two 

predictors, treating them as continuous variables. The first and second rows of the 

generated variable indicate the presence or absence of a boys’ school or girls’ school. 

 

Since the probability of choosing a boys’ school is low, we may have all zeroes in the 

first row of the generated multinomial variable: i.e. no boys’ schools in n2 schools 

generated. Consequently, the whole of the third column of the design matrix for the 

fixed parameters, X, would then be zero. In such instances it would not be possible to 

estimate the parameters, and attempting to fit this model would lead to an error 

message in R. This is why we start the sample size for the second level from 60 rather 

than 20 to avoid this. Note that in MLwiN this would also occur however MLwiN 

identifies the problem and in such cases sets the associated fixed effect to zero. 

 

After storing the above changes and running the entire code once more in R, we get 

the following output (which again, we have abridged): 

 

N  spb1   spb2   spb3 

60  1   0.226   0.174 

80  1   0.284   0.214 

100  1   0.344   0.256 

120  1   0.398   0.297 

140  1   0.454   0.339 

160  1   0.507   0.377 

180  1   0.552   0.413 

200  1   0.594   0.448 

220  1   0.642   0.488 

240  1   0.676   0.520 

260  1   0.710   0.553 

280  1   0.742   0.583 

300  1   0.772   0.612 

 

As can be seen, the powers associated with each of the parameters, particularly the 

last two, have decreased, because the multinomial variable provides less information 

about them. 

 

5.4.3 Linking gender to school gender  
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Following our discussion in Section 5.2.3, we need to further alter the changes made 

in the previous section to link gender to school gender. In fact, two changes need to be 

made. First, we need to adjust the probability of being a girl to 0.5; this represents 

what is expected in the mixed schools, since boys and girls have an equal chance of 

being chosen.  Then, we need to specify the correct number for the gender predictor: 

i.e. fix it to 1 if the chosen school is a girls’ school, fix it to 0 if it is boys’ school, and 

keep its initial generated value if it is a mixed school.  To do this, we make the 

following changes to the section of R code entitled To set up X matrix: 

 

we alter: 
 

              x[, 2] <- rbinom(length, 1, xprob[2]) 

 

so that it now reads: 

 
               x[, 2] <- rbinom(length, 1, 0.5) 

 

In addition, under the line: 

 
               x[, 4] <- macpred[2, ][l2id] 

 

we add the following: 

 
               x[, 2] <- x[, 4]+x[, 2]*(x[, 3]==0&x[, 4]==0) 

 

If we store these changes, then run the R code again, this results in the following 

output: 

 

N  spb1   spb2   spb3 

60  0.999  0.221   0.169 

80  1   0.278   0.207 

100  1   0.336   0.247 

120  1   0.389   0.286 

140  1   0.445   0.327 

160  1   0.497   0.363 

180  1   0.541   0.399 

200  1   0.583   0.433 

220  1   0.630  0.471 

240  1   0.665   0.503 

260  1   0.699   0.535 

280  1   0.731   0.565 

300  1   0.761   0.593 
 

Here we see very similar estimates to those derived from MLwiN in Section 5.2.3, 

again with a slight decrease in power compared to the preceding model. 

 

5.4.4 Performing the deviance test 

 

As discussed in Section 5.2.4, comparisons between whole groups of predictors can 

be conducted using deviance tests, comparing likelihood statistics from models with, 
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and without, certain predictors. We can achieve this in R using the command 

deviance. 

 

In this section we will describe several changes to the code that allow us to perform 

the deviance test, and also to display the result in our final output. 

 

We first need to add an extra column to the output to contain the deviance information 

and can do this by changing the following line: 

 
finaloutput <- matrix(0, totalsize, 6*betasize) 

 

to: 
 

finaloutput <- matrix(0, totalsize, 6*betasize+1) 

 

To the section of code entitled Inputs for model fitting we add a formula that specifies 

a model without the two school gender predictors; we will subsequently fit this model, 

and then find the difference in deviance between it and the fitted model with the 

gender predictors. Under the line: 

 
names(data) <- c("l2id", "y", fixname) 

 

we add the following: 

 
modelformula1 <- formula(y ~ 1+x1+(1|l2id)) 

devtestsim <- rep(0, simus) 

 

Note the second line simply initialises a vector which will store the difference in 

deviance for each dataset. We next need to change the code in the inner loop that fits 

the model, so that it now fits the model with, and without, the school gender terms, 

and we then need to compare the deviance. So, after the line: 

 
(fitmodel <- lmer(modelformula, data, REML=FALSE)) 

 

we add the following: 

 
(fitmodel1 <- lmer(modelformula1, data, REML=FALSE)) 

devtestsim[iter] <- deviance(fitmodel1) - deviance(fitmodel) 

 

The first line fits the model we specified above, whilst the second line calculates the 

difference in deviance between the two fitted models. 

 

The next step is to summarise the variable devtestsim in terms of how often it is 

greater than the critical value of 7.38 (see Section 5.2.4), and we do this when piecing 

together the finaloutput object. After the lines: 

 
finaloutput[rowcount,(6*l-5):(6*l-3)] <- c(Laprox,meanaprox,Uaprox) 

finaloutput[rowcount,(6*l-2):(6*l)] <- c(powLSDE,powsde[[l]],powUSDE) 

 

we add: 

 
finaloutput[rowcount,6*l+1] <- mean(devtestsim > 7.38) 
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The final change we need to make is simply to include a column heading for the 

deviance test output, and we can do this by adding the relevant name at the end of the 

names line, as follows: 

 
names(output) <- c("N", "n", "zLb0", "zpb0", "zUb0", "sLb0", "spb0", 

"sUb0", "zLb1", "zpb1", "zUb1", "sLb1", "spb1", "sUb1", "zLb2", 

"zpb2", "zUb2", "sLb2", "spb2", "sUb2", "zLb3", "zpb3", "zUb3", 

"sLb3", "spb3", "sUb3", "devtest") 

 

If we save these changes, and run this code anew, we get the following results (again 

we present only selected portions of the output here): 

 

N  zpb2  spb2  zpb3  spb3  devtest 

60  0.229  0.221  0.191  0.169  0.158 

80  0.296  0.278  0.211  0.207  0.197 

100  0.332  0.336  0.265  0.247  0.237 

120  0.394  0.389  0.264  0.286  0.283 

140  0.477  0.445  0.35  0.327  0.38 

160  0.496  0.497  0.359  0.363  0.394 

180  0.524  0.541  0.38  0.399  0.453 

200  0.602  0.583  0.416  0.433  0.505 

220  0.649  0.63  0.476  0.471  0.557 

240  0.65  0.665  0.495  0.503  0.571 

260  0.713  0.699  0.539  0.535  0.648 

280  0.713  0.731  0.561  0.565  0.669 

300  0.756  0.761  0.602  0.593  0.707 
 

The results are similar to those we found in Section 5.2.4 (with MLwiN): i.e. the 

power estimates for the deviance test are initially lower than those for each predictor, 

but as sample size increases they reach values somewhere between the power for 

testing the two individual gender terms. 

 

5.5 The Wang and Gelfand (2002) method 

 

When using MLPowSim we are required to give point estimates for all parameters of 

interest in our model, for both effect sizes and variances. Our power calculations are 

then based on assuming these estimates are correct and simulating data conditional on 

these estimates. This approach therefore does not take account of uncertainty in the 

estimates themselves. Wang and Gelfand (2002) discuss using simulation-based 

techniques for power calculations in a Bayesian framework. Their paper contains 

many interesting ideas but we will here focus only on one: namely allowing 

uncertainty in the estimated effect sizes and variances.  

 

Wang and Gelfand (2002) use MCMC methods to fit their models in a Bayesian 

framework, and consequently all their parameters have prior distributions which, for 

clarity, they describe as ‘fitting priors’. They then argue for a second set of ‘sampling 

priors’ which are used to cope with the uncertainty in the estimated effect sizes and 

variances. Basically the ‘sampling priors’ are used during the creation of the 

simulated datasets, while the ‘fitting priors’ are used in the fitting of models to the 
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simulated data created. Typically the ‘fitting priors’ will be more ‘diffuse’ as they are 

meant to represent the priors we would anticipate using once the data is obtained. 

 

Here we will adapt the MLwiN macro output from MLPowSim so that we use a 

method similar to that of Wang and Gelfand (2002); in fact, the only difference is that 

we revert to classical frequentist inference for model fitting (if we were to instead use 

MCMC, then our method would essentially replicate that of Wang and Gelfand, apart 

from the choice of model performance criteria). 

 

For simplicity, here we will consider the first single level model that we studied back 

in Section 1.3.2. You may recall that in that section we were interested in whether 

boys fared worse than average in exams, and we had an effect size of -0.140 and a 

population variance estimate of 1.051. As is standard with power calculations, our 

approach assumed that these values are fixed and known, but what if instead we 

thought there was some uncertainty in these measures? Wang and Gelfand (2002) 

often use Uniform priors in their examples, and so let us instead assume that the effect 

size (β0) has a Uniform[-0.18,-0.1] sampling prior and σ2
e has a 

Uniform[0.8051,1.2051] prior. 

 

We will firstly repeat our earlier inputs in MLPowSim by working through Section 

1.3.2 to create the macros. We will then need to modify the macro setup.txt to allow 

for the sampling priors.  We will create 1000 draws from the sampling priors for β0 

and σ2
e in columns c501 and c502, respectively. We can generate from a Uniform[0,1] 

distribution via the URAN command, and then manipulate the values so that they are 

from the correct uniform prior. We then pick these values when we fit each model. 

The modified setup.txt macro looks as follows (with added/modified lines in italics): 

 

NOTE MLwiN macro code generated by MLPowSim 

NOTE b23 - number of units 

ERASE c1011 c1012 

GENErate 1 b23 c1 

PUT b23 1 c4 

PUT b23 1 c5 

NAME c1 'l1id' c4 'cons' c5 'resp' 

CLEAr 

RESP c5 

IDEN 1 c1 

EXPL 1 c4 

SETV 1 c4 

ERROR 0 

URAN b41 c501 

CALC c501 = (c501-0.5)*0.08 

PICK 1 c998 b51 

CALC c501 = c501+b51 

URAN b41 c502 

CALC c502 = (c502-0.5)*0.4 

PICK 1 c996 b51 

CALC c502 = c502+b51 

BATCH 1 

LOOP b40 1 b41 
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   PICK b40 c501 b51 

   EDIT 1 c1098 b51 

   PICK b40 c502 b51 

   EDIT 1 c1096 b51 

   SIMU c5 

   METH 1 

   START 

   JOIN c1098 c1096 c1011 c1011 

   SEPICK c1001 

   JOIN c1001 c1012 c1012 

ENDL 

OBEY analyse.txt 

PAUSE 1 

 

If we save this macro and then run the macro simu.txt in the usual way (as detailed in 

Section 1.4), then by viewing columns `spow0’, `zpow0’ and `Samplesize’ we see the 

following: 
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We can also run the macro graphs.txt (as detailed in Section 1.4.3) to get the 

following: 
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In fact, allowing for the sampling priors here hasn’t made much difference to the SE 

method (the smoother line) when comparing this graph to the equivalent one in 

Section 1.4.3, but it has resulted in a slight reduction in power for the 0/1 method (the 

more erratic line) for larger sample sizes, and an increase for smaller sample sizes. 

Strictly speaking, the SE method is still using the point estimate of -0.140 in its power 

calculations after the 1000 simulations have run, and so it isn’t truly using the 

sampling prior correctly. In fact, it’s very close to the standard method without the 

sampling prior (i.e. as in Section 1.4.3), and so it is useful for comparison. 

 

We could increase our uncertainty in our effect sizes by doubling the widths of the 

Uniform priors, i.e. change the following lines in the setup.txt macro: 

 

CALC c501 = (c501-0.5)*0.08 

and 

CALC c502 = (c502-0.5)*0.4 

 

to 
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CALC c501 = (c501-0.5)*0.16 

and 

CALC c502 = (c502-0.5)*0.8 

 

If we were to restart MLwiN and rerun the macros then we would now get the 

following graphs: 

 

 
 

Here we see a larger drop in power for higher sample sizes and a slightly larger 

increase in power for smaller sample sizes. To understand what is going on we need 

to think what adding uncertainty to our effect size is actually doing. If our effect size 

is fixed then we know that increasing our sample size will increase power. Allowing 

the effect size to vary means that for some simulations the effect size will need a 

smaller sample size to give a prescribed power, and for some simulations the effect 

size will need a larger sample size to give the same prescribed power. When the 

sample size is such that power to detect is normally high, the occasional small effect 

sizes will pull the power down; in contrast, when we have small sample sizes and the 

power to detect is low, then the occasional large effect sizes will increase the power. 

If we continue to increase the width of our priors we begin to include effect sizes of 

differing signs and, assuming a one-sided hypothesis, these are more likely not to be 
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rejected as we increase sample size; this means that as the prior intervals get 

arbitrarily big we should end up with a  power of 0.5 for all sample sizes. Note that if 

we make the prior interval arbitrarily big and consider a 2-sided alternative, then the 

probability of generating an effect size (for use in simulations) that is close to 0 

becomes arbitrarily small, and so a power of 1 for all sample sizes will be the result.  

 

Clearly this motivates the practice of an assumed (known) effect size and also 

highlights the fact that if one uses the Wang and Gelfand approach, one should not 

use a ‘sampling’ prior that is too diffuse. 
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