

A Guide to Sample Size Calculations for Random

Effect Models via Simulation and the MLPowSim

Software Package

William J Browne, Mousa Golalizadeh Lahi*

Richard MA Parker⁑ and Chris Charlton

School of Education,

University of Bristol

*Tarbiat Modares University, Iran

⁑School of Medicine, University of Bristol

This draft – February 2023

A Guide to Sample Size Calculations for Random Effect Models via

Simulation and the MLPowSim Software Package
© 2023 William J. Browne, Mousa Golalizadeh, Richard M.A. Parker and Chris

Charlton

No part of this document may be reproduced or transmitted in any form or by any

means, electronic or mechanical, including photocopying, for any purpose other than

the owner’s personal use, without prior written permission of one of the copyright

holders.

ISBN: To Be Confirmed

 Contents

1 Introduction .. 1

1.1 Scope of document .. 1

1.2 Sample size / Power Calculations ... 2
1.2.1 What is a sample size calculation?... 2
1.2.2 What is a hypothesis test? .. 2
1.2.3 How would such hypotheses be tested? ... 2
1.2.4 What is Power? .. 4

1.2.5 Why is Power important? ... 5
1.2.6 What Power should we aim for? .. 5
1.2.7 What are effect sizes? .. 5
1.2.8 How are power/sample size calculations done more generally? 6

1.3 Introduction to MLPowSim .. 6

1.3.1 A note on retrospective and prospective power calculations 7
1.3.2 Running MLPowSim for a simple example... 7

1.4 Introduction to MLwiN and MLPowSim .. 9
1.4.1 Zero/One method ... 12
1.4.2 Standard error method.. 12
1.4.3 Graphing the Power curves .. 12

1.5 Introduction to R and MLPowSim .. 15
1.5.1 Executing the R code ... 16

1.5.2 Graphing Power curves in R .. 19
2 Continuous Response Models ... 22

2.1 Standard Sample size formulae for continuous responses 22

2.1.1 Single mean – one sample t-test ... 22

2.1.2 Comparison of two means – two-sample t-test 23
2.1.3 Simple linear regression ... 24
2.1.4 General linear model .. 24

2.1.5 Casting all models in the same framework .. 25
2.2 Equivalent results from MLPowSim ... 25

2.2.1 Testing for differences between two groups .. 25

2.2.2 Testing for a significant continuous predictor 32
2.2.3 Fitting a multiple regression model. .. 33

2.2.4 A note on sample sizes for multiple hypotheses, and using sample size

calculations as ‘rough guides’ .. 38
2.2.5 Using RIGLS ... 38

2.2.6 Using MCMC estimation ... 39
2.2.7 Using R .. 42

2.3 Variance Components and Random Intercept Models 44
2.3.1 The Design Effect formula ... 44

2.3.2 PINT ... 48
2.3.3 Multilevel two sample t-test example .. 48
2.3.4 Higher level predictor variables ... 56

2.3.5 A model with 3 predictors.. 60
2.3.6 The effect of balance .. 65

2.3.6.1 Pupil non-response ... 66
2.3.6.2 Structured sampling .. 70

2.4 Random slopes/ Random coefficient models .. 71
2.5 Three-level random effect models... 80

2.5.1 Balanced 3-level models – The ILEA dataset.. 80

2.5.2 Non-response at the first level in a 3-level design 84
2.5.3 Non-response at the second level in a 3-level design 85
2.5.4 Individually chosen sample sizes at level 1 ... 87

2.6 Cross-classified Models .. 87
2.6.1 Balanced cross-classified models. ... 88
2.6.2 Non-response of single observations. .. 91
2.6.3 Dropout of whole groups ... 93
2.6.4 Unbalanced designs – sampling from a pupil lookup table. 94

2.6.5 Unbalanced designs – sampling from lookup tables for each

primary/secondary school. ... 96
2.6.6 Using MCMC in MLwiN for cross-classified models. 100

3 Binary Response models .. 103
3.1 Simple binary response models – comparing data with a fixed proportion.

 103
3.2 Comparing two proportions. ... 104

3.3 Logistic regression models .. 105
3.3.1 A single proportion in the logistic regression framework 106
3.3.2 Comparing two proportions in the logistic regression framework 108

3.4 Multilevel logistic regression models ... 110

3.5 Multilevel logistic regression models in R .. 115
4 Count Data .. 117

4.1 Modelling rates .. 118
4.2 Comparison of two rates ... 118
4.3 Poisson log-linear regressions ... 119

4.1.1 Using R .. 121
4.4 Random effect Poisson regressions ... 123

4.5 Further thoughts on Poisson data .. 128
5 Code Details, Extensions and Further work.. 130

5.1 An example using MLwiN .. 130
5.1.1 The simu.txt macro ... 132
5.1.2 The simu2.txt macro ... 134
5.1.3 The setup.txt macro .. 134

5.1.4 The analyse.txt macro .. 137
5.1.5 The graph.txt macro ... 139

5.2 Modifying the example in MLwiN to include a multiple category predictor

 141
5.2.1 Initial macros ... 141

5.2.2 Creating a multiple category predictor .. 143
5.2.3 Linking gender to school gender.. 144

5.2.4 Performing a deviance test ... 145
5.3 An example using R .. 147

5.3.1 The R code produced by MLPowSim: powersimu.r 147
5.3.1.1 “Required packages” .. 150
5.3.1.2 “Initial Inputs” .. 150

5.3.1.3 “Inputs for model fitting” ... 151
5.3.1.4 “Initial inputs for power in two approaches” 151
5.3.1.5 “Set up X matrix” ... 151
5.3.1.6 “Inputs for model fitting” ... 152
5.3.1.7 “Fitting the model using lmer function” 152

5.3.1.8 “To obtain the power of parameter(s)” ... 152

5.3.1.9 “Powers and their CIs” ... 152
5.3.1.10 “Export output in a file” ... 153

5.3.2 The output file produced by R: powerout.txt 153

5.3.3 Plotting the output .. 154
5.4 Modifying the example in R to include a multiple category predictor 156

5.4.1 Initial changes .. 156
5.4.2 Creating a multiple category predictor .. 157
5.4.3 Linking gender to school gender.. 158

5.4.4 Performing the deviance test .. 159
5.5 The Wang and Gelfand (2002) method ... 161

 1

1 Introduction

1.1 Scope of document

This manual was originally written to support the development of the software

package MLPowSim which was developed by the authors as part of the work in

ESRC grant R000231190 entitled ‘Sample Size, Identifiability and MCMC Efficiency

in Complex Random Effect Models.’

The software package MLPowSim creates R command scripts and MLwiN macro

files which, when executed in those respective packages, employ their simulation

facilities and random effect estimation engines to perform sample size calculations for

user-defined random effect models. MLPowSim has a number of features novel to

this software: for example, it can create scripts to perform sample size calculations for

models which have more than two levels of nesting, for models with crossed random

effects, for unbalanced data, and for non-normal responses.

This manual has been written to take the reader from the simple question of ‘what is a

sample size calculation and why do I need to perform one?’ right up to ‘how do I

perform a sample size calculation for a logistic regression with crossed random

effects?’ We will aim to cover some of the theory behind commonly-used sample size

calculations, provide instructions on how to use the MLPowSim package and the code

it creates in both the R and MLwiN packages, and also examples of its use in practice.

In this introductory chapter we will go through this whole process using a simple

example of a single-level normal response model designed to guide the user through

both the basic theory, and how to apply MLPowSim’s output in the two software

packages R and MLwiN. We will then consider three different response types in the

next three chapters: continuous, binary and count. Each of these chapters will have a

similar structure. We will begin by looking at the theory behind sample size

calculations for models without random effects, and then look at how we can use

MLPowSim to give similar results. We will then move on to consider sample size

calculations for simple random effect models, and increase the complexity as we

proceed, in particular for the continuous response models.

Please note that MLPowSim does not have a particularly user-friendly interface, and

also supports a limited set of models. It is hoped that in the future, with further

funding, both these limitations can be addressed. However, in Chapter 5 we suggest

ways in which the more expert user can extend models and give some more details on

how the code produced for MLwiN and R actually works.

Good luck with your sample size calculating!

William J Browne, Mousa Golalizadeh Lahi, Richard MA Parker, Chris Charlton

February 2023

 2

1.2 Sample size / Power Calculations

1.2.1 What is a sample size calculation?

As the name suggests, in simplest terms a sample size calculation is a calculation

whose result is an estimate of the size of sample that is required to test a hypothesis.

Here we need to quantify more clearly what we mean by ‘required’ and for this we

need to describe some basic statistical hypothesis-testing terminology.

1.2.2 What is a hypothesis test?

When an applied researcher (possibly a social scientist) decides to do research in a

particular area, they usually have some research question/interest in mind. For

example, a researcher in education may be primarily interested in what factors

influence students’ attainment at the end of schooling. This general research question

may be broken down into several more specific hypotheses: for example, ‘boys

perform worse than average when we consider total attainment at age 16,’ or a similar

hypothesis that ‘girls perform better than boys.’

1.2.3 How would such hypotheses be tested?

For the first hypothesis we would need to collect a measure of total attainment at age

16 for a random sample of boys, and we would also need a notional overall average

score for pupils. Then we would compare the boys’ sample mean with this overall

average to find the difference between the two and use the sample size and variability

in the boys’ scores to assess whether the difference is more than might be expected by

chance. Clearly, an observed difference based on a sample average derived from just

two boys might simply be due to the chosen boys (i.e. we may have got a very

different average had we sampled two different boys) whereas the same observed

difference based on a sample average of 2,000 boys would be much clearer evidence

of a real difference. Similarly, if we observe a sample mean that is 10 points below

the overall average, and the boys’ scores are not very variable (for example, only one

boy scores above the overall average), then we would have more evidence of a

significant difference than if the boys’ scores exhibit large variability and a third of

their scores are in fact above the overall average.

For the second hypothesis (‘girls perform better than boys’) we could first collect a

measure of total attainment at age 16 for a random sample of both boys and girls, and

compare the sample means of the genders. Then, by using their sample sizes and

variabilities, we could assess whether any difference in mean is more than might be

expected by chance.

For the purposes of brevity we will focus on the first hypothesis in more detail and

then simply explain additional features for the second hypothesis. Therefore our initial

hypothesis of interest is ‘boys perform worse than average’; this is known as the

alternative hypothesis (H1), which we will compare with the null hypothesis (H0, so-

 3

called because it nullifies the research question we are hoping to prove) which in this

case would be ‘boys perform no different from the average’. Let us assume that we

have transformed the data so that the overall average is in fact 0.

We then wish to test the hypotheses:

H0: μB=0 versus H1: μB<0

where μB is the underlying mean score for the whole population of boys (the

population mean).

We now need a rule/criterion for deciding between these two hypotheses. In this case,

a natural rule would be to consider the value of the sample mean �̄� and then reject the

null hypothesis if �̄� ≤ 𝑐where c is some chosen constant. If �̄� > 𝑐 then we cannot

reject H0 as we do not have enough evidence to say that boys definitely perform

worse than average. We now need to find a way to choose the threshold c at which

our decision will change. The choice of c is a balance between making two types of

error. The larger we make c the more often we will reject the null hypothesis both if it

is false but also if it is true. Conversely the smaller we make c the more often we fail

to reject the null hypothesis both if it is true but also if it false.

The error of rejecting a null hypothesis when it is true is known as a Type I error, and

the probability of making a Type I error is generally known as the significance level,

or size, of the test and denoted α. The error of failing to reject a null hypothesis when

it is false is known as a Type II error, and the probability of making a Type II error is

denoted β. The quantity 1- β, which represents the probability of rejecting the null

hypothesis when it is false, is known as the power of a test.

Clearly, we only have one quantity, c, which we can adjust for a particular sample,

and so we cannot control the values of both α and β. Generally we choose a value of c

that enables us to get a particular value for α, and this is done as follows. If we can

assume a particular distributional form for the sample mean (or a function of it) under

H0 then we can use properties of the distribution to find the probability of rejecting H0

for various values of c. In our example, we will assume the attainment score for each

individual boy (xi) comes from an underlying Normal distribution with mean μB and

unknown variance σ2
B. If we knew the variance then we could assume that the sample

mean also came from a Normal distribution with mean μB and variance σ2
B/n where n

is our sample size. From this we could also see that
�̄�−𝜇𝐵

𝜎𝐵/√𝑛
 follows a standard normal distribution from which we can conclude that if we

wish P(�̄� ≤ 𝑐) = α then 𝑃(�̄� ≤ 𝑐) = 𝑃 [
�̄�−𝜇𝐵

𝜎𝐵/√𝑛
≤

𝑐−𝜇𝐵

𝜎𝐵/√𝑛
] = α

implies
𝑐−𝜇𝐵

𝜎𝐵/√𝑛
= 𝑍𝛼 where 𝑍𝛼 is the α-th quantile of the Normal distribution.

Rearranging gives 𝑐 = 𝜇𝐵 + 𝑍𝛼𝜎𝐵/√𝑛.

In the usual case when σ2
B is unknown we substitute the sample variance s2

B but as

this is an estimate for σ2
B we now also need to take its distribution into account. This

results in using a tn-1 distribution in place of a Normal distribution and we have

 4

𝑐 = 𝜇𝐵 + 𝑡𝑛−1,𝛼
𝑠𝐵/√𝑛 as our formula for the threshold. Note that as the sample size

n increases, the t distribution approaches the Normal distribution, and so often we will

simply use the Normal distribution quantiles as an approximation to the t distribution

quantiles.

1.2.4 What is Power?

As previously defined, power is the probability of rejecting the null hypothesis when

it is false. In the case of our example, we have a null hypothesis H0: μB=0; this is

known as a simple hypothesis since there is only one possible value for μB if the

hypothesis is true. The alternative hypothesis H1: μB<0 has an infinite number of

possible values and is known as a composite hypothesis. The power of the test will

therefore depend on the true value of μB. Clearly the further μB is from 0, the greater

the likelihood that a chosen sample will result in rejecting H0, and so the power is

consequently a function of μB.

We can evaluate the power of the test for a particular value of μB: for example, if we

believe that the true value of μB=-1 then we could estimate the power of the test given

this value. This would give us how often we would reject the null hypothesis if the

specific alternative μB=-1 was actually true. We have Power = P (�̄� ≤ 𝑐 | μB=-1)

where c is calculated under the null hypothesis, i.e.:

Power = 𝑡𝑛−1
−1 (

𝑐+1

𝑠𝐵/√𝑛
)= 𝑡𝑛−1

−1 (
(𝑡𝑛−1,𝛼/2

𝑠𝐵/√𝑛)+1

𝑠𝐵/√𝑛
)

So, for example, if n = 100 and sB=1 and α=0.05(2-sided)1 we have t99, 0.05/2 = -1.98

approximately and

Power = 𝑡99
−1 ((-0.198 + 1) / 0.1) = 𝑡99

−1(8.02) = huge! (approximately 1).

So here 100 boys is more than ample to give a large power.

However, if we instead believed the true value of μB was only -0.10 then we would

have

Power = 𝑡99
−1((-0.198 + 0.10) / 0.1) = 𝑡99

−1(-0.98) = 0.165.

Here the power is rather low and we would need to collect a larger sample size to give

sufficient power. If we want to find a sample size that gives a power of 0.8, we would

need to solve the power equation for n; this is harder in the case of the t distribution

compared to the Normal, since the distribution function of t changes with n. However,

as n gets large the t distribution gets closer and closer to a Normal distribution; if we

1 NB Whilst many of the alternative hypotheses we use as examples in this manual will be directional

(e.g. H1: μB<0 rather than H1: μB≠0), we generally use 2-sided tests of significance, rather than 1-sided.

This is simply because, in practice, many investigators are likely to adopt 2-sided tests, even if a priori

they formulate directional alternative hypotheses. Of course, there may be circumstances in which

investigators decide to employ 1-sided tests instead: for example, if it simply isn’t scientifically

feasible for the alternative hypothesis to be in a direction (e.g. H1: μB>0) other than that proposed a

priori (in this case H1: μB<0), or, if it were, if that outcome were of no interest to the research

community.

 5

then assume a Normal distribution in this case, we have the slightly simpler

formulation:

Power = 𝛷(
𝑐+0.1

𝑠𝐵/√𝑛
)= 𝛷(

(𝑍𝛼/2𝑠𝐵/√𝑛)+0.1

𝑠𝐵/√𝑛
)

where Φ=Z-1 is the inverse of the standard normal CDF. In the case where sB=1 and

 Zα/2 = -1.96 we have:

Power = 𝛷 [
(−1.96/√𝑛)+0.1

1/√𝑛
] which means for a Power of at least 0.8 we have

𝛷 [
(−1.96/√𝑛) + 0.1

1/√𝑛
] ≥ 0.8 →

(−1.96/√𝑛) + 0.1

1/√𝑛
≥ 0.842

Solving for n we get 𝑛 ≥ (10 × (0.842 + 1.96))2 = 785.1 thus we would need a

sample size of at least 786. Here 0.842 is the value in the tail of the Normal

distribution associated with a Power of 0.8 (above which 20% of the distribution lies).

1.2.5 Why is Power important?

When we set out to answer a research question we are hoping both that the null

hypothesis is false and that we will be able to reject it based on our data. If, given our

believed true estimate, we have a hypothesis test with low power, then this means that

even if our alternative hypothesis is true, we will often not be able to reject the null

hypothesis. In other words, we can spend money collecting data in an effort to

disprove a null hypothesis, and fail to do so.

On closer inspection the power formula is a function of the size of the data sample

that we have collected. This means that we can increase our power by collecting a

larger sample size. Hence a power calculation is often turned on its head and

described as a sample size calculation. Here we set a desired power which we fix, and

then we solve for n the sample size instead.

1.2.6 What Power should we aim for?

In the literature the desired power is often set at 0.8 (or 0.9): i.e. in 80% (or 90%) of

cases we will (subject to the accuracy of our true estimates) reject the null hypothesis.

Of course, in big studies there will be many hypotheses and many parameters that we

might like to test, and there is a unique power calculation for each hypothesis. Sample

size calculations should be considered as rough guides only, as there is always

uncertainty in the true estimates, and there are often practical limitations to consider

as well, such as maximum feasible sample sizes and the costs involved.

1.2.7 What are effect sizes?

In sample size calculations the term effect size is often used to refer to the magnitude

of the difference in value expected for the parameter being tested, between the

alternative and null hypotheses. For example, in the above calculations we initially

 6

believed that the true value of μB=-1 which, as the null hypothesis would correspond

to μB=0, would give an effect size of 1 (note: it is common practice to assume an

effect size is positive). In some literature effect sizes are translated to standard

deviation units (by dividing the differences by their standard deviation) so that they

can be compared across different contexts. We will use the term effect size both in the

next section, and when we later use the formula to give theoretical results for

comparison. However, in the simulation-based approach, we often use the signed

equivalent of the effect size and so we drop this term and use the terms parameter

estimate or fixed effect estimate.

1.2.8 How are power/sample size calculations done more generally?

For many power/sample size calculations there are four related quantities:

The size of the test, the power of the test, the effect size, and standard error of the

effect size (which is a function of the sample size). The following formula links these

four quantities when a normal distributional assumption for the variable associated

with the effect size holds, and it can also be used approximately in other situations:

𝛾

𝑆𝐸(𝛾)
≈ 𝑧1−𝛼/2 + 𝑧1−𝛽

Here α is the size of the test, 1-β is the power of the test, γ is the effect size, and we

assume that the Null hypothesis is that the underlying variable has value 0 (another

way to think of this is that the effect size represents the increase in the parameter

value).

Note that the difficulty here is in determining the standard error formula (SE(γ)). For

specific sample sizes/designs; this can be done using theory employed by the package

PINT (e.g. see Section 2.3.2). In MLPowSim we adopt a different approach which is

more general, in that it can be implemented for virtually any parameter, in any model;

however, it can be computationally very expensive!

1.3 Introduction to MLPowSim

For standard cases and single-level models we can analytically carry out an exact (or

approximate) calculation for the power, and we will discuss some of the formulae for

such cases in later sections. As a motivation for a different simulation-based

approach, let us consider what a power calculation actually means. In some sense, the

power can be thought of as how often we will reject a null hypothesis given data that

comes from a specific alternative. In reality we will collect one set of data and we will

either be able to reject the null hypothesis, or not. However power, as a concept

coming from frequentist statistics, has a frequentist feel to it in that if we were to

repeat our data-collecting many times we could work out a long term average of how

often we can reject the null hypothesis: this would correspond to our power.

In reality, we do not go out on the street collecting data many times, but instead use

the computer to do the hard work for us, via simulation. If we were able to generate

data that comes from the specific alternative hypothesis (many times), then we could

 7

count the percentage of rejected null hypotheses, and this should estimate the required

power. The more sets of data (simulations) we use, the more accurate the estimate will

be. This approach is particularly attractive as it replicates the procedure that we will

perform on the actual data we collect, and so it will take account of the estimation

method we use and the test we perform.

This book will go through many examples of using MLPowSim (along with MLwiN

and R) for different scenarios, but here we will replicate the simple analysis that we

described earlier, in which we compared boys’ attainment to average attainment; this

then boils down to a Z or t test.

1.3.1 A note on retrospective and prospective power calculations

At this point we need to briefly discuss retrospective power calculations. The term

refers to power calculations based on the currently collected data to show how much

power it specifically has. These calculations are very much frowned upon, and really

give little more information than can be obtained from the P-values for the test of

interest. In the remainder of the manual we will generally use existing datasets to

derive estimates of effect sizes, predictor means, variabilities, and so on. Here, the

idea is NOT to perform retrospective power calculations, but to use these datasets to

obtain (population) estimates for what we might expect in a later sample size

collection exercise. Using large existing datasets has the advantage that the parameter

estimates are realistic, and this exercise likely mirrors what one might do in reality

(although one might round the estimates somewhat, compared to the following

example, in which we have used the precise estimates from the models fitted to the

existing datasets).

1.3.2 Running MLPowSim for a simple example

MLPowSim itself is an executable text-based package written in C which should be

used in conjunction with either the MLwiN package or the R package. It can be

thought of as a ‘code-generating’ program, as it creates macro code or function code

to be run using those respective packages.

In the case of our example, the research question is whether boys do worse than

average in terms of attainment at age 16. For those of you familiar with the MLwiN

package and its User’s Guide (Rasbash et al, 2004), the tutorial example dataset is our

motivation here. In the case of that dataset, exam data were collected on 4,059 pupils

at age 16, and the total exam score at age 16 was transformed into a normalised

response (having mean 0 and variance 1). If we consider only the boys’ subset of the

data, and this normalised response, we have a mean of -0.140 and a variance of 1.051.

Clearly, given the 1,623 boys in this subset, we have a significant negative effect for

this specific dataset. Let us now assume that this set of pupils represents our

population of boys, and we wish to see how much power different sample sizes

produce.

We could consider sub-sampling from the data (see Mok (1995) and Afshartous

(1995) for this approach with multilevel examples) if this genuinely is our population,

 8

but here let us assume that all we believe is that the mean of the underlying population

of boys is -0.140 and the variance is 1.051.

Now we will fire up the MLPowSim executable and answer the questions it asks. In

the case of our example, appropriate questions and responses in MLPowSim are given

below:

 Welcome to MLPowSim

Please input 0 to generate R code or 1 to generate MLwiN macros: 1

 Please choose model type

1. 1-level model

2. 2-level balanced data nested model

3. 2-level unbalanced data nested model

4. 3-level balanced data nested model

5. 3-level unbalanced data nested model

6. 3-classification balanced cross-classified model

7. 3-classification unbalanced cross-classified model

Model type : 1

Please input the random number seed: 1

Please input the significant level for testing the parameters: 0.025

Please input number of simulations per setting: 1000

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 0

 Sample size set up

Please input the smallest sample size : 20

Please input the largest sample size : 600

Please input the step size: 20

 Parameter estimates

Please input estimate of beta_0: -0.140

Please input estimate of sigma^2_e: 1.051

Files to perform power analysis for the 1 level model with the following sample criterion have been

created

Sample size starts at 20 and finishes at 600 with the step size 20

1000 simulations for each sample size combination will be performed

Press any key to continue…

If we analyse these inputs in order, we begin by stating that we are going to use

MLwiN for a 1-level (single-level) model. We then input a random number seed2, and

2 Note that different random number seeds will result in the generation of different random numbers,

and so sensitivity to a particular seed can be tested (e.g. one can test how robust particular estimates are

 9

state that we are going to use a significance level (size of test) of 0.025. Note that

MLPowSim asks for the significance level for a 1-sided test; hence, when we are

considering a 2-sided test, we divide our significance level by 2 (i.e. 0.05 / 2 = 0.025).

For a 1-sided test, we would therefore input a significance level of 0.05. We then state

that we will use 1000 simulated datasets for each sample size, from which we will

calculate our power estimates.

We are next asked what response type and estimation methods we will use. For our

example we have a normal response, and we will use the IGLS estimation method.

Note that as this method gives maximum likelihood (ML) estimates, it is preferred to

RIGLS for testing the significance of estimates, since hypothesis-testing is based on

ML theory.

We then need to set up the model structure; in our case this is simply an intercept

(common mean) with no predictor variables. Next, we are asked to give limits to the

sample sizes to be simulated, and a step size. So, for our example we will start with

samples of size 20 and move up in increments of 20 through 40,60,… etc., up to 600.

We then give an effect size estimate for the intercept (beta_0) and an estimate for the

underlying variance (sigma^2_e). When we have filled in all these questions, the

program will exit having generated several macro files to be used by MLwiN.

1.4 Introduction to MLwiN and MLPowSim

The MLPowSim program will create several macro files which we will now use in the

MLwiN software package. The files generated for a 1-level model are simu.txt,

setup.txt, analyse.txt and graphs.txt. In this introductory section we will simply give

instructions on how to run the macros and view the power estimates. In later sections

we will give further details on what the macro commands are actually doing.

The first step to running the macros is to start up MLwiN. As the macro files call each

other (i.e. refer to each other whilst they are running), after starting up MLwiN we

need to let it know in which directory these files are stored. We can do this by

changing the current directory, as follows:

We next need to find the macro file called simu.txt, as follows:

to different sets of ‘random’ numbers). However, using the same seed should always give the same

results (since it always generates the same ‘random’ numbers), and so if the user adopts the same seed

as used in this manual, then they should derive exactly the same estimates (see e.g. Browne, 2009,

p.59).

Select Directories from the Options menu.

In the current directory box change this to the directory containing the macros.

Click on the Done button.

 10

A window containing the file simu.txt now appears. Note that some of the lines of

code in the macro begin with the command NAME, which renames columns in

MLwiN. Before starting the macro it is useful to open the data window and select

columns of interest to view so that we can monitor the macro’s progress. Note that the

first command in the file simu.txt actually expands the number of columns to 5000

and so in order to see the columns of interest we will need to perform this command

first so we need to do the following:

Next we will select columns c4986, c4989 & c4990; from the code we can see that the

macro will name these ‘zpow0’, ‘spow0’ and ‘Samplesize’, respectively. These three

columns will hence contain the sample size, and the power estimate (‘pow’) for the

intercept (‘0’) derived from the zero/one (‘z’) and standard error (‘s’) methods,

respectively (see Sections 1.4.1 & 1.4.2 for a discussion of these methods). We do this

as follows:

If you have performed this correctly, the window will look as follows:

Select Open Macro from the File menu.

Find and select the file simu.txt in the filename box.

Click on the Open button.

Select View or Edit Data from the Data Manipulation menu.

Click on the view button to select which columns to show.

Select columns C4986, C4989 and C4990.

Note you will need to hold down the Ctrl button when selecting the later columns

to add them to the selection.

Click on the OK button

Select Command Interface from the Data Manipulation window

Type the command INIT 5 5000 5000 2 40 into the bottom box as shown below

Hit Return to execute the command,

 11

If you now run the macro by pressing the Execute button on the Macro window, the

data window will fill in the sample size calculations as they are computed. Upon

completion of the macro, the window will look as follows:

 12

So here we see estimates of power of around 0.1 for just 20 boys, and above 0.9 for

600 boys. Next, we give more details on the two methods used to estimate power with

the IGLS method.

1.4.1 Zero/One method

The first method used is perhaps the most straightforward, but can take a long time to

get accurate estimates. For each simulation we get an estimate of each parameter of

interest (in our case just an intercept) and the corresponding standard error. We can

then calculate a (Gaussian) confidence interval for the parameter. If this confidence

interval does not contain 0 we can reject the null hypothesis and give this simulation a

score of 1. However, if the confidence interval does contain 0, we cannot reject the

null hypothesis and so the simulation scores 0. To work out power across the

corresponding set of simulations we simply take the average score (i.e. # of 1s / total

number of simulations).

1.4.2 Standard error method

A disadvantage of the first method is that to get an accurate estimate of power we

need a lot of simulations. An alternative method (suggested by Joop Hox, 2007) is to

simply look at the standard error for each simulation. If we take the average of these

estimated standard errors over the set of simulations, together with the ‘true’ effect

size γ, and the significance level α, we can use the earlier given formula:

𝛾

𝑆𝐸(𝛾)
≈ 𝑧1−𝛼/2 + 𝑧1−𝛽

and solve for the power (1-β). This method works really well for the normal response

models that we first consider in this guide but will not work so well for the other

response types that we investigate later.

If we look closely at the two columns for the power estimates, we see that the

differences between consecutive values produced using the zero/one method (i.e.

those in the column headed ‘zpow0’) are quite variable and can be negative, whilst

the values estimated using the standard error method (‘spow0’) demonstrate a much

smoother pattern. If we are interested in establishing a power of 0.8 then both

methods suggest a sample size around 420 will be fine. We can also plot these power

curves in MLwiN, and indeed MLPowSim outputs another macro, graphs.txt,

specifically for this purpose.

1.4.3 Graphing the Power curves

To plot the power curves, we need to find the graphing macro file called graphs.txt, as

follows:

 13

This has set up graphs in the background that can be viewed as follows:

The following graph will appear:

This graph contains two solid lines along with confidence intervals (dashed lines).

Here, the smoother brighter blue line is the standard error method, and has confidence

interval lines around it that are actually indistinguishable from the line itself. The

darker blue line plots the results from the zero/one method, and we can see that, in

comparison, it is not very smooth and has wide confidence intervals; however, it does

seem to track the brighter line, and with more simulations per setting we would expect

closer agreement.

Select Open Macro from the File menu.

Select the file graphs.txt in the filename box.

Click on the Open button.

On the graph macro window click on the Execute button.

Select Customised graph(s) from the Graphs menu.

Click on the Apply button on the Customised graph(s) window.

 14

We can use this graph to read off the power for intermediate values of n that we did

not simulate. Note that the curves here are produced by joining up the selected points,

rather than any smooth curve fitting, and so any intermediate value is simply a linear

interpolation of the two nearest points.

If we return to the theory, we can plug in the values -0.140 and 1.051 (1.02522) into

the earlier power calculation to estimate exactly the n that corresponds to a power of

0.8 (assuming a normal approximation):

𝛷 [
(−1.96 ∗ 1.0252/√𝑛) + 0.14

1.0252/√𝑛
] ≥ 0.8 →

(−1.96/√𝑛) + 0.14

1.0252/√𝑛
≥ 0.842

Solving for n we get 𝑛 ≥ (7.142 × 1.0252 × (0.842 + 1.96))2 = 420.9 thus we

would need a sample size of at least 421; therefore, our estimate of around 420 is

correct.

We will next look at how similar calculations can be performed with MLPowSim

using the R package, instead of MLwiN, before looking at other model types.

 15

1.5 Introduction to R and MLPowSim

As explained earlier, MLPowSim can create output files for use in one of two

statistical packages. Having earlier introduced the basics of generating and executing

output files for power analyses in MLwiN, here we do the same for the R package.

Once the user has first requested that R code, rather than MLwiN macros, be

generated in MLPowSim (by pressing 0 when indicated), most of the subsequent

questions and user inputs are the same as for MLwiN, and so we shan’t cover all these

in detail again. However, there are some differences when specifying the model

setup, which reflect differences in the methods and terminologies of the estimation

algorithms used by the two packages. Therefore, we shall consider these in a little

more detail.

The R package is generally slower than MLwiN when simulating and fitting

multilevel models. In R, we focus on the lme and nlme functions, and for single-level

models the glm function. Employing the same example we studied earlier, the model

setup questions, along with the user entries when selecting R, look like this:

__
Model setup

Please input 0 to generate R code or 1 to generate MLwiN macros: 0

 Please choose model type

1. 1-level model

2. 2-level balanced data nested model

3. 2-level unbalanced data nested model

4. 3-level balanced data nested model

5. 3-level unbalanced data nested model

6. 3-classification balanced cross-classified model

7. 3-classification unbalanced cross-classified model

Model type : 1

Please input the random number seed: 1

Please input the significant level for testing the parameters: 0.025

Please input number of simulations per setting: 1000

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

 Predictor(s) input

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 0

 Sample size set up

Please input the smallest sample size : 20

Please input the largest sample size : 600

Please input the step size: 20

 Parameter estimates

Please input estimate of beta_0: -0.140

 16

Please input estimate of sigma^2_e: 1.051

 Final sample size check

The first level: start=20 end=600 step size=20

Do you want to continue (YES=1 , NO=0)?1

Do you want to have the CI for the power in your output (YES=1 , NO=0)? 1

R does not provide a choice of estimation methods for single-level models, although it

does for multilevel models; therefore in the model setup dialogue presented above,

there are no questions about estimation methods (unlike the situation we encountered

earlier, for MLwiN). This is because the function glm is used to fit single-level

models in the R package. In this function there is only one method implemented,

iteratively reweighted least squares (IWLS).

1.5.1 Executing the R code

Before we introduce the procedure for executing the R code generated by

MLPowSim, please note that this manual is written with reference to R version 4.2.1,

on a Windows machine. It is possible that there may be some minor differences when

executing the R code on other platforms such as Linux, or indeed with other versions

of the software.

Upon starting R we will be presented by a screen that looks like this:

 17

In contrast to the output for MLwiN, MLPowSim generates a single file

(powersimu.r) for the R package. This file has the extension r which is the default for

R command files. If this file is saved in the same directory as the R package itself,

then by entering the following command, R will read the commands contained in the

file:

source(“powersimu.r”)

If it is not saved in that directory, then one can either give the full path to the output

file as an argument (i.e. enter the full path between the brackets in the above

command), or change the working directory in R to the one in which the file is saved,

as follows:

Another simple option is to drag and drop the entire file (i.e. powersimu.r) into the R

console window.

During the simulation, the R console provides updates, every 10th iteration, of the

number of iterations remaining for the current sample size combination being

simulated. The start of the simulation for each different sample size combination is

also indicated. In the case of our example, part of this output is copied below:

Select Change dir … from the File menu.

In the window which appears, do one of the following:

either write the complete pathname to the output file,

or select Browse and identify the directory containing the output file.

Click on the OK button.

 18

__
> source("powersimu.r")

 The programme was executed at Thu Jan 5 09:52:57 2023

--

 Start of simulation for sample sizes of 20 units

 Iteration remain= 990

 Iteration remain= 980

 Iteration remain= 970

 Iteration remain= 960

 Iteration remain= 950

 Iteration remain= 940

 Iteration remain= 930

 Iteration remain= 920

 Iteration remain= 910

 Iteration remain= 900

 Iteration remain= 890

 Iteration remain= 880

 Iteration remain= 870

 Iteration remain= 860

 Iteration remain= 850

 Iteration remain= 840

 Iteration remain= 830

 Iteration remain= 820

 Iteration remain= 810

 Iteration remain= 800

 Iteration remain= 790

 Iteration remain= 780 ………….

………….

………….

The first line of the above screen indicates the date and time powersimu.r was

executed in R. There is also another date at the top of the file itself (not shown here)

indicating the time MLPowSim produced the R code. When the cursor appears in

front of the command line again (i.e. in front of sign >), the power calculations are

complete, and the power estimates and their confidence intervals (if the user has

answered YES, in MLPowSim, to the question of whether or not they wish to have

confidence intervals), for the various sample size combinations chosen by the user,

will automatically be saved as powerout.txt. Since it is a text file, the results can, of

course, be viewed using a variety of means; here, though, we view them by typing the

name of the data frame saved by the commands we have just executed in the R

console:

output

In the case of our example, the results look like this:

n zLb0 zpb0 zUb0 sLb0 spb0 sUb0

20 0.073 0.091 0.109 0.089 0.09 0.091

40 0.129 0.151 0.173 0.136 0.137 0.138

60 0.148 0.171 0.194 0.183 0.184 0.186

80 0.214 0.241 0.268 0.229 0.23 0.232

100 0.258 0.286 0.314 0.277 0.279 0.281

120 0.298 0.327 0.356 0.321 0.323 0.325

140 0.351 0.381 0.411 0.365 0.367 0.369

160 0.381 0.411 0.441 0.407 0.409 0.412

180 0.41 0.441 0.472 0.447 0.45 0.452

 19

200 0.457 0.488 0.519 0.486 0.489 0.491

220 0.479 0.51 0.541 0.522 0.524 0.527

240 0.552 0.583 0.614 0.559 0.562 0.564

260 0.56 0.59 0.62 0.594 0.596 0.599

280 0.601 0.631 0.661 0.627 0.629 0.631

300 0.627 0.656 0.685 0.655 0.657 0.659

320 0.664 0.693 0.722 0.684 0.686 0.688

340 0.679 0.707 0.735 0.71 0.712 0.714

360 0.727 0.754 0.781 0.734 0.736 0.738

380 0.731 0.758 0.785 0.757 0.759 0.761

400 0.755 0.781 0.807 0.777 0.778 0.78

420 0.761 0.786 0.811 0.797 0.799 0.8

440 0.793 0.817 0.841 0.816 0.818 0.819

460 0.804 0.827 0.85 0.833 0.834 0.836

480 0.823 0.845 0.867 0.848 0.849 0.85

500 0.823 0.845 0.867 0.863 0.865 0.866

520 0.864 0.884 0.904 0.875 0.876 0.877

540 0.859 0.879 0.899 0.886 0.887 0.889

560 0.87 0.889 0.908 0.898 0.899 0.9

580 0.906 0.923 0.94 0.907 0.908 0.909

600 0.911 0.927 0.943 0.917 0.918 0.918

The first column in this output file contains the sample size. In multilevel models,

depending on the model type chosen by the user, we might have one, two or three

columns representing the various sample size combinations at each level. The rest of

the columns are either the estimated power or the lower/upper bounds, calculated

using the methods described earlier (i.e. in Sections 1.4.1 and 1.4.2).

The column headings on the first row denote the specific method, statistic and

parameter. This nomenclature uses the prefixes z and s for the zero/one and standard

error methods of calculating power, respectively. Furthermore, the characters L and U

indicate the lower (L) and upper (U) bounds of the confidence intervals, whilst the

character p stands for the power estimate. Finally, in keeping with common notation

for estimated parameters (i.e. β0, β1 etc.), the characters b0, b1, etc., finish the column

headings.

The results indicate a sample size of between 420 and 440 should be sufficient to

achieve a power of 0.8; this is very similar to our earlier finding using MLwiN, and

indeed our theory-based calculations (Section 1.4).

1.5.2 Graphing Power curves in R

R has many facilities for producing plots of data, and users can load a variety of

libraries and expand these possibilities further.

When fitting a multilevel (mixed effect) model in R we have a grouped data structure,

and a number of specific commands have been written to visualise such data (see, for

example, Venables and Ripley, 2002, Pinheiro and Bates, 2000). For instance, the

trellis graphing facility in the lattice package is useful for plotting grouped data, and

many other complex multivariate data as well. Among the many plotting commands

and functions in the trellis device, the command xyplot (), combined with others such

 20

as lines (), via the function panel, are useful tools. For example, one can employ code

such as the following:

library(lattice)

output<-read.table("powerout.txt",header =T,sep = " ", dec = ".")

method<-rep(c("Zero/one method","Standard error method"),each=length(n1range),times=betasize)

sample<-rep(n1range,times=2*betasize)

parameter<-rep(c("b0"),each=2*length(n1range))

power<-c(output$zpb0,output$spb0)

Lpower<-c(output$zLb0,output$sLb0)

Upower<-c(output$zUb0,output$sUb0)

dataset<-data.frame(method,sample,parameter,Lpower,power,Upower)

xyplot(power~sample | method*parameter ,data=dataset,xlab="Sample size of first level",

 scales=list(x=list(at=seq(0,600,100)),y=list(at=seq(0,1,.1))),

 as.table=T,subscripts=T,

 panel=function(x,y,subscripts)

{

 panel.grid(h=-1,v=-1)

 panel.xyplot(x,y,type="l")

 panel.lines(dataset$sample[subscripts],dataset$Lpower[subscripts],lty=2,col=2)

 panel.lines(dataset$sample[subscripts],dataset$Upower[subscripts],lty=2,col=2)

 })

This will produce the following graphs:

Sample size of first level

p
o

w
e

r

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 100 200 300 400 500 600

Standard error method

b0

0 100 200 300 400 500 600

Zero/one method

b0

 21

The curves are shown in two different panels to make comparison easier. In both

panels, the solid lines (in blue) indicate the estimated powers while the broken lines

(in red) are the confidence bounds. It can be seen that the bound interval of the

estimated power in the zero/one method is wider than that in the standard error

method.

If one wanted to read off the predicted power for a predefined sample size (or vice

versa), one could make the grids in the panels thinner, via the available parameters in

the panel function. However, it’s likely that visual interpolation with the coarse grid

above will give approximately the same result.

For further guidance on plotting power estimates in R, please see Section 5.3.3.

 22

2 Continuous Response Models

In this section we describe sample size calculations for continuous (normally-

distributed) response models in general. For these models there exists further exact

formulae that can be used for other single-level models, and also an existing piece of

software (PinT) that gives sample size formulae for balanced 2-level nested models.

In Section 2.1 we will review some of the single-level model formulae while

comparing results in Section 2.2 with the simulation approach. In Section 2.3 we look

at 2-level nested variance components models and describe the design effect formula,

the PinT software package, and the simulation-based approach we adopt in

MLPowSim. Finally, in Sections 2.4 to 2.6 we discuss extending our calculations to

other 2-level nested models, 3-level models and cross-classified models.

2.1 Standard Sample size formulae for continuous responses

In the introductory chapter we described how one approximate formula can link

power, significance level, effect size and sample size (through the standard error of

the effect size). This formula is as follows:

𝜸

𝑺𝑬(𝜸)
≈ 𝒛𝟏−𝜶/𝟐 + 𝒛𝟏−𝜷

The approximation here is in terms of assuming an underlying normal distribution for

γ when in reality this is only asymptotically correct: i.e. we should really use a t

distribution; however, this will not matter much as long as the sample size is

reasonable. When we are sure about the size and power we require, we can simplify

this further by plugging these values in and having a simple relationship linking the

effect size and its standard error, as described in Chapter 20 of Gelman and Hill

(2007). They consider (as we do in general) two-sided tests with a significance level

of 0.05 and a power of 0.8 which results in γ= (1.96+0.84)SE(γ) = 2.8SE(γ).3

2.1.1 Single mean – one sample t-test

In the introduction we showed that to test whether a sample mean is greater than 0 we

needed to perform a one sample t-test which could be approximated by a Z test for

suitably large sample sizes.

To repeat the theory, we plugged in the values -0.140 and 1.051 (1.02522) into the

power calculation to estimate exactly the n that corresponds to a power of 0.8

(assuming a normal approximation):

𝛷 [
(−1.96 ∗ 1.0252/√𝑛) + 0.14

1.0252/√𝑛
] ≥ 0.8 →

(−2.01/√𝑛) + 0.14

1.0252/√𝑛
≥ 0.842

3 Note that if we were considering a one-sided test with the same significance level and power, this

would result in γ= (1.645+0.842)SE(γ) = 2.487SE(γ).

 23

Solving for n we get 𝑛 ≥ (7.142 × 1.0252 × (0.842 + 1.96))2 = 420.9 thus we

would need a sample size of at least 421.

With our simplified formula we have:

𝛾 = 2.802𝑆𝐸(𝛾)

→ 0.140 = 2.802 ×
1.0252

√𝑛
→ √𝑛 =

2.87

0.14
= 20.5

→ 𝑛 = 421

which is exactly the same calculation. We will next consider some other fairly

standard statistical tests firstly considering the cases of 1 predictor variable.

2.1.2 Comparison of two means – two-sample t-test

If we have a binary predictor variable then we have a predictor that essentially splits

our dataset in two. We might then be interested in whether these two groups have

significantly different means, or equivalently in a linear modelling framework (see

Section 2.1.5), whether the predictor has a significant effect on the response.

The common approach for testing the hypothesis that two independent samples have

differing means is the two-sample t-test which can be approximated for large sample

sizes by the Z test using the standard formula.

Letting y1i be the ith observation in the first sample, and y2j be the jth observation in

the second sample, then the test statistic that will play the role of γ is the difference in

sample means �̄�1 − �̄�2, which has associated (pooled) standard error

√𝜎1
2/𝑛1 + 𝜎2

2/𝑛2.

Here we can see that to perform a power calculation we need to estimate the

difference between the means, the variances of the two groups and the sizes of the

samples in the two groups. We can then work out the power for any combination of

sample sizes.

So we can calculate the power associated with various combinations of group 1

sample sizes, and group 2 sample sizes. If the variability within each group is

different, it may be advantageous to sample more from the group which has the

highest variance to reduce the standard error of the difference. In an experimental

setting it is easy to sample the two groups independently, and if the effect of the two

groups is of great interest and/or one of the two groups is rare, it might be useful to do

so explicitly (a form of stratified sampling).

In observational studies, on the other hand, we will generally sample at random from

the population, and the group identifier/binary predictor will simply be recorded. Here

the two group sample sizes will be replaced by an overall sample size, together with a

probability of group membership. The uncertainty in actual group sample sizes will

have an impact on power, but a simulation approach can cope with this. As later

 24

discussed in Section 2.1.5, we can calculate desired sample sizes conditional on the

probability of group membership.

2.1.3 Simple linear regression

The simple linear regression model can be written as follows:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖, 𝑒𝑖~𝑁(0, 𝜎2)

Here we are aiming to look at the relationship between a (typically continuous)

predictor variable x, and the response variable y, where i indexes the individuals. Our

null hypothesis will generally be that the predictor has no effect, i.e. β1 = 0, although

we might also wish to test for a strictly non-zero intercept as well, i.e. β0 = 0.

From regression theory we can calculate the standard errors for the two quantities β0

and β1 which are 𝜎√
1

𝑛
+

�̄�2

𝑆𝑥𝑥
 and 𝜎/√𝑆𝑥𝑥 where 𝑆𝑥𝑥 = ∑ 𝑥𝑖

2 −
(∑ 𝑥𝑖𝑖)2

𝑛𝑖 respectively. It

is important to note the meaning of σ has changed from the simple mean model. In

this case it is the residual variation after accounting for the predictor x. This is

important to note when choosing an estimate for σ to perform the power calculation.

From the standard error formulae we can see that we also need to give an estimate for

𝑆𝑥𝑥 to perform a sample size calculation. This quantity is not an intuitive one to

estimate, so it makes more sense to make use of the fact that

𝑆𝑥𝑥 = ∑(𝑥𝑖 − �̄�)2 = (𝑛 − 1)

𝑖

𝑣𝑎𝑟(𝑥𝑖)

and instead estimate the variance of the predictor variable. The simple linear

regression is a special case of the general linear model which we consider next.

2.1.4 General linear model

In the general linear modelling framework, we have the following:

𝑦𝑖 = 𝑋𝑖
𝑇𝛽 + 𝑒𝑖, 𝑒𝑖~𝑁(0, 𝜎2)

Here Xi is a vector of predictor variables for individual i that are associated with

response yi. The corresponding coefficient vector β represents the effects of the

various predictor variables. Usually our null hypotheses will be based on specific

elements of the vector β, and whether they are zero. For this we will require the

standard errors for the elements of β. The variance matrix associated with the β

predictors has formula σ2 (XTX)-1 from which we can pick out the standard errors for

specific βi. The standard error formula will then be a function of the sample size, the

variance of the particular predictor, and the covariances between the predictors.

Therefore, as we will see in Section 2.2, if we specify that our predictors are

multivariate normally-distributed, then we will need to specify both their means and

also their covariance matrix.

 25

2.1.5 Casting all models in the same framework

For normal response models which do not involve higher-level random structure, the

linear modelling framework covers most cases. There is one minor exception which

we have already looked at briefly: namely the two population different means (two

sample t / Z test) hypothesis. Here we can write out the linear regression model

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖, 𝑒𝑖~𝑁(0, 𝜎2)

where xi is a binary indicator that an observation belongs to group 2. Clearly this

model is a member of the linear model family and testing the hypothesis that β1 = 0 is

equivalent to the hypothesis that the two group means differ. However, this model

makes the implicit assumption that the two group variances are equal, and equal to σ2.

To allow a model with differing group variances we would need the more general

model:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖, 𝑒𝑖~𝑁(0, 𝜎𝑖
2)

which allows different variances for each observation. We would then need to

implicitly set the variances for each observation in group 1 to be equal and similarly

set the variances for each observation in group 2 to be equal. Such a model is fitted

easily in packages such as MLwiN, with which a simulation study can be conducted

to work out power. For this first version of MLPowSim, however, we have assumed

that single-level models fit in the standard linear modelling framework with constant

residual variation.

We will now introduce a selected range of the possible single-level models that

MLPowSim can fit, using the tutorial example introduced in the last chapter.

2.2 Equivalent results from MLPowSim

In this section we will begin each example by describing the research question, and

then show how to set up the model in MLPowSim. We will then look at the answers

produced in MLwiN, and compare them with theoretical results. Note that similar

results would be attained via R, but these are not included for brevity.

2.2.1 Testing for differences between two groups

The tutorial dataset contains a gender predictor for each pupil. In the introduction we

looked at the hypothesis that boys did worse than an average value. Perhaps a more

sensible hypothesis would be that girls do better than boys. We will here consider the

hypothesis within a regression framework, and consider the model:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖, 𝑒𝑖~𝑁(0, 𝜎2)

 26

where xi takes value 1 for a girl, and 0 for a boy. Our null hypothesis is that β1=0, with

an alternative hypothesis β1>0. To fit this model we need estimates for β0, β1 and σ2,

along with some information about the predictor.

We will take estimates from the full tutorial dataset, and so we have

β0=-0.140, β1=0.234 and σ2=0.985.

In the population we have 60% girls and 40% boys and so we will consider two

possible ways of including this information about the predictor:

(i) assume xi is Bernouilli-distributed, with underlying probability 0.6;

(ii) assume a normal approximation, and so xi ~N(0.6,0.24).

We will describe each of these, in turn, below. We will fire up the MLPowSim

executable and answer the questions it asks. Using our tutorial example, here we

present questions and responses corresponding to (i):

 Welcome to MLPowSim

Please input 0 to generate R code or 1 to generate MLwiN macros: 1

 Please choose model type

1. 1-level model

2. 2-level balanced data nested model

3. 2-level unbalanced data nested model

4. 3-level balanced data nested model

5. 3-level unbalanced data nested model

6. 3-classification balanced cross-classified model

7. 3-classification unbalanced cross-classified model

Model type : 1

Please input the random number seed: 1

Please input the significant level for testing the parameters: 0.025

Please input number of simulations per setting: 1000

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 1

How many explanatory variables do you want to include in your model? 1

Please choose a type for the predictor x1 (1=Binary 2=Continuous): 1

Please input probability of a 1 for x1 : 0.6

 Sample size set up

Please input the smallest sample size : 50

Please input the largest sample size : 1500

Please input the step size: 50

 Parameter estimates

Please input estimate of beta_0: -0.140

Please input estimate of beta_1: 0.234

Please input estimate of sigma^2_e: 0.985

 27

Files to perform power analysis for the 1 level model with the following sample criterion have been

created

Sample size starts at 50 and finishes at 1500 with the step size 50

1000 simulations for each sample size combination will be performed

Press any key to continue…

We will now run the code in MLwiN as we did in the introductory example (see

Section 1.4 for information on starting up MLwiN and changing directories).

Again, before starting the macro, it is useful to open the View/Edit Data window to

view its progress (Section 1.4 details how to do this). In this case, it is useful to select

columns c4982, c4983, c4988, c4989 and c4990 to view (having first run the INIT

command so we have 5000 columns), since, as the coding in the macro indicates, it

will place the sample sizes in the first of these columns, and the estimated powers for

the two predictors, using two different methods detailed earlier (Sections 1.4.1 &

1.4.2), in the last four of these columns.

If we now run the macro by pressing the Execute button on the Macro window the

data window will fill in the sample size calculations as they are computed. Upon

completion of the macro, the window will look as follows:

 28

So here we see estimates of power for the intercept of around 0.1 for 50 pupils, and up

to 0.92 for 1500 pupils (see columns ‘zpow0’ & ‘spow0’). More importantly, for the

gender effect (‘zpow1’ & ‘spow1’) we have power of around 0.12 for 50 pupils, rising

to 0.993 for 1500 pupils, with around 600 pupils giving a power of 0.8.

 29

If we graph the curves (see Section 1.4.3 on finding and executing the graphs.txt

macro, and then viewing the resulting graph), they look as follows:

This graph contains two lines, along with confidence intervals, for each parameter,

with the intercept in blue and the gender effect in green. The smoother brighter lines

correspond to the standard error method and have confidence interval lines around

them that are actually indistinguishable from the lines themselves. The darker lines

are the zero/one method results and we can see they are not very smooth and have

wide confidence intervals; however, as we mentioned in Section 1.4.3, they do seem

to track the brighter lines and with more simulations per setting we would expect

more agreement.

We next consider option (ii), and look at the effect of assuming an approximate

normal distribution for gender: i.e. in the simulated dataset that generated 0 and 1

values for boys and girls, we will have a continuous predictor with mean and variance

equal to the mean and variance of the binary predictor considered in option (i),

remembering the mean of a Bernouilli(p) distributed variable is p and the variance is

p(1-p). In our case we have p = 0.6.

To do this, we have to make some minor changes to the questions in MLPowSim

regarding types of predictor. Rather than repeat all the code from the example relating

to (i), we only show the relevant changes below:

 30

Please choose a type for the predictor x1 (1=Binary 2=Continuous): 2

Assuming normality, please input its parameters here:

The mean of the predictor x1: 0.6

The variance of the predictor x1: 0.24

Running this model results in the following table of output:

 31

There is very little difference between the results produced using the normal

approximation, and the results produced using the binary predictor, which suggests

that we might like to consider using the normal approximation at all times,

 32

particularly as it makes it easy to include correlations between predictors (see Section

2.2.3). One word of caution, though: in this case we have an underlying probability of

0.6, and reasonable sample sizes; the normal approximation works best in these

situations but may not be so good when the probability is more extreme or the sample

size is small.

From a theory point of view, we can consider the 2-sample Z-test with fixed sample

size ratio of 60% girls and 40% boys and equal variance (0.985), and an effect size of

0.234.

Then the sample size calculation becomes:

𝛾 = 2.802𝑆𝐸(𝛾)

→ 0.234 = 2.802 × √𝜎2/0.4𝑛 + 𝜎2/0.6𝑛

→ 0.234 = 2.802 × √0.985/0.24𝑛

→ 𝑛 = (2.802/0.234)2 × 0.985/0.24 = 588.5

So if we had fixed ratios in our 2-sample Z-test, we would need a sample of at least

589 pupils. Even though our simulation is based on observational data, where the ratio

6:4 is just the expected ratio, we still get a similar estimate of the sample size

required.

2.2.2 Testing for a significant continuous predictor

The main predictor of interest in the tutorial example in the MLwiN User’s Guide is a

prior ability measure: namely the London Reading Test (LRT; this predictor is

standardised using Z-scores in the User’s Guide and is thus named ‘standlrt’) which

the students take at age 11 prior to taking their main exams (the response variable) at

age 16. This predictor has a very significant effect on the exam response, and

consequently we expect that we will need a small sample size to gain a power of 0.8.

We can run MLPowSim in a similar way as we did for the gender predictor in Section

2.2.1 when we assumed a normal approximation. The inputs that will change are

outlined below:

Please choose a type for the predictor x1 (1=Binary 2=Continuous): 2

Assuming normality, please input its parameters here:

The mean of the predictor x1: 0

The variance of the predictor x1: 1

Sample size set up

Please input the smallest sample size : 5

Please input the largest sample size : 50

Please input the step size: 5

 Parameter estimates

Please input estimate of beta_0: -0.001

Please input estimate of beta_1: 0.595

Please input estimate of sigma^2_e: 0.648

 33

Files to perform power analysis for the 1 level model with the following sample criterion have been

created

Sample size starts at 5 and finishes at 50 with the step size 5

1000 simulations for each sample size combination will be performed

Press any key to continue…

If we run these new macros in MLwiN as previously described (in Section 1.4) we get

the following values in the Data window:

So, looking at columns ‘spow1’ and ‘zpow1’ we see that with even around 15 pupils,

we have a power greater than 0.8.

To compare this with the theory, we can look at the following:

𝛾 = 2.802𝑆𝐸(𝛾)

→ 0.595 = 2.802 × √𝜎2/𝑆𝑥𝑥

→ 0.595 = 2.802 × √0.648/(𝑛 − 1)

→ 𝑛 − 1 = (2.802/0.595)2 × 0.648 → 𝑛 = 14.37

and so this clearly agrees with the simulation results.

2.2.3 Fitting a multiple regression model.

We can next consider a model that includes both gender and LRT predictors. We

already have sample size estimates for the relationship between each of these two

predictors and the response independently, but now we are looking at the relationships

 34

conditional on the other predictor. For this model we will get three estimated powers

for each sample size: one for each of the relationships, and one for the intercept.

We will once again use the actual estimates obtained from fitting the model to the full

tutorial dataset for our effect estimates, our variability, and so on. Note that the

estimates are reduced due to the correlation between the two predictors. We will

firstly assume independence between the two predictor variables; the MLPowSim

session will then proceed as follows:

 Welcome to MLPowSim

Please input 0 to generate R code or 1 to generate MLwiN macros: 1

 Please choose model type

1. 1-level model

2. 2-level balanced data nested model

3. 2-level unbalanced data nested model

4. 3-level balanced data nested model

5. 3-level unbalanced data nested model

6. 3-classification balanced cross-classified model

7. 3-classification unbalanced cross-classified model

Model type : 1

Please input the random number seed: 1

Please input the significant level for testing the parameters: 0.025

Please input number of simulations per setting: 1000

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 1

How many explanatory variables do you want to include in your model? 2

Please choose a type for the predictor x1 (1=Binary 2=Continuous 3=all MVN): 1

Please input probability of a 1 for x1 : 0.6

Please choose a type for the predictor x2 (1=Binary 2=Continuous): 2

Assuming normality, please input its parameters here:

The mean of the predictor x2: 0

The variance of the predictor x2: 1

 Sample size set up

Please input the smallest sample size : 50

Please input the largest sample size : 1500

Please input the step size: 50

 Parameter estimates

Please input estimate of beta_0: -0.103

Please input estimate of beta_1: 0.170

Please input estimate of beta_2: 0.591

Please input estimate of sigma^2_e: 0.642

Files to perform power analysis for the 1 level model with the following sample criterion have been

created

 35

Sample size starts at 50 and finishes at 1500 with the step size 50

1000 simulations for each sample size combination will be performed

Press any key to continue…

We will now run the macros in the usual way and we will need to look at seven

columns to get the power for all three parameters using both methods.

The generated code that is run in MLwiN allocates groups of columns from the end of

the worksheet for the Power values from each method as well as confidence interval

limits. This means you should be able to find the columns from the Data window by

scrolling to the end. In displays in this guide we will typically have selected the power

estimates only. For example doing this the Data window for this model looks as

follows:

 36

Here we see that the LRT predictor has associated power (see columns ‘zpow2’ and

‘spow2’) of essentially 1 at sample sizes of only 100 pupils, whilst the gender

predictor requires samples of around 700-750 to gain a power of 0.8 (‘zpow1’ and

‘spow1’). This is higher than the 600 required when LRT was not considered, but this

will be in part due to the reduced effect size of 0.170 versus 0.234, which more than

outweighs the reduction in unexplained variability (0.642 versus 0.985).

We could also consider including the correlation between our two predictors in our

simulation; i.e. at present we are assuming independence between prior attainment

and gender, whereas in reality there is a small positive correlation, with girls doing

better in the LRT than boys. To do this we need to approximate the 0/1 gender

predictor with a continuous predictor for simulation purposes and assume a

multivariate normal distribution. This involves minor changes to the above macro as

follows:

Please choose a type for the predictor x1 (1=Binary 2=Continuous 3=all MVN): 3

Assuming multivariate normality, please input its parameters here:

The mean of the predictor x1: 0.6

The mean of the predictor x2: 0

The variance matrix of the predictors

The element [1,1]: 0.24

The element [2,1]: 0.026

The element [2,2]: 1

Note that here we have worked out the correlation between the two predictors based

on the full tutorial dataset and then converted this to a covariance value of 0.026. In

addition, note that in MLPowSim, one can choose independent combinations of

binary and continuous as predictor types, but if MVN is selected, then all predictors

are treated as continuous and normally distributed (i.e. as MVN).

So, if we fit this model, we get the following:

 37

Here we see that, as with the uncorrelated case, we need a sample size of around 750

for a power of 0.8 for the gender predictor (columns ‘zpow1’ & ‘spow1’). Please note

that in this case, the correlation between the two predictors is small (0.053). Allowing

for correlations between predictors will be more important, however, when those

correlations are larger. In fact, if we were to increase the covariance from 0.026 to

0.26 (i.e. a correlation of 0.53 between gender and LRT), then the resulting

simulations suggest that we would then need a sample size of around 1000 for a

power of 0.8.

Perhaps more importantly, the inclusion of the LRT predictor in the model has

changed our hypothesis so that we are now investigating the effect of gender on

progress made between ages 11 to 16, rather than simply unadjusted attainment at age

16; since this change results in reduced estimates, we now need a larger sample size.

 38

2.2.4 A note on sample sizes for multiple hypotheses, and using sample size

calculations as ‘rough guides’

This example illustrates several important factors when constructing sample size

calculations. Firstly, each hypothesis will have a unique sample size calculation. So,

even though we found that a very small sample is required to show the significant

relationship between the response and LRT, the same data are to be used to show a

significant relationship between the response and gender, and so our chosen sample

size will need to satisfy all our hypotheses. Secondly, in this section we have used

existing data – in fact the true tutorial dataset – to estimate parameter values, and so

we have been able to establish, for example, that there is a reduction in the effect of

gender when we include LRT in the model. This illustrates that when conducting our

power calculation, it is important to replicate exactly what we expect to happen in our

data collection. However, this is easier said than done. This is why sample size

calculations can be thought of as a rough guide: in practice, it might be best to treat

them with some caution and scale them up to cover factors such as over-optimism in

effect sizes, missing variables, and so on. In addition, if we were to switch to a one-

sided test, then this would decrease our sample sizes, whereas if we were to choose a

power of 0.9, then this would increase our sample sizes.

2.2.5 Using RIGLS

Up to this point we have focussed solely on the IGLS method in the MLwiN package.

This is because when fitting models in MLwiN, most people use IGLS. This is

because it gives maximum likelihood (ML) estimates and therefore allows likelihood

ratio tests to be used when comparing nested models. In terms of single-level normal

models, we do have a bit of a dilemma, since, typically, general purpose statistical

software packages output unbiased standard errors for coefficients. These coefficients

are equivalent to restricted maximum likelihood (REML) estimates, as used in the

RIGLS estimation method. This difference amounts to changing the divisor in the

formula for estimating the residual variance from n in the ML estimate, to n-p in the

REML estimate, where p is the number of fitted parameters. This will only have a big

impact when n is sufficiently small, and in these cases the fact that we are assuming a

normal distribution, rather than a t distribution, is also a problem.

In Section 2.2.2 we encountered an example where this would make a difference;

there we looked at sample sizes for estimating the effect of LRT (the London Reading

Test score indicator). We can repeat this analysis using RIGLS estimation simply by

changing our selection, when prompted in MLPowSim, of the estimation method

from a 1 to a 0. If we do this, and run the resulting macros in MLwiN, we get the

following:

 39

For comparison, in the column headed ‘spow1’ for the IGLS method the first three

power estimates are 0.362, 0.648 and 0.821, respectively, and so we see that for very

small n, the power can be very different. However, we still come to a similar

conclusion that for a power of 0.8, we would need a sample of around 15 to 20 pupils.

2.2.6 Using MCMC estimation

MCMC estimation is another alternative estimation approach available in MLwiN

(see Browne, 2009, for details). Later we will see that when we encounter cross-

classified models, we turn to MCMC estimation to work out power calculations in

MLwiN. One problem with MCMC estimation, however, is its speed, as it is far

slower than the IGLS method. This is because it is an iterative procedure, and so for

each simulated dataset, the method needs to be run for a large number of iterations.

So for example if we require 1,000 simulations per setting and choose to run MCMC

for a burn-in of 1,000 iterations and store the following 5,001 iterations we will in

effect run for over 6 million iterations per setting! This means that it is not desirable

to use the MCMC method for many of the examples illustrated here, unless you

intend to use MCMC to fit your model in practice (for example, for non-normal

responses, where MCMC estimation has some advantages over the classical methods).

At this stage, we will simply illustrate MCMC estimation in the case of the simple

example given in Chapter 1, in which we estimated power for a 1-sample mean

problem. The MLPowSim program will create MLwiN macro code that utilises

MCMC with the MLwiN default prior distributions: improper normal priors for fixed

effects and Г-1(ε,ε) priors for variances (with inverse Wishart priors for variance

matrices). For the starting values, MCMC uses the IGLS estimates for the fixed effect

parameters and the values simulated for the variances to avoid any zero starting

values. In multilevel models (unlike running MCMC in MLwiN normally, i.e. from

the menu), the residual starting values are not taken from IGLS, and so the method

may need to burn in for longer.

 40

The MCMC method requires the user to input both a burn-in length, and main run

length, that will be used for each simulated dataset. It should be noted that this doesn’t

guarantee the MCMC method has converged for all datasets but building this in

would be difficult. In calculating the power we can use both the 0/1 approach, and the

SE approach (as described in Sections 1.4.1 & 1.4.2), simply by taking the posterior

means and standard deviations for each simulated dataset. Here, though, another

approach is also available, namely a non-parametric 0/1 method, where for each

parameter the chain of stored values is sorted, and the value of the appropriate

quantile is calculated from this sorted chain. The sign of this value can then be

evaluated to decide if the credible interval (a Bayesian form of confidence interval)

contains zero or not. So, when selecting MCMC estimation in MLPowSim, and

running the resulting macros in MLwiN, power estimates from three different

methods are produced. Here we show the relevant MLPowSim inputs for MCMC

estimation, using the example from Chapter 1:

 Welcome to MLPowSim

Please input 0 to generate R code or 1 to generate MLwiN macros: 1

 Please choose model type

1. 1-level model

2. 2-level balanced data nested model

3. 2-level unbalanced data nested model

4. 3-level balanced data nested model

5. 3-level unbalanced data nested model

6. 3-classification balanced cross-classified model

7. 3-classification unbalanced cross-classified model

Model type : 1

Please input the random number seed: 1

Please input the significant level for testing the parameters: 0.025

Please input number of simulations per setting: 1000

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 2

Please input burnin length for each simulation: 1000

Please input main run length for each simulation : 5001

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 0

 Sample size set up

Please input the smallest sample size : 20

Please input the largest sample size : 500

Please input the step size: 20

 Parameter estimates

Please input estimate of beta_0: -0.140

Please input estimate of sigma^2_e: 1.051

Files to perform power analysis for the 1 level model with the following sample criterion have been

created

 41

Sample size starts at 20 and finishes at 500 with the step size 20

1000 simulations for each sample size combination will be performed

Press any key to continue…

Here we see that we have selected a burn-in of 1000 iterations to allow the chains for

each model to settle down, and then a main run of 5001 iterations from which we will

obtain our power estimates. Note we use 5001, rather than 5000, for ease of

calculation of quantiles. The macros take a while to run in MLwiN (approximately 43

minutes on my machine) and if one selects columns `mpow0’, `spow0’, `zpow0’ and

`Samplesize’ to view in the View/Edit Data window, the results can be seen as

follows:

 42

Note that the three methods of estimating power give similar results, and the estimates

for power are broadly similar to those using IGLS. In addition, for small sample sizes,

the power from MCMC is systematically smaller than that for IGLS; again, this is due

to the bias (downwards) of ML variance estimates.

2.2.7 Using R

Whilst RIGLS and MCMC estimation are not offered in MLPowSim when producing

output for R (as opposed to producing output for MLwiN), power calculations for the

various models we have discussed above can be performed in R, using the default

estimation method of iteratively reweighted least squares (IWLS; see Section 1.5 for

notes on both this, and on running the outputted code in R). For illustrative purposes,

here we present the results of a power calculation conducted in R for the model we

studied in Section 2.2.1 (testing differences between the two genders, treating the

predictor as binary):4:

n zLb0 zpb0 zUb0 sLb0 spb0 sUb0 zLb1 zpb1 zUb1 sLb1 spb1 sUb1

50 0.088 0.107 0.126 0.090 0.091 0.092 0.109 0.130 0.151 0.123 0.124 0.126

100 0.124 0.146 0.168 0.141 0.142 0.143 0.175 0.200 0.225 0.208 0.209 0.211

150 0.171 0.196 0.221 0.192 0.193 0.195 0.257 0.285 0.313 0.291 0.293 0.295

200 0.212 0.238 0.264 0.240 0.241 0.243 0.339 0.369 0.399 0.369 0.371 0.372

250 0.266 0.294 0.322 0.289 0.291 0.293 0.417 0.448 0.479 0.444 0.446 0.448

300 0.313 0.342 0.371 0.335 0.337 0.339 0.501 0.532 0.563 0.512 0.514 0.516

350 0.354 0.384 0.414 0.382 0.384 0.386 0.579 0.609 0.639 0.576 0.578 0.581

400 0.422 0.453 0.484 0.428 0.430 0.432 0.619 0.649 0.679 0.634 0.636 0.638

450 0.452 0.483 0.514 0.471 0.473 0.475 0.670 0.698 0.726 0.686 0.687 0.689

500 0.489 0.520 0.551 0.511 0.513 0.515 0.727 0.754 0.781 0.730 0.732 0.734

550 0.517 0.548 0.579 0.549 0.551 0.553 0.751 0.777 0.803 0.770 0.771 0.773

600 0.546 0.577 0.608 0.588 0.590 0.592 0.767 0.792 0.817 0.806 0.808 0.809

650 0.570 0.600 0.630 0.622 0.624 0.626 0.796 0.820 0.844 0.837 0.838 0.839

700 0.620 0.650 0.680 0.653 0.655 0.657 0.873 0.892 0.911 0.862 0.863 0.864

750 0.652 0.681 0.710 0.683 0.685 0.687 0.853 0.874 0.895 0.884 0.885 0.886

800 0.659 0.688 0.717 0.711 0.713 0.714 0.865 0.885 0.905 0.903 0.904 0.905

850 0.681 0.709 0.737 0.738 0.739 0.741 0.908 0.924 0.940 0.920 0.921 0.921

900 0.736 0.762 0.788 0.761 0.763 0.764 0.921 0.936 0.951 0.933 0.934 0.934

950 0.780 0.805 0.830 0.782 0.784 0.785 0.947 0.959 0.971 0.944 0.945 0.945

1000 0.810 0.833 0.856 0.803 0.805 0.806 0.941 0.954 0.967 0.954 0.954 0.955

1050 0.787 0.811 0.835 0.823 0.824 0.825 0.936 0.950 0.964 0.962 0.963 0.963

1100 0.836 0.858 0.880 0.840 0.841 0.843 0.958 0.969 0.980 0.969 0.969 0.970

1150 0.856 0.876 0.896 0.856 0.857 0.858 0.976 0.984 0.992 0.975 0.975 0.975

1200 0.846 0.867 0.888 0.870 0.871 0.872 0.975 0.983 0.991 0.979 0.979 0.980

1250 0.872 0.891 0.910 0.883 0.884 0.885 0.973 0.981 0.989 0.983 0.983 0.983

1300 0.888 0.906 0.924 0.894 0.895 0.896 0.994 0.997 1.000 0.986 0.986 0.986

1350 0.891 0.909 0.927 0.904 0.905 0.906 0.981 0.988 0.995 0.988 0.989 0.989

1400 0.889 0.907 0.925 0.915 0.916 0.917 0.985 0.991 0.997 0.991 0.991 0.991

1450 0.896 0.913 0.930 0.923 0.924 0.924 0.979 0.986 0.993 0.992 0.992 0.993

1500 0.908 0.924 0.940 0.932 0.933 0.934 0.986 0.992 0.998 0.994 0.994 0.994

Here we see the sample size indicated in the column on the far left, with the power

estimates (together with upper and lower bounds) of the intercept and the predictor in

the remaining columns, for each method of power calculation. As discussed in Section

1.5.1, ‘z’ and ‘s’ denote the zero/one and standard error methods, respectively, whilst

4 Note that to aid the reader, we have widened the spaces between columns relating to different

predictors/methods, and have formatted the power estimates in bold.

 43

‘p’, ‘L’ and ‘U’ denote the power estimate, and the lower and upper bounds,

respectively, whilst ‘b0’ and ‘b1’ denote the intercept (β0) and predictor (β1). The

results indicate that sampling around 600 pupils should provide a power of 0.8 for the

gender predictor (columns ‘zpb1’ and ‘spb1’). These findings are very similar to the

results we found earlier when using MLwiN (Section 2.2.1), although performing the

above power calculation in R is computationally more expensive (taking

approximately 9 minutes (for R) versus a minute or so (for MLwiN) on my machine).

 44

2.3 Variance Components and Random Intercept Models

We now turn our attention to multilevel data, as this is one of the chief motivations in

writing MLPowSim. This is because apart from simple cases, such as those described

in Sections 2.3.1 and 2.3.2, when we move to multilevel modelling, standard sample

size formulae do not exist. In Section 2.3.1 we will discuss a specific formula – the

design effect formula – that can be used for scaling up sample sizes in variance

components models to account for clustering; we will compare results from that

formula with MLPowSim. In Section 2.3.2 we will discuss the PINT modelling

software that can be used to fit (balanced) two-level nested models, and we will again

compare results between PINT and MLPowSim.

Before we begin, however, please note that in this section we are considering random

intercepts models – i.e. models that can be written as follows:

𝑦𝑖𝑗 = 𝑋𝑖𝑗
𝑇 𝛽 + 𝑢𝑗 + 𝑒𝑖𝑗, 𝑢𝑗~𝑁(0, 𝜎𝑢

2), 𝑒𝑖𝑗~𝑁(0, 𝜎𝑒
2)

where j indexes clusters (schools, in our example) and i indexes units within clusters

(pupils, in our example). We also assume that the uj and the eij are independent, and

we have J clusters with the jth cluster containing nj units.

2.3.1 The Design Effect formula

In the case of a model where we test just a mean against some known constant (as

described in the introductory chapter), but with clustering in the data (i.e. a variance

components model) and balance in the clusters (i.e. nj=nC for all j where nC is a

common cluster size), there is a simple scaling formula that can be used.

The design effect formula requires an estimate of ρ, the intra-class correlation. This is

a measure of how much correlation exists within clusters. If we initially work out a

required sample size without accounting for clustering, then to subsequently account

for clustering we need to multiply by the Design effect = 1 + (nC-1)ρ where nC is the

cluster size.

To see this in practice, we will return to the introductory example in which we

estimated sample sizes to show that boys do significantly worse at age 16 than

average, with a power of 0.8. The tutorial dataset consists of 65 schools with 4059

pupils in total, leaving an average cluster sample size of 62, but 60% of these pupils

are, on average, girls and so we will now consider a (balanced) analysis where we

take samples of between 10 and 60 boys from each school and we visit between 10

and 50 schools. When we look at the model fitted to all the boys in the tutorial dataset

(accounting for clustering) we get an estimate of -0.177. The estimates of the level 1

and level 2 variances are 0.916 and 0.151, respectively.

If we assume a total variance of 0.916+0.151 = 1.067, we can then repeat our

calculations from Section 2.1.1 to give:

𝛾 = 2.802𝑆𝐸(𝛾)

 45

→ 0.177 = 2.802 ×
√1.067

√𝑛
→ √𝑛 =

2.89

0.177
= 16.352

→ 𝑛 = 267.4

which, due to the increased parameter estimate, is smaller than in Chapter 1. With the

design effect formula we can now work out total sample sizes required for clusters of

sizes 10 to 60. Note that ρ has the formula:

𝜌 =
𝜎𝑢

2

𝜎𝑢
2+𝜎𝑒

2 =
0.151

1.067
= 0.142 in our example.

Cluster size Design formula Total sample size Number of clusters

10 2.278 610 61

20 3.698 989 50

30 5.118 1369 46

40 6.538 1749 44

50 7.958 2128 43

60 9.378 2508 42

We will now show how to fit this model using MLPowSim to confirm that it gives

similar sample sizes. Below, we show how to set up this model (to generate output for

MLwiN):

 Welcome to MLPowSim

Please input 0 to generate R code or 1 to generate MLwiN macros: 1

 Please choose model type

1. 1-level model

2. 2-level balanced data nested model

3. 2-level unbalanced data nested model

4. 3-level balanced data nested model

5. 3-level unbalanced data nested model

6. 3-classification balanced cross-classified model

7. 3-classification unbalanced cross-classified model

Model type : 2

Please input the random number seed: 1

Please input the significant level for testing the parameters: 0.025

Please input number of simulations per setting: 1000

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

Do you want to have a random intercept in your model (1=YES 0=NO)? 1

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 0

 Sample size set up

Please input the smallest number of units for the second level: 10

Please input the largest number of units for the second level: 50

Please input the step size for the second level: 10

 46

Please input the smallest number of units for the first level per second level: 10

Please input the largest number of units for the first level per second level: 60

Please input the step size for the first level per second level: 10

 Parameter estimates

Please input estimate of beta_0: -0.177

Please input estimate of sigma^2_u: 0.151

Please input estimate of sigma^2_e: 0.916

Files to perform power analysis for the 2 level nested model with the following sample criterion have

been created

Sample size in the first level starts at 10 and finishes at 60 with the step size 10

Sample size in the second level starts at 10 and finishes at 50 with the step size 10

1000 simulations for each sample size combination will be performed

Press any key to continue…

If we run the macros in MLwiN, we can view the following results via the View or

edit data menu option:

 47

Looking at the power estimates we see that with 40 schools (see the column headed

‘N-level 2’), only a cluster size of 60 produces a power around 0.8, but for 50 schools

 48

we have all bar cluster size 10 producing a power above 0.8; this corresponds to the

design effect table where the required number of schools for the various cluster sizes

is between 40 and 50 for cluster sizes greater than 10.

2.3.2 PINT

The PINT program (Bosker, Snijders and Guldemond, 2003) calculates Power IN

Two-level designs and is available at http://stat.gamma.rug.nl/snijders/. PINT takes

user input detailing the proposed design, including effect sizes and anticipated

variabilities, and for a range of sample sizes, both for the clusters and within clusters,

it gives standard error estimates for the fixed effect parameters in the model. The

mathematics that it uses to construct its approximation to the standard errors can be

found in Snijders and Bosker (1993). It is very fast for the models it covers, as it is

simply deriving matrix formulae, but it has some limitations: for example, it only

deals with normal response models with equal-sized (balanced) clusters and only one

set of clusters.

We will compare the results we get from MLPowSim to PINT in the remaining

examples in this section.

2.3.3 Multilevel two sample t-test example

We earlier studied power calculations pertaining to the hypothesis that girls did better

than boys, and we saw in Section 2.2.1 how to test this hypothesis with independent

samples of girls and boys. We now look at what happens when the girls and boys are

clustered together in schools. We will again use the tutorial dataset example to get

hold of our parameter estimates. For this model, the tutorial example gives estimates

of the intercept and female effects of -0.161 and 0.262, respectively (note in the one-

level case, these were -0.140 and 0.234), and the split of the variability is 0.161 at

school level with 0.839 left as residual variability.

We will consider two methods of describing the variability in the predictor variable of

gender. Firstly, as in Section 2.2.1, we will assume a normal approximation to the

Binomial with probability of 0.6 of being a girl, with a mean of 0.6 and a variance of

0.24. Secondly, we will take account of clustering by assuming the variability is split

into 0.12 between schools, with 0.12 left as residual variability. In reality, the tutorial

dataset has some single sex schools which can explain this clustering, and which we

will examine in Section 2.3.4.

Below, we give details of the MLPowSim inputs which have changed from

previously:

Model type: 2

Please input the random number seed: 1

Please input the significance level for testing the parameters: 0.025

Please input number of simulations per setting: 1000

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1

http://stat.gamma.rug.nl/snijders/

 49

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

Do you want to have a random intercept in your model (1=YES 0=NO)? 1

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 1

How many explanatory variables do you want to include in your model? 1

Please choose a type for the predictor x1 (1=Binary 2=Continuous): 2

Assuming normality, please input its parameters here:

The mean of the predictor x1: 0.6

The variance of the predictor x1 at level 1: 0.24

The variance of the predictor x1 at level 2: 0

Do you want the coefficient associated with explanatory variable x1 to be random (1=YES 0=NO) ? 0

 Sample size set up

Please input the smallest number of units for the second level: 10

Please input the largest number of units for the second level: 50

Please input the step size for the second level: 10

Please input the smallest number of units for the first level per second level: 10

Please input the largest number of units for the first level per second level: 60

Please input the step size for the first level per second level: 10

 Parameter estimates

Please input estimate of beta_0: -0.161

Please input estimate of beta_1: 0.262

Please input estimate of sigma^2_u: 0.161

Please input estimate of sigma^2_e: 0.839

Files to perform power analysis for the 2 level nested model with the following sample criterion have

been created

Sample size in the first level starts at 10 and finishes at 60 with the step size 10

Sample size in the second level starts at 10 and finishes at 50 with the step size 10

1000 simulations for each sample size combination will be performed

Press any key to continue…

If we run the macros in MLwiN, and look at the following six columns in the View

Data window, we see the following:

 50

Here the interesting thing is that if we look at ‘zpow1’ or ‘spow1’, then the power

values obtained for equal-sized designs (for example 10 schools with 60 students, 20

schools with 30 students and 30 schools with 20 students) are approximately equal at

0.92 (note numbers of students and schools are stored as ‘N-level 1’ and ‘N-level 2’,

respectively). This is not the case for the intercepts, where the power goes up from

around 0.23 for 10 schools with 60 students, to around 0.41 for 30 schools with 20

students. This is because in a random intercept model, the clustering is only affecting

the overall response and not the relationship with predictor variables. It appears here

that a sample size somewhere between 400 and 500, regardless of clustering, will

result in a power of 0.8; this is smaller than in Section 2.2.1, but this will be mainly

 51

due to the increase in the gender estimate we are using (0.262 instead of 0.234). To

illustrate, if we consider the one-level calculation with the new gender estimate and

total variability, we see that indeed the estimated sample size would be between 400

and 500, since

𝛾 = 2.802𝑆𝐸(𝛾)

→ 0.262 = 2.802 × √𝜎2/0.4𝑛 + 𝜎2/0.6𝑛

→ 0.262 = 2.802 × √1/0.24𝑛

→ 𝑛 = (2.802/0.262)2 × 1/0.24 = 476.6

This method of calculating the sample size is, of course, not appropriate here, and it

transpires that when we fix the number of schools to 50 then a power of 0.8 is

achieved somewhere between 8 and 9 pupils per school, which is smaller than the 477

obtained here. However, what we are illustrating is the fact that it is not necessarily

true that accounting for a clustered design, as in a variance components model,

automatically requires a larger sample size.

If we now consider the effect of changing the variability of the predictor so that it is

split between the 2 levels, we will need to rerun MLPowSim and change the

following lines:

The variance of the predictor x1 at level 1: 0.12

The variance of the predictor x1 at level 2: 0.12

The rest of the inputs will be as before. Running this in MLwiN gives the following:

 52

Here we see (by looking at ‘zpow1’) that increasing the number of schools for a fixed

sample size increases power. For example, 10 schools each with 20 pupils has a

power of 0.346, whilst 20 schools each with 10 pupils has a power of 0.375. The

effect in this example is rather small but what is more impressive is the effect on the

overall sample size required. We now see that to get a power of 0.8, we would need

nearly 800 pupils, as opposed to the estimate of between 400 and 500 we found when

we didn’t account for the variability between the gender ratios in schools.

We will now confirm these findings with PINT.

 53

PINT requires a text file as input, containing all the information about the design we

are interested in. For the example that contains all the variability in gender at level 1

we need to create a text file as follows:

 1 1 0

 10 -10 60

 10 50

 0.839

 0.161

 0.24

 0.0

 0.6

Here we have, in order:

1 for the number of level 1 predictors (in this case gender);

1 for the number of level 1 predictors that are not also random effects;

0 for the number of level 2 predictors;

10 for the smallest number of level 1 units per level 2 unit;

-10 for the step size at level 1;

60 for the largest number of level 1 units per level 2 unit;

10 for the smallest number of level 2 units;

50 for the largest number of level 2 units (note a step size of 2 is chosen here

automatically);

0.839 for the level 1 variance;

0.161 for the level 2 variance;

0.24 for the level 1 variance associated with the predictor (gender);

0 for the level 2 variance associated with the predictor (gender);

0.6 for the mean of the gender predictor.

As PINT only calculates the standard errors, the fixed effect estimates are not required

as inputs. Loading up PINT (version 2.12) we are first asked for the input file in a

dialogue box, and then are greeted by a screen as follows:

 54

Clicking on the OK button will result in many windows appearing, each asking the

user to confirm (or change) the inputs. If you click on OK at each prompt, PINT will

run and store the output in a file named gender.out (assuming you have named the

input text file gender.dat, as we have).

The file gender.out contains a large amount of background information on the input

settings before giving a table of standard error estimates. We show this for every

combination with the number of clusters as a multiple of 10 to save some space:

The following table contains the standard errors (s.e.):

Fixed: s.e. of regr. coeff.s of level-1 variables with a fixed

effect only.

Const: s.e. of the intercept.

 Sample sizes Standard errors

 N*n N n Fixed Const

 100 10 10 0.18697 0.19255

 200 20 10 0.13221 0.13615

 300 30 10 0.10795 0.11117

 400 40 10 0.09349 0.09627

 500 50 10 0.08362 0.08611

 200 10 20 0.13221 0.16306

 400 20 20 0.09349 0.11530

 600 30 20 0.07633 0.09414

 800 40 20 0.06610 0.08153

 1000 50 20 0.05913 0.07292

 300 10 30 0.10795 0.15196

 600 20 30 0.07633 0.10745

 900 30 30 0.06232 0.08773

 1200 40 30 0.05397 0.07598

 1500 50 30 0.04828 0.06796

 55

 400 10 40 0.09349 0.14610

 800 20 40 0.06610 0.10330

 1200 30 40 0.05397 0.08435

 1600 40 40 0.04674 0.07305

 2000 50 40 0.04181 0.06534

 500 10 50 0.08362 0.14246

 1000 20 50 0.05913 0.10073

 1500 30 50 0.04828 0.08225

 2000 40 50 0.04181 0.07123

 2500 50 50 0.03739 0.06371

 600 10 60 0.07633 0.13999

 1200 20 60 0.05397 0.09898

 1800 30 60 0.04407 0.08082

 2400 40 60 0.03817 0.06999

 3000 50 60 0.03414 0.06260

We can now use these output standard errors to convert into an equivalent power. We

have to do this by hand as this is not done explicitly by the PINT software.

We earlier had the formula
𝛾

𝑆𝐸(𝛾)
= 𝑍1−𝛼/2 + 𝑍1−𝛽

→ 𝑍1−𝛽 =
𝛾

𝑆𝐸(𝛾)
− 𝑍1−𝛼/2

for our example we have

𝑍1−𝛽 =
0.262

𝑆𝐸(𝛾)
− 1.96

and so for each of the standard errors given in the 4th column of the above outcome

we can use the above formula and look up the power in the normal tables. For a power

of 0.8 we find we require a standard error of 0.0935, or less, in this example. Looking

at the PINT column we see that this value would occur at around 400 pupils in total,

as we observed in MLPowSim. We can also see in the PINT output that, for all

designs with exactly 400 pupils, the same standard error and hence the same power is

obtained for the gender predictor. This was suggested earlier, and MLPowSim

appears to give this result (with some Monte Carlo error), but the PINT approximate

standard errors are identical for each scenario.

We can also look at the second scenario where we have the variance of the gender

predictor split between the two levels.

The PINT input file is now as follows:

 1 1 0

 10 -10 60

 10 50

 0.839

 0.161

 0.12

 0.12

 0.6

If we run this input file in PINT, we can again look at the output standard errors:

 56

The following table contains the standard errors (s.e.):

Fixed: s.e. of regr. coeff.s of level-1 variables with a fixed

effect only.

Const: s.e. of the intercept.

 Sample sizes Standard errors

 N*n N n Fixed Const

 100 10 10 0.22820 0.20794

 200 20 10 0.16136 0.14703

 300 30 10 0.13175 0.12005

 400 40 10 0.11410 0.10397

 500 50 10 0.10205 0.09299

 200 10 20 0.17021 0.17528

 400 20 20 0.12035 0.12394

 600 30 20 0.09827 0.10120

 800 40 20 0.08510 0.08764

 1000 50 20 0.07612 0.07839

 300 10 30 0.14248 0.16188

 600 20 30 0.10075 0.11447

 900 30 30 0.08226 0.09346

 1200 40 30 0.07124 0.08094

 1500 50 30 0.06372 0.07239

 400 10 40 0.12519 0.15440

 800 20 40 0.08852 0.10918

 1200 30 40 0.07228 0.08914

 1600 40 40 0.06260 0.07720

 2000 50 40 0.05599 0.06905

 500 10 50 0.11304 0.14959

 1000 20 50 0.07993 0.10578

 1500 30 50 0.06526 0.08637

 2000 40 50 0.05652 0.07480

 2500 50 50 0.05055 0.06690

 600 10 60 0.10388 0.14623

 1200 20 60 0.07345 0.10340

 1800 30 60 0.05997 0.08443

 2400 40 60 0.05194 0.07311

 3000 50 60 0.04646 0.06540

Here we see that – as with MLPowSim – the standard errors, and hence power

associated with the sample sizes, does depend on the design, and for equivalent total

numbers of pupils the greater the number of schools the smaller the standard error and

the larger the power. Looking for a standard error of 0.0935 or smaller we see that this

occurs when we have 40 pupils in 20 schools, 20 pupils in 40 schools, and so on, as

we found with MLPowSim.

We will occasionally compare our results from MLPowSim with those from PINT in

later examples, but as this is a book about MLPowSim our coverage of PINT will be

brief. If the reader requires more information regarding PINT, there is a user’s guide

available from https://www.stats.ox.ac.uk/~snijders/multilevel.htm#progPINT which

provides further details.

2.3.4 Higher level predictor variables

https://www.stats.ox.ac.uk/~snijders/multilevel.htm#progPINT

 57

Continuing with our topic of the effect of gender on exam score, we saw in the last

example that differential sex ratios between schools had an impact on our sample size

calculation. In fact we saw the impact of an ICC for gender of 0.5: i.e. 50% of the

variability between “pupil’s gender” is due to schools. This high ICC is partly due to

the large numbers of single sex schools in the tutorial dataset. In the MLwiN User’s

Manual they study another hypothesis concerning the effect of single sex school

attendance, as it appears that such pupils do better, in general, than pupils in a mixed

school.

Here we will test a version of this hypothesis to demonstrate how to use MLPowSim

with predictors at the cluster (school) level. In the tutorial dataset there is a categorical

variable school gender which takes 3 values: mixed schools, boys’ schools and girls’

schools. As the current version of MLPowSim only deals with continuous and binary

variables, and in fact the effects of boys’ schools and girls’ schools are similar in

magnitude, we will create a version of this predictor that purely differentiates between

mixed and single-sex schools. Note that in Chapter 5, we will revisit this as an

example of how to modify the macros produced by MLPowSim to deal with

categorical predictors at higher levels.

We fitted a model with this predictor to the tutorial dataset and the result was

estimates of -0.101 for the intercept (mixed schools) and 0.193 for the single-sex

schools predictor. The model had estimates of 0.159 and 0.848 for level 2 and residual

(level 1) variances, respectively. Of the 65 schools in the dataset, we have 30 single

sex schools, but to express the variable as a level 2 predictor we (currently) have to

convert this to a continuous variable with mean 30/65 = 0.462, and variance

(0.462)*(1-0.462) = 0.249.

We will use these numbers to set up an MLPowSim scenario. For illustration, we will

assume a constant 40 pupils per school, and then vary the number of schools.

After choosing a balanced 2-level model, and the usual numbers of simulations, and

the usual random seed and significance level, we enter the following inputs when

prompted:

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

Do you want to have a random intercept in your model (1=YES 0=NO)? 1

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 1

How many explanatory variables do you want to include in your model? 1

Please choose a type for the predictor x1 (1=Binary 2=Continuous): 2

Assuming normality, please input its parameters here:

The mean of the predictor x1: 0.462

The variance of the predictor x1 at level 1: 0

The variance of the predictor x1 at level 2: 0.249

Do you want the coefficient associated with explanatory variable x1 to be random (1=YES 0=NO) ? 0

 Sample size set up

Please input the smallest number of units for the second level: 10

Please input the largest number of units for the second level: 200

Please input the step size for the second level: 10

Please input the smallest number of units for the first level per second level: 40

 58

Please input the largest number of units for the first level per second level: 40

Please input the step size for the first level per second level: 10

 Parameter estimates

Please input estimate of beta_0: -0.101

Please input estimate of beta_1: 0.193

Please input estimate of sigma^2_u: 0.159

Please input estimate of sigma^2_e: 0.848

Files to perform power analysis for the 2 level nested model with the following sample criterion have

been created

Sample size in the first level starts at 10 and finishes at 200 with the step size 10

Sample size in the second level starts at 40 and finishes at 40 with the step size 10

1000 simulations for each sample size combination will be performed

Press any key to continue…

If we run the macro code produced in MLwiN, we will get the following output in the

View/Edit Data window:

Here we see that we need around 160 schools of size 40 to detect a single sex school

effect which is more schools than are present in the real tutorial dataset! This is not

 59

very surprising, since in the real dataset the average pupils per school is larger, and

the effect of single sex schools only has a p-value of 0.03 on a 1-sided test.

So far, we have not mentioned graphs in our discussion of multilevel models. As

described in Section 1.4.3, to plot the power curves we need to execute the graphing

macro file graphs.txt in MLwiN, and then view the resulting plot via Customised

graph(s) from the Graphs menu. This will produce the following:

Note, by default the graphs.txt macro plots separate curves for each parameter, and

estimation method, against column c210 (‘N-level 2’: the number of schools). This

means that if we vary the number of pupils and the number of schools we will get a

messy graph, but in this case, as we have fixed the number of pupils as 40 per school,

this is not the case. Once again, we observe that the brighter curves, plotting results

from the SE method, are much smoother than the 0/1 method.

We can compare our results with PINT. On this occasion, since the parameter

estimate is 0.193, we are looking for a standard error of 0.0689 for a power of 0.8.

 60

We will use the following input file:

 0 0 1

 40 -10 40

 10 150

 0.848

 0.159

 0.249

 0.462

which results in the following output file:

Sample sizes Standard errors

 N*n N n Const Group

 400 10 40 0.18294 0.26902

 800 20 40 0.12936 0.19022

 1200 30 40 0.10562 0.15532

 1600 40 40 0.09147 0.13451

 2000 50 40 0.08181 0.12031

 2400 60 40 0.07468 0.10983

 2800 70 40 0.06914 0.10168

 3200 80 40 0.06468 0.09511

 3600 90 40 0.06098 0.08967

 4000 100 40 0.05785 0.08507

 4400 110 40 0.05516 0.08111

 4800 120 40 0.05281 0.07766

 5200 130 40 0.05074 0.07461

 5600 140 40 0.04889 0.07190

 6000 150 40 0.04723 0.06946

 6400 160 40 0.04573 0.06725

 6800 170 40 0.04437 0.06525

 7200 180 40 0.04312 0.06341

 7600 190 40 0.04197 0.06172

 8000 200 40 0.04091 0.06015

Here we see that around 160 schools results in the required reduction in standard

error, as we found with MLPowSim.

2.3.5 A model with 3 predictors

So far we have looked at predictors in isolation, but as we saw in Section 2.2 for

single level models, if we are interested in testing many hypotheses we might need to

consider a model with many predictor variables. For the final model considered in this

section we will look at three predictor variables: gender, school gender, and the

London Reading Test (LRT) score. We have discussed the first two in this section

already, and encountered the LRT when considering single level models (e.g. Section

2.2.2). Our hypotheses here will concern the effect of gender and school gender when

accounting for intake ability, and conversely the effect of intake ability when

accounting for gender and school gender.

If we fit a variance components model to the tutorial dataset with these three predictor

variables, we will get the following:

 61

Here we see for the real data that there are significant effects for all three predictor

variables. As we discovered earlier for one-level models, the relationship of the

response with LRT is particularly strong, and we need very small sample sizes to find

a significant effect. In order to get accurate sample size estimates we require

information about the variability (at both levels) and correlation between the

predictors. To estimate these from the real data we could look at school means of the

three predictors, and their variability and correlations. We could also look at fitting a

multilevel multivariate model for the two predictors, gender and LRT, to get the

within covariance matrix. In the inputs that follow, we will take estimates obtained

from such an approach. Note that this will result in an assumed multivariate normal

distribution for the predictors, which is an approximation for the binary variables. In

Chapter 5 we discuss what may be a better approach of dealing with the school gender

and gender predictors.

After choosing a balanced 2-level model, and the usual numbers of simulations, and

the usual random seed and significance level, we enter the following inputs when

prompted:

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

Do you want to have a random intercept in your model (1=YES 0=NO)? 1

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 1

How many explanatory variables do you want to include in your model? 3

Please choose a type for the predictor x1 (1=Binary 2=Continuous 3=all MVN): 3

Assuming multivariate normality, please input its parameters here:

The mean of the predictor x1: 0.6

The mean of the predictor x2: 0.462

The mean of the predictor x3: 0

The variance matrix of the predictors at level 1

The element [1,1] : 0.120

The element [2,1] : 0

The element [2,2] : 0

The element [3,1] : 0.020

The element [3,2] : 0

 62

The element [3,3] : 0.902

The variance matrix of the predictors at level 2

The element [1,1] : 0.125

The element [2,1] : 0.045

The element [2,2] : 0.249

The element [3,1] : 0.013

The element [3,2] : -0.006

The element [3,3] : 0.116

Do you want the coefficient associated with explanatory variable x1 to be random (1=YES 0=NO) ? 0

Do you want the coefficient associated with explanatory variable x2 to be random (1=YES 0=NO) ? 0

Do you want the coefficient associated with explanatory variable x3 to be random (1=YES 0=NO) ? 0

 Sample size set up

Please input the smallest number of units for the second level: 10

Please input the largest number of units for the second level: 150

Please input the step size for the second level: 10

Please input the smallest number of units for the first level per second level: 40

Please input the largest number of units for the first level per second level: 40

Please input the step size for the first level per second level: 10

 Parameter estimates

Please input estimate of beta_0: -0.167

Please input estimate of beta_1: 0.166

Please input estimate of beta_2: 0.165

Please input estimate of beta_3: 0.560

Please input estimate of sigma^2_u: 0.081

Please input estimate of sigma^2_e: 0.562

Files to perform power analysis for the 2 level nested model with the following sample criterion have

been created

Sample size in the first level starts at 10 and finishes at 150 with the step size 10

Sample size in the second level starts at 40 and finishes at 40 with the step size 10

1000 simulations for each sample size combination will be performed

Press any key to continue…

This will create the macros needed to perform this simulation exercise in MLwiN. To

run these macros takes a little longer than the earlier examples (a few minutes). If we

run the macros and look at the View/Edit Data window with the following five

columns chosen (i.e. only the number of schools and the powers from the SE method),

we have:

 63

So here we see that to gain a power of 0.8 we need less than 10 schools for the LRT

predictor (‘spow3’), around 30 for the gender predictor (‘spow1’), and between 110

and 120 for the school gender predictor (‘spow2’).

Again we can plot the power curves associated with the three predictors and the

intercept, with the following results:

 64

Here we see the intercept in dark blue, the gender effect in green, the school gender

effect in cyan and the LRT predictor in red.

The PINT input code for this model is as follows:

2 2 1

40 -10 40

10 150

0.562

0.081

0.120

0.020 0.902

0.249

0.045 0.125

-0.006 0.013 0.116

0.6 0.0

0.462

 65

which results in the following output:

Sample sizes Standard errors

 N*n N n Fixed Fixed Const Group

 400 10 40 0.10136 0.03917 0.14280 0.19624

 800 20 40 0.07168 0.02770 0.10097 0.13876

 1200 30 40 0.05852 0.02262 0.08244 0.11330

 1600 40 40 0.05068 0.01959 0.07140 0.09812

 2000 50 40 0.04533 0.01752 0.06386 0.08776

 2400 60 40 0.04138 0.01599 0.05830 0.08012

 2800 70 40 0.03831 0.01481 0.05397 0.07417

 3200 80 40 0.03584 0.01385 0.05049 0.06938

 3600 90 40 0.03379 0.01306 0.04760 0.06541

 4000 100 40 0.03205 0.01239 0.04516 0.06206

 4400 110 40 0.03056 0.01181 0.04306 0.05917

 4800 120 40 0.02926 0.01131 0.04122 0.05665

 5200 130 40 0.02811 0.01086 0.03960 0.05443

 5600 140 40 0.02709 0.01047 0.03816 0.05245

 6000 150 40 0.02617 0.01011 0.03687 0.05067

Here the 4th column corresponds to gender, the 5th to LRT and the last to school

gender. As we have different parameter estimates for each variable, for powers of 0.8

we require standard errors of 0.059, 0.200 and 0.059, respectively. Looking at the

columns we see that these occur at around 30 schools for gender, with less than 10

schools for LRT and between 110 and 120 schools for school gender which agrees

exactly with the results from MLPowSim!

Once you have figured out how to specify your model in PINT, and how to perform

the post output translation from parameter estimates and standard errors to powers, it

is clear that PINT is quicker than the simulation approach, but it is restricted to 2-level

balanced models and to normal responses, neither of which restrictions exist with

MLPowSim. We will briefly consider one of these restrictions in the next section.

2.3.6 The effect of balance

One of the features that PINT, in particular, relies on when constructing sample size

calculations is that the nested design is balanced. Here we mean that we have the

same number of level 1 units within each level 2 unit. This would seem a sensible

strategy to adopt when collecting data, as there isn’t usually a reason to pick more

level 1 units from specific clusters. In practice, though, things don’t always pan out

that way: for example, in an education setting, some of the pupils chosen in the

sample may be absent on the day of the test, resulting in non-responses. It’s also

possible that, for some reason, a structured approach is adopted: for example, for

some schools more pupils may be chosen than for other schools – perhaps certain

school types are rarer and so we might wish to over-sample pupils from such schools,

for instance. We will illustrate both these possibilities using the example we examined

in Section 2.3.3, in which we compared boys’ and girls’ performance. There we saw

that to have a power of 0.8 of detecting a positive effect on attainment for girls, we

needed a sample size of nearly 800, assuming that the proportion of girls varied

between schools. We will now investigate the impact of pupil non-response and

structured sampling on this figure.

 66

2.3.6.1 Pupil non-response

Here we will need to make several assumptions, firstly that non-response is at random

and does not depend on (i) the exam response (ii) the gender of the pupils and (iii) the

school they attend. We will also assume that the parameter estimates we used earlier

(0.161 for the intercept, 0.262 for the gender predictor, and of variabilities 0.161 at

level 2, and 0.839 at level 1) still hold. We might think that some of these

assumptions could be incorrect, in particular the lack of a relationship between non-

response and potential exam response. If so, we could adjust our simulation in some

respect to account for this. For example, it’s possible that the effect of greater

numbers of low achievers dropping out might reduce variability in the response,

might increase the intercept, and might reduce the gender effect, since more of the

low achievers are boys and so more boys might be less likely to respond. However,

for our present purposes let us assume that the parameter estimates cited above are for

the population who did respond and continue. We will now assume that we expect

around 20% of pupils not to respond in the study.

The MLPowSim inputs are similar to those in Section 2.3.3, but are given in full here:

 Welcome to MLPowSim

Please input 0 to generate R code or 1 to generate MLwiN macros: 1

 Please choose model type

1. 1-level model

2. 2-level balanced data nested model

3. 2-level unbalanced data nested model

4. 3-level balanced data nested model

5. 3-level unbalanced data nested model

6. 3-classification balanced cross-classified model

7. 3-classification unbalanced cross-classified model

Model type : 3

Please input the random number seed: 1

Please input the significance level for testing the parameters: 0.025

Please input number of simulations per setting: 1000

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

Do you want to have a random intercept in your model (1=YES 0=NO)? 1

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 1

How many explanatory variables do you want to include in your model? 1

Please choose a type for the predictor x1 (1=Binary 2=Continuous): 2

Assuming normality, please input its parameters here:

The mean of the predictor x1: 0.6

The variance of the predictor x1 at level 1: 0.12

The variance of the predictor x1 at level 2: 0.12

Do you want the coefficient associated with explanatory variable x1 to be random (1=YES 0=NO) ? 0

 67

 Sample size set up

Please input the smallest number of units for the second level: 10

Please input the largest number of units for the second level: 50

Please input the step size for the second level: 10

Please choose one of the following scenarios for unbalance:

1: Binomial with the fixed trial and probability of non-response for first level nested in second

2: Fixed sample with your preference

Scenario type: 1

Please enter your probability of non-response: 0.2

Please input the smallest number of units for the first level per second level: 10

Please input the largest number of units for the first level per second level: 60

Please input the step size for the first level per second level: 10

 Parameter estimates

Please input estimate of beta_0: -0.161

Please input estimate of beta_1: 0.262

Please input estimate of sigma^2_u: 0.161

Please input estimate of sigma^2_e: 0.839

Files to perform power analysis for the 2 level unbalanced nested model with the following sample

criterion have been created

Sample size in the first level starts at 10 and finishes at 60 with the step size 10

Sample size in the second level starts at 10 and finishes at 50 with the step size 10

1000 simulations for each sample size combination will be performed

Press any key to continue…

We can now run this scenario in MLwiN and look at the power estimates that it

produces in the View/Edit Data window:

 68

Here we see that compared to the power estimates in Section 2.3.3, the values are

reduced, as might be expected given the smaller actual sample size compared to the

designed sample size. As we have a non-response probability of 0.2, we could

consider the effect of looking at a sampling scheme with step sizes of 8 pupils per

school as opposed to 10: i.e. 8, 16, 24, 32, 40 and 48 in a balanced model. If we do

this by rerunning MLPowSim and MLwiN, we will get the following table of powers:

 69

Here we see that the results are very close to those from the non-response scenario. Of

course, for this example we have chosen a non-response probability that corresponds

in expectation to a whole number sample size per cluster, and it would have been

quicker to use PINT to establish sample sizes. However, if the non-response

probability had resulted in an average of 8.3 pupils per cluster, for instance, it would

not have been possible to use PINT, although we could still have used PINT with

sample sizes 8 per cluster and 9 per cluster, and then interpolated between the two.

 70

2.3.6.2 Structured sampling

The other option available in MLPowSim is for the user to specify the number of

clusters of each particular size. This might occur due to over-sampling specific

clusters, or the user may simply wish to get estimates of power for specific datasets

which are not balanced. We will consider the example in Section 2.3.6.1, and assume

that 80% of clusters are of size 30, but the other 20% are of size 60. We will consider

cases with 10, 20, 30, 40 and 50 schools.

The inputs will be almost the same as in Section 2.3.6.1, apart from where we specify

the unbalanced structure, as follows:

Please choose one of the following scenarios for unbalance:

1: Binomial with the fixed trial and probability of non-response for first level nested in second

2: Fixed sample with your preference

Scenario type : 2

Please choose how many distinct cluster sizes you want for second level units: 2

Unbalanced set up inside the second level with 10 level 2 units

How many (from 1 to 10) groups do you want to be in the class 1? 8

For class 1, please input the number of level 1 units: 30

How many (from 2 to 2) groups do you want to be in the class 2? 2

For class 2, please input the number of level 1 units: 60

Unbalanced set up inside the second level with 20 level 2 units

How many (from 1 to 20) groups do you want to be in the class 1? 16

For class 1, please input the number of level 1 units: 30

How many (from 4 to 4) groups do you want to be in the class 2? 4

For class 2, please input the number of level 1 units: 60

Unbalanced set up inside the second level with 30 level 2 units

How many (from 1 to 30) groups do you want to be in the class 1? 24

For class 1, please input the number of level 1 units: 30

How many (from 6 to 6) groups do you want to be in the class 2? 6

For class 2, please input the number of level 1 units: 60

Unbalanced set up inside the second level with 40 level 2 units

How many (from 1 to 40) groups do you want to be in the class 1? 32

For class 1, please input the number of level 1 units: 30

How many (from 8 to 8) groups do you want to be in the class 2? 8

For class 2, please input the number of level 1 units: 60

Unbalanced set up inside the second level with 50 level 2 units

How many (from 1 to 50) groups do you want to be in the class 1? 40

For class 1, please input the number of level 1 units: 30

How many (from 10 to 10) groups do you want to be in the class 2? 10

For class 2, please input the number of level 1 units: 60

The rest of the inputs are as before. As you can see, the procedure for inputting the

model structure is relatively laborious, and we would not anticipate that this form of

unbalanced design will be heavily-used in MLPowSim; however, the inputs only take

a minute or two to type in, which is quicker than the macros take to run, so it is only a

small overhead.

Running the resulting macros in MLwiN gives the following power estimates:

 71

If we compare the powers produced here with those produced for the balanced design

in Section 2.3.3, we can see that they lie somewhere between the powers for balanced

designs with 30 pupils per school and those with 40 pupils per school, as we might

expect given our design has on average 36 pupils per school.

2.4 Random slopes/ Random coefficient models

Random intercept models are a special case of two-level models where the only

relationship that is assumed different at the cluster level is the average effect or

intercept in the model. The effect of predictors is assumed constant across clusters in

a random intercept model. If we wish to allow for a different effect for a predictor in

each cluster then we will fit a random slopes model, or random coefficients model.

Note that the term ‘slope’ is generally reserved for continuous predictors where the

coefficient associated with the predictor can be thought of as the slope of a predicted

regression line. If such a regression were plotted for binary predictors, it would

essentially join up the predictions for the two states of the predictor, and so ‘random

coefficient model’ is a better term, meaning the effect of the binary predictor is

different for different groups.

We could go through lots of examples of random coefficient models in this section,

but we will limit ourselves to just one for brevity.

The tutorial dataset presents us with some problems when trying to find examples of

random slopes models that follow on from our earlier investigations. Firstly, the

gender predictor exhibits no significant between-school variability: i.e. the effect of

gender doesn’t vary across schools. This is possibly because many of the schools are

single sex, and so can give no information on the effect of gender within them – in

fact, the concept doesn’t make sense in such schools. Secondly, the school gender

predictor is a school-level predictor, and so cannot be treated as random at the school-

level, and finally the LRT predictor is such a strong predictor that we will only need

very small sample sizes regardless of any random slope.

We will therefore turn to a different example, again from an educational setting. Later

on, we will investigate this example further when we look at cross-classified models.

The example is used in the MLwiN User’s Guide (Rasbash et al, 2004) to illustrate

cross-classified modelling, and consists of exam scores for 3,435 secondary school

 72

pupils in Fife, Scotland. The response used is an attainment score for students at age

16, with the students nested within both primary school, and secondary school. For

the purposes of our example, we will consider the primary school nesting which

results in 3,435 pupils nested within 148 primary schools. We will again consider a

gender predictor (sex), which in this case has a significant fixed effect in the dataset,

but also exhibits variability in effect between primary schools: i.e. the size of the

differences in attainment between genders varies across schools.

The model fitted in MLwiN can be seen below:

We will use these values as fixed effect estimates, and variance estimates, for the

analysis that follows. We can also look at the variability in the predictor sex, assuming

it is normally distributed. This can be done in MLwiN, producing:

 73

So we see that MLwiN estimates no between-school variability in the ratio of boys to

girls. Given this, we will assume a binomial distribution for the predictor with

probability 0.494 of each pupil being a girl. We have on average 23 pupils per

primary school, and so we will investigate sample sizes of 5, 10, 15, 20 and 25 within

school, and numbers of schools ranging from 20 to 160, in steps of 20.

The inputs to MLPowSim are as follows:

 Welcome to MLPowSim

Please input 0 to generate R code or 1 to generate MLwiN macros: 1

 Please choose model type

1. 1-level model

2. 2-level balanced data nested model

3. 2-level unbalanced data nested model

4. 3-level balanced data nested model

5. 3-level unbalanced data nested model

6. 3-classification balanced cross-classified model

7. 3-classification unbalanced cross-classified model

Model type : 2

Please input the random number seed: 1

Please input the significance level for testing the parameters: 0.025

Please input number of simulations per setting: 1000

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

Do you want to have a random intercept in your model (1=YES 0=NO)? 1

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 1

How many explanatory variables do you want to include in your model? 1

Please choose a type for the predictor x1 (1=Binary 2=Continuous): 1

Please input probability of a 1 for x1 : 0.494

Do you want the coefficient associated with explanatory variable x1 to be random (1=YES 0=NO) ? 1

 74

 Sample size set up

Please input the smallest number of units for the second level: 20

Please input the largest number of units for the second level: 100

Please input the step size for the second level: 20

Please input the smallest number of units for the first level per second level: 5

Please input the largest number of units for the first level per second level: 25

Please input the step size for the first level per second level: 5

 Parameter estimates

Please input estimate of beta_0: 5.370

Please input estimate of beta_1: 0.495

There is more than one random effect in your model and so you need to enter variance/covariance

matrix.

Please input lower triangular entries (3 elements):

The element [1,1] : 1.064

The element [2,1] : 0.109

The element [2,2]: 0.180

Matrix is positive-definite

Please input estimate of sigma^2_e: 8.098

Files to perform power analysis for the 2 level nested model with the following sample criterion have

been created

Sample size in the first level starts at 5 and finishes at 25 with the step size 5

Sample size in the second level starts at 20 and finishes at 100 with the step size 20

1000 simulations for each sample size combination will be performed

Press any key to continue…

This will set up the model. If we now run the macros in MLwiN, and focus on the

columns for the gender predictor, we see the following:

 75

We see here that a power of greater than 0.8 is achieved by 25 pupils in 60 schools, 15

pupils in 80 schools, and 10-15 pupils in 100 schools. The power for 10 pupils in 100

schools is greater than that for 25 pupils in 40 schools, and so for the same total pupil

number it is better to have more clusters with less pupils per cluster.

To plot the curves, we can execute the macro file graphs.txt (see Section 1.4.3); this

produces the following graphs (via Customised graph(s) from the Graphs menu):

 76

This graph is not correct because the grouping of pupils within schools has not been

accounted for. To account for this we need to do the following:

The graphs will now look as follows:

In the Customised graph window select ds#1 (may already be selected)

Now choose column `N-level 1’ from the group pull down list.

Next select ds#2 by clicking on `zpow0’ in the Y list

Again choose column `N-level 1’ from the group pull down list

Next select ds#3 by clicking on the `spow0’ in the Y list

Again choose column `N-level 1’ from the group pull down list

Finally select ds#4 by clicking on the `spow1’ in the Y list

Again choose column `N-level 1’ from the group pull down list

Now click on the Apply button to redraw graphs.

 77

Here we have separate sets of lines for (from the bottom) 5 pupils per school, 10

pupils per school, and so on, up to 25 pupils per school.

We can compare results with those from a fitted model with no random slopes. A

random intercepts model for the actual data has the following estimates:

 78

If we use these estimates to set up a simulation study in MLPowSim, we will get the

results shown below in MLwiN. We can see that the designs with a power greater

than 0.8 are 20 pupils in 60 schools, 15 pupils in 80 schools, and between 10 and 15

pupils in 100 schools. The power of the equivalent designs appears to reduce when we

account for the random slopes, as we might expect. It also appears that having more

schools, each with fewer pupils but maintaining the total pupil number, tends to be

associated with reduced power. This is somewhat contrary to what one might expect,

and may be due to the binary predictor having more chance of being constant in small

clusters.

 79

It is possible to fit random coefficient models in the PINT package. However, as a

result of making the mathematics behind the approximate standard errors easier to

calculate, PINT has some restrictions. In particular, all predictors treated as random

coefficients must have mean zero. This makes sense for some predictors, where

centring is probably a sensible modelling option, however for categorical predictors,

e.g. gender, a centred gender indicator is rather a strange concept!

As we only have one predictor, then centring it will only change our estimate of the

intercept, which we are not interested in, and which PINT does not require. It will also

 80

change the between-intercept variance and covariance at level 2, but we can re-

evaluate these on the real data and then run PINT with the following input code:

 1 0 0

 5 -5 25

 20 100

 8.098

 1.215

 0.198 0.180

 0.249964

The fixed effect estimate for gender is 0.495, which means we would like a standard

error smaller than 0.495/2.802 = 0.177. PINT gives standard errors for all

combinations of pupils and schools, with a step size for both of 5, so from the output

file we can extract the appropriate sample sizes, as follows:

Sample sizes Standard errors

 N*n N n Const Random

 1050 70 15 0.15833 0.18283

 1125 75 15 0.15296 0.17663

 1200 80 15 0.14811 0.17102

 1275 85 15 0.14369 0.16591

 1100 55 20 0.17162 0.18090

 1200 60 20 0.16431 0.17320

 1300 65 20 0.15787 0.16640

 1400 70 20 0.15212 0.16035

 1125 45 25 0.18493 0.18110

 1250 50 25 0.17544 0.17181

 1375 55 25 0.16727 0.16381

 1500 60 25 0.16015 0.15684

Here we see that for only 15 pupils per school we would need 75 schools, for 20

pupils per school we would need 60, and for 25 pupils per school we would need 50,

which roughly corresponds to the results in MLPowSim, although any minor

differences may be due to the approximation used in PINT, or to Monte Carlo

standard errors in MLPowSim, or even the fact that in MLPowSim we assumed that

the predictor was binomially-distributed rather than a normal approximation.

2.5 Three-level random effect models

2.5.1 Balanced 3-level models – The ILEA dataset

Here we continue with an education theme, and use as our example the ILEA dataset

dating from 1985-1987, and consisting of exam results at 16 for three years of London

secondary school children (see Nuttall et al., 1989). The subsample of the data that we

have used to derive the effect sizes is large: 15,632 pupils from 304 cohorts in 139

schools (note some schools did not participate in all 3 years of the study). We

 81

therefore have a three-level structure with pupils nested within cohorts, nested within

schools.

The response of interest is the total exam score based on grades achieved in all

subjects summed together. This response takes values from 1 to 70. We look at two

predictor variables: gender, and the proportion of pupils in the cohort eligible for free

school meals (FSM). Both these predictors are very significant with this large sample

size, but we are interested in whether (i) a smaller sampling scheme would have

resulted in sufficient power, or more importantly (ii) if we were to attempt a similar

data collection exercise today, using smaller samples (assuming broadly similar

effects exist), what sample sizes would result in similar power?

Here we will use the estimates produced by this large dataset as a guide for what we

might expect in our data collection exercise. The fixed effect estimates from the

whole data are 21.535 for the intercept, 2.839 for the gender effect, and -6.039 for the

FSM effect. We will therefore use the values 21.5, 3 and -6 in our simulations as

estimated effect sizes: i.e. girls tend to do 3 grades better in total over their collection

of exams than boys, while the difference between a school with no pupils eligible to

FSM, and one with all FSM pupils, is 6 grades in total across each pupil’s collection

of exam results.

The variability is estimated as 12.174, 2.5 and 142.635, for between schools, between

cohorts within schools, and residual variability, respectively. We will therefore use

12, 2.5 and 140 here. The gender predictor has mean 0.523 and variances 0.138, 0.001

and 0.116, respectively: so slightly more girls than boys, with slightly more variability

between schools than within schools. However, we will assume for our study an

average 50/50 split, and equal variance between schools and within cohorts (residual

variability) but no variability between cohorts within schools i.e. variances of 0.125,

0, and 0.125, respectively. There doesn’t appear to be a significant relationship

between %FSM and gender, and the average proportion of FSM per cohort is 0.423,

with variability split as 0.017 between schools and 0.09 between cohorts. So, for the

purposes of our illustration, we will use the values 0.4 for the mean and 0.02, 0.01 and

0 for the variances, respectively, for %FSM and independence between the 2

predictors. In terms of sample size we will assume a similar 3-year study design, and

so we will have 3 cohorts per school, and we will vary the numbers of schools

(between 10 and 40), and pupils per cohort sampled (between 10 and 50).

The inputs for MLPowSim will then be as follows:

 82

 Welcome to MLPowSim

Please input 0 to generate R code or 1 to generate MLwiN macros: 1

 Please choose model type

1. 1-level model

2. 2-level balanced data nested model

3. 2-level unbalanced data nested model

4. 3-level balanced data nested model

1

6. 3-classification balanced cross-classified model

7. 3-classification unbalanced cross-classified model

Model type : 4

Please input the random number seed: 1

Please input the significance level for testing the parameters: 0.025

Please input number of simulations per setting: 1000

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

Do you want to have a random intercept associated with the second level in your model (1=YES

0=NO)? 1

Do you want to have a random intercept associated with the third level in your model (1=YES 0=NO

)? 1

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 1

How many explanatory variables do you want to include in your model? 2

Please choose a type for the predictor x1 (1=Binary 2=Continuous 3=all MVN): 2

Assuming normality, please input its parameters here:

The mean of the predictor x1: 0.5

The variance of the predictor x1 at level 1: 0.125

The variance of the predictor x1 at level 2: 0

The variance of the predictor x1 at level 3: 0.125

Please choose a type for the predictor x2 (1=Binary 2=Continuous): 2

Assuming normality, please input its parameters here:

The mean of the predictor x2: 0.4

The variance of the predictor x1 at level 1: 0

The variance of the predictor x1 at level 2: 0.01

The variance of the predictor x1 at level 3: 0.02

Do you want the coefficient associated with explanatory variable x1 to be random at level two (1=YES

0=NO) ? 0

Do you want the coefficient associated with explanatory variable x2 to be random at level two (1=YES

0=NO) ? 0

Do you want the coefficient associated with explanatory variable x1 to be random at level three

(1=YES 0=NO) ? 0

Do you want the coefficient associated with explanatory variable x2 to be random at level three

(1=YES 0=NO) ? 0

 Sample size set up

Please input the smallest number of units for the third level: 10

Please input the largest number of units for the third level: 40

Please input the step size for the third level: 10

Please input the smallest number of units for the second level per third level: 3

Please input the largest number of units for the second level per third level: 3

 83

Please input the step size for the second level per third level: 1

Please input the smallest number of units for the first level per second level: 10

Please input the largest number of units for the first level per second level: 50

Please input the step size for the first level per second level: 10

 Parameter estimates

Please input estimate of beta_0: 21.5

Please input estimate of beta_1: 3

Please input estimate of beta_2: -6

Please input estimate of the level 3 variance (sigma^2_v): 12

Please input estimate of the level 2 variance (sigma^2_u): 2.5

Please input estimate of sigma^2_e: 140

Files to perform power analysis for the 3 level nested model with the following sample criterion have

been created

Sample size in the first level starts at 10 and finishes at 50 with the step size 10

Sample size in the second level starts at 3 and finishes at 3 with the step size 1

Sample size in the third level starts at 10 and finishes at 30 with the step size 10

1000 simulations for each sample size combination will be performed

Press any key to continue…

We can run the macros produced in MLwiN in the usual way. Since we are only

interested in the two predictors, and not the intercept, if we select the columns

containing the sample size at each level, and the columns containing the power

estimates for the two predictors (via the View/Edit Data window), we will see the

following:

 84

Here we see that for the gender predictor (‘zpow1’ & ‘spow1’) we do not need a

particularly big design, with 10 schools (‘N-level 3’) with 3 cohorts of 30 pupils (‘N-

level 1’), or 20 schools with 3 cohorts of size between 10 and 20 both producing

powers of around 0.8. However, for the proportion FSM predictor (‘zpow2’ &

‘spow2’), which is a cohort-level predictor, we clearly need more schools, and we see

that even with 30 schools with 50 pupils per cohort we do not reach a power of 0.8,

whilst for 40 schools 50 pupils per cohort suffices to produce a power greater than

0.8.

MLPowSim is flexible enough to allow the numbers of units at all three levels to vary,

and we have simply fixed the number of cohorts here to 3 as this represents our study

design. As with 2-level modelling, MLPowSim can also allow any of the predictor

variables to be treated random at higher levels for 3-level models as well, but we do

not give examples of this here. We will, however, consider the options that exist for

unbalanced 3-level models, and we turn to these in the following few sections.

2.5.2 Non-response at the first level in a 3-level design

We will consider here a scenario where individual pupils do not respond at random

from our sample – for example, perhaps we constructed a sampling frame of students

earlier in their schooling, and some students then moved school and so were not

included in the final sample. We will use exactly the same inputs for parameter

estimates as in Section 2.5.1, but will assume a non-response probability of 0.2, and

will additionally consider 60 pupils per school to account, in part, for this non-

response.

To investigate a non-balanced 3-level design we need to select option:

5 (‘3-level unbalanced data nested model’)

when prompted in MLPowSim, and then all our inputs are as for the balanced case

until we reach the section on Sample size set up, where we enter the following:

 Sample size set up

Please input the smallest number of units for the third level: 10

Please input the largest number of units for the third level: 40

Please input the step size for the third level: 10

Unbalanced set up

Please choose one of the following scenarios for unbalanced sampling:

1: Non-response of level 1 units using a Binomial probability of non-response

2: Non-response of level 2 units using a Binomial probability of non-response

3: Fixed sample size in first level with your preference

Scenario type : 1

Please input the probability of non-response for the first level units: 0.2

Please input the smallest number of units for the second level per third level: 3

Please input the largest number of units for the second level per third level: 3

Please input the step size for the second level per third level: 1

Please input the smallest number of units for the first level per second level: 10

Please input the largest number of units for the first level per second level: 60

Please input the step size for the first level per second level: 10

 85

The remaining inputs are as in Section 2.5.1. If we run the macros produced in

MLwiN, we get the following in the View/Edit Data window:

Unsurprisingly, we see that the power is lower when non-response occurs, as we

found with the two-level models we considered earlier (Section 2.3.6.1). As one might

expect, the power for designs with 50 pupils per school, and a 20% average non-

response rate, are close to those observed with 40 pupils per school and no non-

response. Next we will investigate the effect of whole cohort non-response.

2.5.3 Non-response at the second level in a 3-level design

In the actual ILEA dataset, the design is not balanced at the second level: some

schools joined the study in the second cohort, some schools dropped out after the first

cohort, and some schools even managed to miss the second cohort. 304 cohorts for

139 schools means that in the actual dataset 27% of the possible cohorts are missing.

Here, however, we will stick to a 0.2 probability of a missing cohort, in line with

Section 2.5.2. Again, we need to modify our inputs in MLPowSim, but this time there

are only a few changes, as follows:

 86

Unbalanced set up

Please choose one of the following scenarios for unbalanced sampling:

1: Non-response of level 1 units using a Binomial probability of non-response

2: Non-response of level 2 units using a Binomial probability of non-response

3: Fixed sample size in first level with your preference

Scenario type : 2

Please input the probability of non-response for the second level units: 0.2

If we run the resulting macros in MLwiN and view the Data window as before we

will this time get the following results:

We have assumed an average 20% non-response rate as in Section 2.5.2 except at a

different level of the data structure. This means that we should expect, on average, the

same total number of pupils, so it is interesting to compare the relative effects on

power of the two forms of non-response. If we look at the columns headed ‘spow1’

and ‘spow2’, and compare them with the equivalent columns in Section 2.5.2, we can

gauge the effect on power for the two predictors: gender and proportion FSM. We see

that there is very little to choose between the two forms of non-response for the

gender predictor (a level 1 predictor which exhibits no between-cohort within-school

variability), but for the proportion FSM predictor the cohort non-response scenario

results in worse power. This makes sense, since this predictor is at the cohort-level

 87

and exhibits between-cohort variability, and so a cohort non-response scenario

reduces both the total number of pupils and the total number of cohorts having an

additional effect on power.

2.5.4 Individually chosen sample sizes at level 1

To complete our unbalanced options, we have the possibility of allowing different-

sized clusters, as specified by the user. Here the assumption is that for each level 3

unit there will be the same number of level 2 units with the same structure in terms of

cluster sizes: for instance, for the education example we might assume cluster sizes of

30, 40 and 50 pupils for the three cohorts within a school, but each school must then

have the same structure. We will consider the ILEA example once again but assume,

as discussed above, that the cluster sizes of each cohort increase, and so we have 3

cohorts of sizes 30, 40 and 50, respectively, for each school. The changes to the

inputs to MLPowSim only occur for the unbalanced set up, as follows:

Unbalanced set up

Please choose one of the following scenarios for unbalanced sampling:

1: Non-response of level 1 units using a Binomial probability of non-response

2: Non-response of level 2 units using a Binomial probability of non-response

3: Fixed sample size in first level with your preference

Scenario type : 3

Please input the smallest number of units for the second level per third level: 3

Please input the largest number of units for the second level per third level: 3

Please input the step size for the second level per third level: 1

Please choose how many distinct classes you want the second level to have: 3

Unbalanced set up inside the second level with 3 level 2 units

How many (from 1 to 3) level 2 units do you want to be in the class 1 ? 1

For class 1, please input the number of level 1 units: 30

How many (from 1 to 2) level 2 units do you want to be in the class 2 ? 1

For class 2, please input the number of level 1 units: 40

For class 3, please input the number of level 1 units: 50

The remainder of the inputs are as previously given. Once the macros have been run

in MLwiN, the outputs for this analysis are as follows:

The power estimates produced are only slightly smaller than those produced by

equivalent designs, but with 40 pupils in each of the 3 cohorts per school.

2.6 Cross-classified Models

 88

For the cross-classified models we will once again consider the educational example

we encountered in Section 2.4, from Fife in Scotland (taken from the MLwiN User’s

Guide (Rasbash et al, 2004)). The dataset consists of records for 3,435 children from

19 secondary schools, and the response of interest is their exam attainment at age 16.

For each child, we have also recorded the primary school they attended prior to

secondary school, of which there are 148 in our sample. The data structure is therefore

crossed, and we hypothesise that attainment at 16 will be affected by both the primary

and secondary schools that the children attended.

One difficulty with cross-classified models is their estimation. In MLwiN it is

generally recommended that MCMC estimation be used. The IGLS/RIGLS algorithm

can be adapted to fit cross-classified models but this is currently achieved via some

macros that cast the cross-classified model as a constrained nested model. These

macros work fine for a single model, however we have not yet incorporated such

methods into MLPowSim, as fitting thousands of models in this framework is more

difficult. The problem with using MCMC estimation is the increased burden of

computational time, and in this case using R will be quicker. In R the function lmer

does not appear to have problems with cross-classified models although they are

generally more computationally-expensive to run than nested models. In this section,

we will therefore provide information on running the models using R first and then

one example of MCMC in MLwiN.

As with nested data, ideally we might like to collect balanced cross-classified data. In

this section we will firstly consider balanced data, before moving on to potentially

more realistic unbalanced data scenarios.

2.6.1 Balanced cross-classified models.

As further background to our example, the response we are interested in is an

attainment score from 1 to 10 that represents the pupils’ score on a school leaving

exam. For simplicity, we assume this score is continuous and normally-distributed as

fitted in the User’s Guide (although in reality an ordered categorical model might be

more appropriate).

We will then fit a simple variance components model that assumes that the exam

score for a particular pupil includes an overall population mean, an effect for the

primary school they attended, an effect for the secondary school they attended, and a

residual for that particular pupil. The average score in the actual data is 5.5, and so we

form a null hypothesis (for illustration) that the average score is 5 versus an

alternative that the average is higher than 5. For simplicity, we subtract 5 from all

scores – as a result, we now have a null hypothesis that the average score is 0 – and

we input an effect size (for the intercept) of 0.5. We give similar variances to those

which appeared in the actual data, and use values of 0.4 for secondary school, 1.2 for

primary school, and 8 for residual variability.

As we are assuming balanced data we will try to mimic a little the actual data

collected. Given there were 148 primary schools and 19 secondary schools making

potentially nearly 3,000 combinations this would be a little over 1 pupil per

combination. We however see that in reality the data is fairly sparse with only 303 of

 89

the pairings of primary and secondary school actually occurring, with on average 11

pupils per combination. We will compromise by having 3 pupils per combination and

trying between 20 and 100 primary schools (first cross-classified factor) and 10 and

30 secondary schools (second cross-classified factor). Here we give instructions for

fitting this model in R, since this is quicker than the MCMC methods in MLwiN. The

inputs for MLPowSim are as follows:

 Welcome to MLPowSim

Please input 0 to generate R code or 1 to generate MLwiN macros: 0

 Please choose model type

1. 1-level model

2. 2-level balanced data nested model

3. 2-level unbalanced data nested model

4. 3-level balanced data nested model

5. 3-level unbalanced data nested model

6. 3-classification balanced cross-classified model

7. 3-classification unbalanced cross-classified model

Model type : 6

Please input the random number seed: 1

Please input the significance level for testing the parameters: 0.025

Please input number of simulations per setting: 1000

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0

Please enter estimation method [0 - REML, 1 - ML] : 1

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

Do you want to have a random intercept associated with the first XC factor in your model (1=YES

0=NO)? 1

Do you want to have a random intercept associated with the second XC factor in your model (1=YES

0=NO)? 1

 Predictor(s) input

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 0

 Sample size set up (balance)

Please input the smallest number of units for the first cross-classified factor: 20

Please input the largest number of units for the first cross-classified factor: 100

Please input the step size for the first cross-classified factor: 20

Please input the smallest number of units for the second cross-classified factor: 10

Please input the largest number of units for the second cross-classified factor: 30

Please input the step size for the second cross-classified factor: 10

Please input the smallest number of replications per XC cell : 3

Please input the largest number of replications per XC cell : 3

Please input the step size for the number of replications : 1

 Parameter estimates

 Fixed effects input

Please input estimate of beta_0: 0.5

 Random effects input

Please input estimate of the variance of the first classification: 1.2

 90

Please input estimate of the variance of the second classification: 0.4

Please input estimate of sigma^2_e: 8

 Final sample size check

The first XC factor: start=20 end=100 step size=20

The second XC factor: start=10 end=30 step size=10

The first level (replication): start=3 end=3 step size=1

Do you want to continue (YES=1 , NO=0)? 1

Do you want to have the CI for the power in your output (YES=1 , NO=0)? 1

After running MLPowSim we need to start up R and read in and run the file

powersimu.r (see Section 1.5) which contains all the inputs for running the

simulations. The simulations will take quite a while to run in R (depending on your

machine’s processor but could take an hour), and at the end we get the following

results if we ask to see the stored data frame output by typing output at the command

prompt:

> output

 #XC2 #XC1 #repeat zLb0 zpb0 zUb0 sLb0 spb0 sUb0

10 20 3 0.328 0.358 0.388 0.330 0.335 0.340

10 40 3 0.419 0.450 0.481 0.459 0.466 0.473

10 60 3 0.520 0.551 0.582 0.533 0.541 0.548

10 80 3 0.574 0.604 0.634 0.578 0.586 0.595

10 100 3 0.582 0.612 0.642 0.605 0.614 0.624

20 20 3 0.388 0.419 0.450 0.409 0.414 0.420

20 40 3 0.537 0.568 0.599 0.592 0.597 0.602

20 60 3 0.663 0.692 0.721 0.690 0.695 0.700

20 80 3 0.716 0.743 0.770 0.749 0.754 0.759

20 100 3 0.780 0.805 0.830 0.793 0.798 0.803

30 20 3 0.457 0.488 0.519 0.451 0.457 0.463

30 40 3 0.633 0.662 0.691 0.655 0.660 0.665

30 60 3 0.739 0.765 0.791 0.768 0.772 0.776

30 80 3 0.803 0.826 0.849 0.834 0.837 0.841

30 100 3 0.840 0.861 0.882 0.872 0.875 0.879

We can see from these results that designs with 20 secondary schools and 100 primary

schools or 30 secondary schools and 80 primary schools result in a power of

approximately 0.8 or greater. It is interesting that these designs have 6,000 and 7,200

pupils, respectively, whilst the actual dataset has only 3,435 pupils. This is in part due

to the replication of pupils within a particular pairing of primary school and secondary

school. If in fact we remove this replication, and instead have only 1 pupil for each

combination but change ranges of secondary school(20,30) and primary schools

(80,100,120,140), we get a far smaller dataset and the following power calculations:

#XC2 #XC1 #repeat zLb0 zpb0 zUb0 sLb0 spb0 sUb0

20 80 1 0.683 0.711 0.739 0.707 0.713 0.719

20 100 1 0.721 0.748 0.775 0.763 0.768 0.774

20 120 1 0.763 0.788 0.813 0.791 0.797 0.802

20 140 1 0.816 0.839 0.862 0.820 0.825 0.830

30 80 1 0.784 0.808 0.832 0.808 0.812 0.816

30 100 1 0.830 0.852 0.874 0.851 0.854 0.858

 91

30 120 1 0.836 0.858 0.880 0.884 0.887 0.890

30 140 1 0.890 0.908 0.926 0.902 0.905 0.908

Here we see that the power values are not reduced much and for 20 secondary schools

and 140 primary schools, and for 30 secondary schools and 80 primary schools, we

have a power of greater than 0.8 with total sample sizes of 2,800 and 2,400 pupils,

respectively. What this is demonstrating is that sampling additional pupils from new

schools increases power far more than sampling further pupils from the same schools.

This backs up the results for the simpler nested models that we looked at earlier.

The prospect of collecting balanced data in practice for this problem is non-existent as

logistically we could not take groups of 3 pupils from each primary school and send a

group to every secondary school. For one thing we would need 60 pupils from each

primary school for 20 secondary schools, which is unlikely given many primary

schools will only have around 30 pupils in total. We will now look at various possible

unbalanced data designs, some of which are feasible in this situation and some of

which we include for completeness.

2.6.2 Non-response of single observations.

We begin by considering the simplest possible cause of lack of balance, the possibility

that some pupils do not respond. Here we will investigate a fairly extreme situation

where we anticipate that 50% of the pupils will not respond. We have chosen this

level of non-response because, in our example of two crossed higher-level

classifications, each with a reasonable amount of variability attached to it, we find

small amounts of dropout do not have a great impact on the power. This links in with

the fact that in the last section when we reduced the number of pupils per combination

from 3 to 1, we saw only small changes in power. A dropout rate of 50% will also

result in some primary school/secondary school combinations having complete

dropout.

The MLPowSim input for this situation is as follows:

 Welcome to MLPowSim

Please input 0 to generate R code or 1 to generate MLwiN macros: 0

 Please choose model type

1. 1-level model

2. 2-level balanced data nested model

3. 2-level unbalanced data nested model

4. 3-level balanced data nested model

5. 3-level unbalanced data nested model

6. 3-classification balanced cross-classified model

7. 3-classification unbalanced cross-classified model

Model type : 7

Please input the random number seed: 1

Please input the significance level for testing the parameters: 0.025

Please input number of simulations per setting: 1000

 92

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0

Please enter estimation method [0 - REML, 1 - ML] : 1

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

Do you want to have a random intercept associated with the first XC factor in your model (1=YES

0=NO)? 1

Do you want to have a random intercept associated with the second XC factor in your model (1=YES

0=NO)? 1

Predictor(s) input

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 0

Random slope set up

 Sample size set up (unbalanced)

Please choose one of the following scenarios for unbalanced sampling:

1: Non-response of level 1 units using a Binomial probability of non-response

2: Non-response of combinations of crossed factors using a Binomial probability of non-response

3: Fixed sized samples for each XC1 unit with probabilities for XC2 identifiers

4: Fixed total sample with each observation sampled from a

contingency table of probabilities for each combination of XC1 and XC2

 Scenario type : 1

Please input the probability of non-response : 0.5

Please input the smallest number of units for the first cross-classified factor: 20

Please input the largest number of units for the first cross-classified factor: 100

Please input the step size for the first cross-classified factor: 20

Please input the smallest number of units for the second cross-classified factor: 10

Please input the largest number of units for the second cross-classified factor: 30

Please input the step size for the second cross-classified factor: 10

Please input the smallest number of replications per XC cell : 3

Please input the largest number of replications per XC cell : 3

Please input the step size for the number of replications : 1

 Parameter estimates

 Fixed effects input

Please input estimate of beta_0: 0.5

 Random effects input

Please input estimate of the variance of the first classification: 1.2

Please input estimate of the variance of the second classification: 0.4

Please input estimate of sigma^2_e: 8

 Final sample size check

The first XC factor: start=20 end=100 step size=20

The second XC factor: start=10 end=30 step size=10

The first level (replication): start=3 end=3 step size=1

Do you want to continue (YES=1 , NO=0)? 1

Do you want to have the CI for the power in your output (YES=1 , NO=0)? 1

Having answered all the questions we next run the R package, and after waiting again

for some time while the code runs we will get the following output:

 93

>output

#XC2 #XC1 #1-level zLb0 zpb0 zUb0 sLb0 spb0 sUb0

10 20 3 0.307 0.336 0.365 0.307 0.312 0.318

10 40 3 0.422 0.453 0.484 0.428 0.435 0.443

10 60 3 0.466 0.497 0.528 0.503 0.511 0.519

10 80 3 0.507 0.538 0.569 0.547 0.555 0.564

10 100 3 0.542 0.573 0.604 0.591 0.600 0.610

20 20 3 0.375 0.405 0.435 0.386 0.391 0.397

20 40 3 0.518 0.549 0.580 0.566 0.571 0.576

20 60 3 0.637 0.666 0.695 0.668 0.673 0.678

20 80 3 0.713 0.740 0.767 0.728 0.734 0.739

20 100 3 0.728 0.755 0.782 0.774 0.780 0.785

30 20 3 0.415 0.446 0.477 0.430 0.437 0.443

30 40 3 0.611 0.641 0.671 0.639 0.644 0.649

30 60 3 0.711 0.738 0.765 0.751 0.755 0.760

30 80 3 0.792 0.816 0.840 0.817 0.820 0.824

30 100 3 0.840 0.861 0.882 0.863 0.866 0.869

Here we see that the power has reduced, in comparison to the data without dropout, as

we might expect; we now need at least 30 secondary schools and 80 primary schools

to get a power of 0.8.

2.6.3 Dropout of whole groups

The other method of dropout that can be used in MLPowSim to create unbalanced

designs involves the complete dropout of specific combinations of primary and

secondary school. Here we will have two possibilities for each combination of

primary and secondary school: either (i) the combination is in the dataset and so 3

pupils are sampled or (ii) the combination is not in the dataset and so no pupils are

sampled. The user is required to input the probability of possibility (ii) and the inputs

are identical to the case of single person dropout, aside from selecting sampling

option 2 rather than 1 as detailed below:

 Sample size set up (unbalanced)

Please choose one of the following scenarios for unbalanced sampling:

1: Non-response of level 1 units using a Binomial probability of non-response

2: Non-response of combinations of crossed factors using a Binomial probability of non-response

3: Fixed sized samples for each XC1 unit with probabilities for XC2 identifiers

4: Fixed total sample with each observation sampled from a

contingency table of probabilities for each combination of XC1 and XC2

 Scenario type : 2

Please input the probability of non-response : 0.5

Upon running the R code we get the following output:

> output

#XC2#XC1#1-level zLb0 zpb0 zUb0 sLb0 spb0 sUb0

10 20 3 0.297 0.326 0.355 0.300 0.305 0.311

10 40 3 0.412 0.443 0.474 0.425 0.432 0.439

 94

10 60 3 0.467 0.498 0.529 0.494 0.502 0.510

10 80 3 0.512 0.543 0.574 0.546 0.555 0.564

10 100 3 0.539 0.570 0.601 0.584 0.593 0.603

20 20 3 0.368 0.398 0.428 0.388 0.394 0.399

20 40 3 0.537 0.568 0.599 0.561 0.567 0.573

20 60 3 0.631 0.660 0.689 0.663 0.668 0.673

20 80 3 0.697 0.725 0.753 0.730 0.735 0.741

20 100 3 0.748 0.774 0.800 0.774 0.779 0.785

30 20 3 0.403 0.434 0.465 0.429 0.434 0.404

30 40 3 0.608 0.638 0.668 0.633 0.638 0.644

30 60 3 0.719 0.746 0.773 0.745 0.750 0.754

30 80 3 0.808 0.831 0.854 0.819 0.823 0.827

30 100 3 0.817 0.840 0.863 0.859 0.862 0.866

Here we again see that the power is reduced compared to the case in which there were

no dropouts, however there is very little to choose between this and the other (pupil

level) dropout scenario. This may be because of the small number of replications, or

even because when we remove a primary and secondary school combination we still

have other information on each of the two schools involved through other pairings.

2.6.4 Unbalanced designs – sampling from a pupil lookup table.

The two dropout options for producing unbalanced designs make sense when it is

easy to sample from every combination of the two factors. In reality, however, the

majority of pupils in a particular primary school will all attend the same secondary

school, and the real design is close to a nested one, with primary schools nested

within secondary schools. In fact, if we count the number of pupils not attending the

most popular secondary for a particular primary school, we find that only 288 pupils

do not fit a nested structure. In order to more closely mimic the actual data structure

we could use the actual data as a guide for the pattern of schools. Here we tally up the

numbers of pupils in each combination of primary and secondary school and simulate

data with probabilities proportional to the numbers of pupils present for each

combination.

We will look first at simply choosing pupils at random from the set of all pupils (this

is option 4 in the list of (unbalanced) scenarios in MLPowSim). Essentially we are

using the 3,435 pupils to give probabilities of each combination of primary and

secondary school, and so if no pupils in the real data went to a particular combination,

then in the simulated datasets no pupils would be observed either. The school labels

are purely used to describe the structure of the data and the school effects from the

actual data are not used. In the simulations, only the variances of the primary and

secondary schools are used to generate new school effects for the simulated schools.

To run this option we need a file that contains the numbers of pupils observed for

each combination, and this is provided as ‘fife.txt’ which contains a row for each

primary school. We will consider sampling between 200 and 4,000 pupils, and the

inputs for MLPowSim are as follows:

 Welcome to MLPowSim

 95

Please input 0 to generate R code or 1 to generate MLwiN macros: 0

 Please choose model type

1. 1-level model

2. 2-level balanced data nested model

3. 2-level unbalanced data nested model

4. 3-level balanced data nested model

5. 3-level unbalanced data nested model

6. 3-classification balanced cross-classified model

7. 3-classification unbalanced cross-classified model

Model type : 7

Please input the random number seed: 1

Please input the significance level for testing the parameters: 0.025

Please input number of simulations per setting: 1000

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0

Please enter estimation method [0 - REML, 1 - ML] : 1

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

Do you want to have a random intercept associated with the first XC factor in your model (1=YES

0=NO)? 1

Do you want to have a random intercept associated with the second XC factor in your model (1=YES

0=NO)? 1

 Predictor(s) input

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 0

 Sample size set up (unbalanced)

Please choose one of the following scenarios for unbalanced sampling:

1: Non-response of level 1 units using a Binomial probability of non-response

2: Non-response of combinations of crossed factors using a Binomial probability of non-response

3: Fixed sized samples for each XC1 unit with probabilities for XC2 identifiers

4: Fixed total sample with each observation sampled from a

 contingency table of probabilities for each combination of XC1 and XC2

 Scenario type : 4

Please input the filename (text file) including sample sizes of cells for XC1 crossed with XC2 : fife.txt

Please input the unit numbers of XC1 (numbers of row in fife.txt file): 148

Please input the unit numbers of XC2 (numbers of column in fife.txt file): 19

Please input the smallest number of total units: 200

Please input the largest number of total units: 4000

Please input the step size for the total units: 200

 Parameter estimates

 Fixed effects input

Please input estimate of beta_0: 0.5

 Random effects input

Please input estimate of the variance of the first factor classification: 1.2

Please input estimate of the variance of the second classification: 0.4

Please input estimate of sigma^2_e: 8

 96

 Final sample size check

The first and second XC samples are row and column numbers in fife.txt file as follows:

Row=148 column=19

The first level (replication) sample is fixed as 1.

Total sample range for XCs combination: start=200 end=4000 step size=200

Do you want to continue (YES=1 , NO=0)? 1

Do you want to have the CI for the power in your output (YES=1 , NO=0)? 1

If we run the file produced in R (which again will take an hour or so), we will get the

following estimates stored in the data frame output:

> output

#XC2#XC1#TsamplezLb0 zpb0 zUb0 sLb0 spb0 sUb0

19 148 200 0.388 0.419 0.450 0.429 0.435 0.442

19 148 400 0.575 0.605 0.635 0.573 0.581 0.589

19 148 600 0.606 0.636 0.666 0.650 0.658 0.666

19 148 800 0.649 0.678 0.707 0.691 0.699 0.708

19 148 1000 0.689 0.717 0.745 0.708 0.716 0.725

19 148 1200 0.693 0.721 0.749 0.731 0.740 0.748

19 148 1400 0.724 0.751 0.778 0.746 0.754 0.762

19 148 1600 0.729 0.756 0.783 0.757 0.764 0.772

19 148 1800 0.725 0.752 0.779 0.760 0.768 0.775

19 148 2000 0.722 0.749 0.776 0.763 0.771 0.779

19 148 2200 0.726 0.753 0.780 0.777 0.785 0.792

19 148 2400 0.745 0.771 0.797 0.780 0.788 0.795

19 148 2600 0.746 0.772 0.798 0.778 0.785 0.793

19 148 2800 0.741 0.767 0.793 0.783 0.790 0.797

19 148 3000 0.747 0.773 0.799 0.785 0.792 0.799

19 148 3200 0.744 0.770 0.796 0.785 0.793 0.800

19 148 3400 0.756 0.782 0.808 0.797 0.804 0.811

19 148 3600 0.745 0.771 0.797 0.792 0.799 0.806

19 148 3800 0.770 0.795 0.820 0.793 0.800 0.808

19 148 4000 0.754 0.780 0.806 0.795 0.802 0.809

What is interesting here is that the power increases very quickly for the small sample

sizes but then tends to plateau having reached roughly 0.8 after around 3,000 pupils.

Increases in sample sizes when sample size is smaller will generally increase both the

number of pupils and the numbers of schools. However, having reached 3,000 pupils,

most simulated datasets will include virtually all the primary schools, and so further

increasing the number of pupils will not have as much of an impact. Note that some

primary schools only have 1 or 2 pupils in the real data, and so even with 3,000 pupils

there is a good chance they will not appear in a simulated dataset.

2.6.5 Unbalanced designs – sampling from lookup tables for each

primary/secondary school.

The final possible way to generate unbalanced data in MLPowSim (option 3) is

perhaps the most realistic in the case of our example. Often, when one collects data,

the design is based on one factor, for example the primary schools or the secondary

schools, with the other factor recorded but not controlled. For example, we might

 97

decide we wish to collect educational data from pupils in secondary school, and

having decided to take a balanced sample from each secondary school, we also record

the primary school that each attended. We could also consider the alternative situation

of setting up a study while pupils are in primary school and hence selecting a fixed

size sample from each primary school. We then follow these pupils as they go through

the education system noting also their choice of secondary school. We will consider

this situation first and consider following between 2 and 20 pupils in each primary

school.

The (later) inputs to MLPowSim are as follows:

 Sample size set up (unbalanced)

Please choose one of the following scenarios for unbalanced sampling:

1: Non-response of level 1 units using a Binomial probability of non-response

2: Non-response of combinations of crossed factors using a Binomial probability of non-response

3: Fixed sized samples for each XC1 unit with probabilities for XC2 identifiers

4: Fixed total sample with each observation sampled from a

 contingency table of probabilities for each combination of XC1 and XC2

 Scenario type : 3

Please input the filename (text file) including sample sizes of cells for XC1 crossed with XC2 : fife.txt

Please input the unit numbers of XC1 (numbers of row in fife.txt file): 148

Please input the unit numbers of XC2 (numbers of column in fife.txt file): 19

Please input the smallest number of units per first cross-classified factor unit: 2

Please input the largest number of units per first cross-classified factor unit: 20

Please input the step size per first cross-classified factor unit: 1

 Parameter estimates

 Fixed effects input

Please input estimate of beta_0: 0.5

 Random effects input

Please input estimate of the variance of the first classification: 1.2

Please input estimate of the variance of the second classification: 0.4

Please input estimate of sigma^2_e: 8

 Final sample size check

The first and second XC samples are row and column numbers in fife.txt file as follows:

Row=148 column=19

The first level (replication) sample is fixed as 1.

Total sample range for XCs combination: start=2 end=20 step size=1

The first XC factor: start=10 end=50 step size=10

The second XC factor: start=10 end=30 step size=10

The first level (replication): start=5 end=5 step size=1

Do you want to continue (YES=1 , NO=0)? 1

Do you want to have the CI for the power in your output (YES=1 , NO=0)? 1

If we run the output file in R we will get the following output:

>output

 98

#XC2#XC1#Tninrow zLb0 zpb0 zUb0 sLb0 spb0 sUb0

19 148 2 0.514 0.545 0.576 0.563 0.571 0.580

19 148 3 0.614 0.644 0.674 0.641 0.649 0.658

19 148 4 0.650 0.679 0.708 0.680 0.689 0.698

19 148 5 0.714 0.741 0.768 0.717 0.726 0.735

19 148 6 0.705 0.732 0.759 0.732 0.740 0.749

19 148 7 0.698 0.726 0.754 0.729 0.738 0.747

19 148 8 0.721 0.748 0.775 0.759 0.767 0.775

19 148 9 0.715 0.742 0.769 0.760 0.769 0.777

19 148 10 0.746 0.772 0.798 0.770 0.779 0.787

19 148 11 0.762 0.787 0.812 0.774 0.782 0.790

19 148 12 0.727 0.754 0.781 0.782 0.790 0.798

19 148 13 0.748 0.774 0.800 0.789 0.797 0.804

19 148 14 0.742 0.768 0.794 0.790 0.797 0.805

19 148 15 0.722 0.749 0.776 0.792 0.800 0.807

19 148 16 0.778 0.803 0.828 0.801 0.808 0.816

19 148 17 0.741 0.767 0.793 0.798 0.806 0.813

19 148 18 0.761 0.786 0.811 0.798 0.805 0.813

19 148 19 0.750 0.776 0.802 0.803 0.810 0.817

19 148 20 0.795 0.819 0.843 0.807 0.815 0.822

Here we see that, even for small sample sizes, the power is quite big, and again

plateaus out at the desired level of 0.8 by about 14 pupils per primary school – 2,072

pupils in total. Sampling further pupils has very little impact on the power. It is

interesting here that the standard error method tends to give a larger power estimate

than the 0/1 method.

We can also consider sampling fixed numbers of pupils per secondary school. To do

this we require a file with secondary schools as rows, and primary schools as

columns, and such a file is available as fife2.txt. The inputs are as above apart from

the following:

Please input the filename (text file) including sample sizes of cells for XC1 crossed with XC2 :

fife2.txt

Please input the unit numbers of XC1 (numbers of row in fife2.txt file): 19

Please input the unit numbers of XC2 (numbers of column in fife2.txt file): 148

Please input the smallest number of units per first cross-classified factor unit: 5

Please input the largest number of units per first cross-classified factor unit: 200

Please input the step size per first cross-classified factor unit: 5

Parameter estimates

 Fixed effects input

Please input estimate of beta_0: 0.5

 Random effects input

Please input estimate of the variance of the first classification: 0.4

Please input estimate of the variance of the second classification: 1.2

Please input estimate of sigma^2_e: 8

 99

This will produce the following output in R:

#XC2#XC1 #Tninrow zLb0 zpb0 zUb0 sLb0 spb0 sUb0

148 19 5 0.247 0.275 0.303 0.287 0.291 0.295

148 19 10 0.425 0.456 0.487 0.435 0.441 0.447

148 19 15 0.483 0.514 0.545 0.517 0.524 0.531

148 19 20 0.549 0.580 0.611 0.578 0.585 0.593

148 19 25 0.573 0.603 0.633 0.620 0.628 0.636

148 19 30 0.631 0.660 0.689 0.648 0.657 0.665

148 19 35 0.645 0.674 0.703 0.676 0.684 0.692

148 19 40 0.665 0.694 0.723 0.689 0.697 0.705

148 19 45 0.654 0.683 0.712 0.702 0.711 0.719

148 19 50 0.678 0.706 0.734 0.710 0.719 0.727

148 19 55 0.687 0.715 0.743 0.722 0.730 0.738

148 19 60 0.723 0.750 0.777 0.733 0.741 0.749

148 19 65 0.679 0.707 0.735 0.732 0.740 0.748

148 19 70 0.717 0.744 0.771 0.748 0.756 0.764

148 19 75 0.731 0.758 0.785 0.741 0.748 0.756

148 19 80 0.731 0.758 0.785 0.751 0.759 0.767

148 19 85 0.720 0.747 0.774 0.751 0.758 0.766

148 19 90 0.714 0.741 0.768 0.752 0.760 0.768

148 19 95 0.715 0.742 0.769 0.767 0.775 0.783

148 19 100 0.731 0.758 0.785 0.772 0.780 0.787

148 19 105 0.741 0.767 0.793 0.773 0.780 0.788

148 19 110 0.746 0.772 0.798 0.779 0.786 0.793

148 19 115 0.726 0.753 0.780 0.778 0.785 0.793

148 19 120 0.747 0.773 0.799 0.768 0.776 0.783

148 19 125 0.754 0.780 0.806 0.781 0.788 0.796

148 19 130 0.745 0.771 0.797 0.780 0.786 0.793

148 19 135 0.762 0.787 0.812 0.781 0.788 0.795

148 19 140 0.749 0.775 0.801 0.785 0.792 0.799

148 19 145 0.722 0.749 0.776 0.783 0.790 0.797

148 19 150 0.736 0.762 0.788 0.787 0.794 0.801

148 19 155 0.760 0.785 0.810 0.784 0.791 0.798

148 19 160 0.762 0.787 0.812 0.790 0.797 0.804

148 19 165 0.773 0.798 0.823 0.797 0.805 0.812

148 19 170 0.765 0.790 0.815 0.789 0.796 0.804

148 19 175 0.734 0.760 0.786 0.795 0.802 0.808

148 19 180 0.773 0.798 0.823 0.794 0.802 0.809

148 19 185 0.762 0.787 0.812 0.791 0.798 0.805

148 19 190 0.756 0.782 0.808 0.792 0.799 0.806

148 19 195 0.766 0.791 0.816 0.798 0.805 0.812

148 19 200 0.795 0.819 0.843 0.802 0.809 0.815

Here we see that although the power increases quickly with increasing pupils per

school, it then plateaus off. We therefore need something of the order of 170 pupils

per school (3,230 in total) to get a power of 0.8.

 100

2.6.6 Using MCMC in MLwiN for cross-classified models.

The alternative to using R for the cross-classified models is to use MCMC in MLwiN.

This is far more time-consuming, and so here we just repeat the balanced cross-

classified modelling approach. With MCMC estimation we need to decide on a burn-

in length and main run length for each simulation. In the case of our example, we

have chosen the (rather arbitrary) values of 5,000 and 10,000 iterations, respectively.

The following inputs are required in MLPowSim:

 Welcome to MLPowSim

Please input 0 to generate R code or 1 to generate MLwiN macros: 1

 Please choose model type

1. 1-level model

2. 2-level balanced data nested model

3. 2-level unbalanced data nested model

4. 3-level balanced data nested model

5. 3-level unbalanced data nested model

6. 3-classification balanced cross-classified model

7. 3-classification unbalanced cross-classified model

Model type : 6

Please input the random number seed: 1

Please input the significance level for testing the parameters: 0.025

Please input number of simulations per setting: 1000

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0

Currently only MCMC estimation is available in MLPowSim for cross-classified models

Please input burnin length for each simulation : 5000

Please input main run length for each simulation : 10000

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

Do you want to have a random intercept associated with the first XC factor in your model (1=YES

0=NO)? 1

Do you want to have a random intercept associated with the second XC factor in your model (1=YES

0=NO)? 1

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 0

 Sample size set up

Please input the smallest number of units for the first cross-classified factor: 20

Please input the largest number of units for the first cross-classified factor: 100

Please input the step size for the first cross-classified factor: 20

Please input the smallest number of units for the second cross-classified factor: 10

Please input the largest number of units for the second cross-classified factor: 30

Please input the step size for the second cross-classified factor: 10

Please input the smallest number of replications per XC cell : 3

Please input the largest number of replications per XC cell : 3

Please input the step size for the number of replications : 1

 Parameter estimates

 Fixed effects input

Please input estimate of beta_0: 0.5

 101

 Random effects input

Please input estimate of the variance of the first classification: 1.2

Please input estimate of the variance of the second classification: 0.4

Please input estimate of sigma^2_e: 8

Files to perform power analysis for the 3 level cross-classified model with the following sample

criterion have been created

Power analysis for the model with the following sample criterion starts now. Please wait ...

Sample size in the first factor starts at 20 and finishes at 100 with the step size 20

Sample size in the second factor starts at 10 and finishes at 30 with the step size 10

Number of replications per cell starts at 3 and finishes at 3 with the step size 1

1000 simulations for each sample size combination will be performed

Press any key to continue…

Having run MLPowSim we next need to run the macros produced in MLwiN. For this

we will need to select the macro simu.txt and view the columns `mpow0’, `spow0’,

`zpow0’, `N-level 1’, `N-XC Fact2’ and `N-XC-Fact1’ in the View/Edit Data

window (see Section 1.4). The simulations here took 36 hours on my machine and

produced the following output:

Here we see that we need to sample at least 80 primary schools and 30 secondary

schools to gain a power of 0.8. We can see that the stability of the power estimates

using MCMC with a burn-in of 5000 and a main run of 10,000 is not as good as that

observed using R. For example 2 of the 3 power estimation methods suggest that a

design with 80 primary schools and 20 secondary schools has more power than one

with 100 primary schools and 20 secondary schools! This suggests that maybe 5,000

 102

and 10,000 iterations are still not enough, and we need even more. Given that the

above run took 36 hours this starts becoming infeasible, but for the purposes of

comparison, below we present the results from 100,001 iterations:

Here we see the power estimates are considerably more stable, increasing

monotonically with sample size

The table below compares the power estimates we earlier derived via R (see Section

2.6.1) with those we have just obtained above (all the power estimates listed in the

table are those derived from the standard error method):

N-XC Fact1 N-XC Fact2 N-level 1

Estimation method (with stats

package)

MCMC (MLwiN) ML (R)

20 10 3 0.287 0.335

20 20 3 0.375 0.414

20 30 3 0.402 0.457

40 10 3 0.410 0.466

40 20 3 0.568 0.597

40 30 3 0.632 0.660

60 10 3 0.452 0.541

60 20 3 0.658 0.695

60 30 3 0.733 0.772

 103

80 10 3 0.462 0.586

80 20 3 0.726 0.754

80 30 3 0.818 0.837

100 10 3 0.510 0.614

100 20 3 0.755 0.798

100 30 3 0.868 0.875

It’s apparent that, especially for smaller sample sizes, the power estimates from the

MCMC method (run for 100,001 iterations) are smaller than those generated by R

(using maximum likelihood estimation), but the estimates derived from each method

become more similar as sample size increases. It has been shown (Browne and

Draper, 2006) that ML estimation (via the IGLS) algorithm gives under-estimates for

higher level variances in multilevel models when the number of higher level units is

small. This underestimation will result in larger power estimates when the number of

higher level units is small which may in part explain the differences in the above

table.

3 Binary Response models

In the last chapter we dealt with models where the response variable is assumed to be

continuous and to follow a normal distribution. In other situations we might have

binary response data: for example, in educational research the response might be

whether or not a student passes an exam, in health many studies have success of a

treatment or mortality as a response variable, and so on. As with continuous

responses, binary responses can also exhibit dependence through clustering: for

example, more students may pass an exam in a good school than in a poorer school,

and so the results of different pupils from the same school are likely to be more

correlated than the results of pupils chosen at random. In this chapter, we begin by

looking at the common methods of devising power calculations for simple binary

response models before linking models together in a unified framework, and also

adding in multilevel structure.

3.1 Simple binary response models – comparing data with a fixed

proportion.

In this chapter our dataset of interest involves the use of contraceptives by women in

Bangladesh: an example dataset used in the MLwiN User’s Guide (Rasbash et al,

2004). We will therefore have a binary response which represents whether or not a

woman uses any form of contraceptive. The simplest possible model is then a single

proportion model, where we disregard possible predictor variables and simply assume

there is an underlying proportion of women who use contraceptives: i.e. for each

woman there is a probability π of using contraceptives. We may then want to compare

this unknown proportion against some fixed value, for example we might like to know

how many women we would need to sample to be able to state that the proportion of

women using contraceptives is greater or less than 0.5.

 104

The approach that is commonly used for getting approximate sample sizes in this

simple scenario is to make a normal assumption to the Binomial distribution, and then

test the hypothesis as we would with the simple single means model described earlier.

The normal approximation to the Binomial assumes that a sample proportion p is

normally-distributed with mean the unknown population proportion, π and variance

π(1- π)/n, which is approximated by p(1-p)/n where n here represents the chosen

sample size. This approximation is best when the underlying π is close to 0.5 and the

sample size is large.

So let us suppose that we believe the proportion of women that use contraceptives is

0.4, and we wish to estimate how many women we need to sample to have a power of

0.8 of saying that the proportion is less than 0.5. The formula for calculating the

sample size is as follows (assuming a two-sided test):

𝑛 ≥ [
𝛷−1(0.8)√𝜋(1 − 𝜋) + 𝛷−1(0.975)√𝜋0(1 − 𝜋0)

𝜋 − 𝜋0

]

2

= [
0.842√0.4(1 − 0.4) + 1.96√0.5(1 − 0.5)

0.4 − 0.5
]

2

Here as we see π0 is the probability under the null hypothesis (0.5) whilst π is the

believed value (0.4). Solving for n we get 𝑛 ≥ 193.9 thus we would need a sample

size of at least 194.

As we see a little later, this model can be cast into a standard modelling formulation –

namely that of generalized linear models. When we considered continuous responses

then the simple means model was a special case of the general linear modelling

framework, but in the binary response case the simple proportion model is not quite a

special case as it involves a different normal approximation as will become clear in

Section 3.3.

3.2 Comparing two proportions.

The other commonly-considered simple model is used when we wish to establish

whether the proportion of positive responses are different for two populations. For

example, in our dataset we have a descriptive indicator of the area where the women

live (either urban or rural). We might then like to see whether women use

contraceptives more in urban or rural areas. Our null hypothesis in this case is that

women are equally likely to use contraceptives in both areas, whereas we might

hypothesise the alternative that women in urban areas are more likely to use

contraceptives. Here we will use normal approximations again, so that under the null

hypothesis we assume all women come from an approximate Normal distribution with

some mean π and variance π(1- π)/n. Under the alternative hypothesis, the women

come from different populations and have approximate Normal distributions with

means πU and πR with corresponding variances πU(1- πU)/nu and πR(1- πR)/nR where

n= nu + nR.

Now we choose nu and nR as part of our sampling strategy, and our options are to

sample the same number of each, or to assume some fixed ratio for the two categories

 105

based on the perceived population sizes. If the same sample size is assumed to be the

same for each group, then the following formula holds:

𝑛𝑢 = 𝑛𝑅 = (
0.842√𝜋𝑢(1 − 𝜋𝑢) + 𝜋𝑅(1 − 𝜋𝑅) + 1.96√2𝜋0(1 − 𝜋0)

𝜋𝑢 − 𝜋𝑅
)

2

If we assume that πU=0.5 and πR=0.35 then π0 = (0.5+0.35)/2 = 0.425. Solving, we

find we need 170 women in each group and 340 women in total for a power of 0.8. In

the Bangladesh dataset the ratio of urban to rural dwellers is 30%:70%; hence, to get a

similar power, with this ratio, we will need 130 urban women and 302 rural dwellers,

making 432 in total, which shows that a balanced number in each group is preferred

as it reduces the overall sample size.

3.3 Logistic regression models

The two models described above – in which we compared an observed proportion to a

fixed value, and also compared the proportions in two populations – are widely used

in many applied areas, especially medical research. It is, however, difficult to extend

this modelling framework to account for further categorical predictors and/or

continuous predictors. Instead, we turn to generalized linear models and in particular

logistic regression models. Here, we transform the underlying probability to a

measure that can take values on the whole real line via a link function, and then fit a

model to this transformed measure. As probabilities lie between 0 and 1 we need a

function that maps values in the range [0,1] to values in the range (-∞,∞). The

function has to be monotonic: i.e. with each probability mapping onto a different

value; by convention, we expect 0 to map onto -∞ and 1 onto ∞. This suggests that

inverse cumulative distribution functions (CDFs) are ideal candidates, and the most

commonly-used function is the inverse CDF of the logistic distribution, resulting in a

model known as a logistic regression. Please note that the inverse (standard) normal

CDF is also commonly-used, resulting in probit regression.

We can write a logistic regression model as follows:

𝑦𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑖𝑙𝑙𝑖(𝜋𝑖)

𝑙𝑜𝑔 (
𝜋𝑖

1 − 𝜋𝑖
) = 𝑋𝑖𝛽

Here the logit function of πi is modelled by predictors Xi and corresponding

coefficients β. The reason this function is modelled rather than simply πi is that the

product Xiβ (which is known as the linear predictor) can take any value, and so

modelling πi directly can result in predicted probabilities less than 0 and greater than

1!

Models similar to those we explored above, namely the single proportion and the

comparison of two proportions, can be fitted in this framework by careful selection of

predictor variables, as we discuss next.

 106

3.3.1 A single proportion in the logistic regression framework

The simplest logistic regression model is created by including just an intercept in the

linear predictor. This model basically fits a single proportion to a set of data and the

coefficient β can be back-transformed to this underlying proportion π as follows:

𝜋 =
𝑒𝛽

1+𝑒𝛽.

The estimate of π obtained via this transformation will be the same as the estimate

obtained in the single proportion model: i.e. the number of successes out of the

number of trials. The difference when fitting a logistic regression model is that the

parameter β is estimated along with its standard error, and so we have the option of

using a different normal approximation by assuming β is normally-distributed rather

than π. In reality, neither of these quantities is truly normally-distributed, but making

the assumption for β, rather than π, links in with further logistic regression models

and leads to the use of Wald tests for testing significance.

We will now investigate how we can use MLPowSim to determine power for various

sample sizes for this model, using the Bangladeshi dataset. As discussed earlier, we

are trying to establish a sample size to detect that the actual usage of contraceptives is

less than 50%, based on our belief that the actual usage is 40%. For a logistic

regression model, the proportion 40% corresponds to a value of -0.4055 for β. We are

fortunate that 50% corresponds to 0, and so we only need to test whether β is less than

0, which is the standard test in MLPowSim. Note: if you wanted to check whether the

proportion is different from another value, you would need to modify the macros

produced by MLPowSim to test whether the corresponding transformed value for β is

in the intervals or not.

Here are the inputs required in MLPowSim to fit this model using MLwiN:

 Welcome to MLPowSim

Please input 0 to generate R code or 1 to generate MLwiN macros: 1

 Please choose model type

1. 1-level model

2. 2-level balanced data nested model

3. 2-level unbalanced data nested model

4. 3-level balanced data nested model

5. 3-level unbalanced data nested model

6. 3-classification balanced cross-classified model

7. 3-classification unbalanced cross-classified model

Model type : 1

Please input the random number seed: 1

Please input the significant level for testing the parameters: 0.025

Please input number of simulations per setting: 1000

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 1

Please input link function [0 – logit, 1 – probit, 2- cloglog] : 0

 107

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 0

 Sample size set up

Please input the smallest sample size : 30

Please input the largest sample size : 300

Please input the step size: 30

 Parameter estimates

Please input estimate of beta_0: -0.4055

Files to perform power analysis for the 1 level model with the following sample criterion have been

created

Sample size starts at 30 and finishes at 300 with the step size 30

1000 simulations for each sample size combination will be performed

Press any key to continue…

Note, that whilst our hypothesis is one-sided (i.e. we’re predicting actual usage is less

than 50%, rather than more), we have chosen a significance level of 0.025 rather than

the more common 0.05. This is because it corresponds to a two-sided test of

significance at level 0.05 which is the more commonly used hypothesis in practice.

Having set up the macros we can now run them in MLwiN. You will need to change

the directories as before, so that the current directory is the directory that contains the

macros (see Section 1.4). After the macros run, which can take a while, we will get

the following output in the View/Edit Data window if we select columns `spow0’,

`zpow0’ and `Samplesize’.

Here we can see that to get a power of 0.8, a sample size of somewhere between 180

and 210 is required, with a linear interpolated estimated sample size of 201 from the

 108

standard error method. This is similar to the 194 suggested by the formulae in Section

3.1, but of course we would not expect identical values given that different normal

approximations are used.

3.3.2 Comparing two proportions in the logistic regression framework

To fit a model that investigates the difference between two proportions in the logistic

regression framework, we will need to include a second predictor in the linear

predictor that identifies whether or not an individual woman is in the urban group.

The model is then

𝑦𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑖𝑙𝑙𝑖(𝜋𝑖)

𝑙𝑜𝑔 (
𝜋𝑖

1 − 𝜋𝑖
) = 𝛽0 + 𝛽1𝑈𝑟𝑏𝑎𝑛𝑖

with β0 representing the transformed proportion of contraception usage for rural

women, and β1 representing the (transformed) difference in proportion between urban

and rural women. To conduct power calculations in MLPowSim for the specific case

where we believe that 35% of rural women, and 50% of urban women, use

contraceptives, we would use estimated effects of -0.619 for β0 to correspond to 35%,

and 0.619 for β1, so that β0+β1=0 which corresponds to 50% of urban women. For the

purposes of simulating samples of women, we will assume a binomial distribution for

the urban indicator, with probability 0.3; if we are simply surveying women and

recording their residence indicator, then this is a more realistic scenario than

generating particular sample sizes in each category.

The inputs in MLPowSim are then as follows:

 Welcome to MLPowSim

Please input 0 to generate R code or 1 to generate MLwiN macros: 1

 Please choose model type

1. 1-level model

2. 2-level balanced data nested model

3. 2-level unbalanced data nested model

4. 3-level balanced data nested model

5. 3-level unbalanced data nested model

6. 3-classification balanced cross-classified model

7. 3-classification unbalanced cross-classified model

Model type : 1

Please input the random number seed: 1

Please input the significant level for testing the parameters: 0.025

Please input number of simulations per setting: 1000

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 1

Please input link function [0 – logit, 1 – probit, 2- cloglog] : 0

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

 109

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 1

How many explanatory variables do you want to include in your model? 1

Please choose a type for the predictor x1 (1=Binary 2=Continuous): 1

Please input probability of a 1 for x1 : 0.3

 Sample size set up

Please input the smallest sample size : 50

Please input the largest sample size : 500

Please input the step size: 25

 Parameter estimates

Please input estimate of beta_0: -0.619

Please input estimate of beta_1: 0.619

Files to perform power analysis for the 1 level model with the following sample criterion have been

created

Sample size starts at 50 and finishes at 500 with the step size 25

1000 simulations for each sample size combination will be performed

Press any key to continue…

After running the macros in MLwiN, and then selecting columns `spow0’, `spow1’,

`zpow0, `zpow1’ and `Samplesize’, the View/Edit Data window should look as

follows:

 110

Here the columns headed ‘zpow0’ and ‘spow0’ give powers for β0, which corresponds

to testing that the probability that rural women use contraceptives is less than 0.5;

with around 125 women, this power reaches 0.8. The more interesting parameter is β1,

and we see that we need a sample of between 400 to 425 women to establish a

difference between the probabilities of using contraceptives with a power of 0.8; this

approximates the 432 that was calculated in Section 3.2 using the different normal

approximation.

As with the normal response models in Section 2, we can perform power calculations

for further categorical predictors and continuous predictors as well, but for brevity we

do not give examples here, other than noting the inputs in MLPowSim will be very

similar.

We will now move on to describe multilevel extensions of the binary response model.

3.4 Multilevel logistic regression models

If we return to our example dataset of Bangladeshi contraceptive use, we have now

established how many women we need to survey to test two simple hypotheses with a

 111

certain power. The modelling so far has assumed that we can randomly sample

women from the population; in practice, however, we are more likely to take samples

from specific places, in which case we will have a structure of women nested within

districts. It is likely that women from the same district will have similar probabilities

of using contraceptives, and so we will not end up with an independent random

sample. We can take this into account by fitting a random effect for district in our

logistic regression model, as follows:

𝑦𝑖𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑖𝑙𝑙𝑖(𝜋𝑖𝑗)

𝑙𝑜𝑔 (
𝜋𝑖𝑗

1 − 𝜋𝑖𝑗
) = 𝛽0 + 𝑢𝑗 , 𝑢𝑗~𝑁(0, 𝜎𝑢

2)

Here j indexes district, i indexes women within each district, β0 is the overall average

(transformed) proportion, and uj represents district effects. From the real data we will

again assume that our believed proportion is 0.4 which corresponds to a value of

-0.4055 for β0, and we will assume a variance of 0.25 for the clusters. The inputs in

MLPowSim are then as follows:

 Welcome to MLPowSim

Please input 0 to generate R code or 1 to generate MLwiN macros: 1

 Please choose model type

1. 1-level model

2. 2-level balanced data nested model

3. 2-level unbalanced data nested model

4. 3-level balanced data nested model

5. 3-level unbalanced data nested model

6. 3-classification balanced cross-classified model

7. 3-classification unbalanced cross-classified model

Model type : 2

Please input the random number seed: 1

Please input the significant level for testing the parameters: 0.025

Please input number of simulations per setting: 1000

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 1

Please input link function [0 – logit, 1 – probit, 2- cloglog] : 0

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1

Please input Method [0 – MQL, 1 - PQL]: 0

Please input order [1 – 1st, 2 – 2nd]: 1

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

Do you want to have a random intercept in your model (1=YES 0=NO)? 1

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 0

 Sample size set up

Please input the smallest number of units for the second level: 10

Please input the largest number of units for the second level: 50

Please input the step size for the second level: 5

Please input the smallest number of units for the first level per second level: 10

Please input the largest number of units for the first level per second level: 10

Please input the step size for the first level per second level: 1

 112

 Parameter estimates

Please input estimate of beta_0: -0.4055

Please input estimate of sigma^2_u: 0.25

Files to perform power analysis for the 2 level nested model with the following sample criterion have

been created

Sample size in the first level starts at 10 and finishes at 10 with the step size 1

Sample size starts at 10 and finishes at 50 with the step size 5

1000 simulations for each sample size combination will be performed

Press any key to continue…

We have here decided to adopt a sampling scheme of 10 women from each district

that is visited, and so the sample size that we are varying is the number of districts to

visit. One thing to note here is that we have two additional questions with regard to

the estimation method. For binary response multilevel models, MLwiN does not give

maximum likelihood estimates, but instead gives quasi-likelihood estimates. There are

two types of quasi-likelihood method available: marginal quasi-likelihood (MQL) and

penalized quasi-likelihood (PQL). These methods use a Taylor series approximation

and the order of this approximation can also be altered. Firstly we will show results

for the simplest method: MQL 1.

If we look at columns `spow0’, `zpow0’, `N-level 1’ and `N-level 2’ we see the

following:

Here we see that to get a power of 0.8, we will need to sample 30-35 districts, which

translates to 300-350 women in total. This compares with only 201 women when we

assume no district effects, which shows the importance of accounting for clustering in

power calculations. One other thing to note is that the two methods of calculating the

power give slightly different answers. This is better illustrated by graphs, which can

be viewed by performing the following:

 113

The graphs that appear should look like this:

Here we see that the smoother SE method tends to give higher power values than the

0/1 method. In this case it is probably better to use the 0/1 method, because the SE

method only works well if the estimation method is unbiased, and it has been shown

previously that 1st order MQL estimation tends to underestimate fixed effects (e.g.

Goldstein and Rasbash, 1996), and hence their standard errors, thus inflating the

power.

We will now look at 2nd order PQL estimation. To do this we again run MLPowSim,

but this time answer 1, when prompted, for PQL and 2 for 2nd order estimation. Once

more, we run the resulting macros in MLwiN and look at columns `spow0’, `zpow0’,

`N-level 1’ and `N-level 2’ in the View/Edit Data window, where we see the

following:

Select Open Macro from the File menu.

Select the macro file ‘graphs.txt’ from the list and click on the Open button.

Click on the Execute button on the macro window.

Select Customised Graph(s) from the Graphs menu

Select Apply from the Customised Graph window.

 114

We can also look at the graphs for this estimation method by repeating the boxed

instructions given above:

 115

Here we see better agreement between the two methods of calculating power. This

makes sense, since PQL is less biased than MQL, and the bias will only be noticeable

in designs with very large cluster variability.

3.5 Multilevel logistic regression models in R

Power calculations for all the models outlined above can also be conducted using R,

with generally little change in MLPowSim user input. For illustrative purposes, here

we will outline power calculations for a multilevel logistic regression model in R.

Compared to MLwiN, R can use PQL but also a different estimation method called

Adaptive Gaussian Quadrature (AGQ) which requires a number of quadrature points

with the more resulting in a better approximation but being harder to run. Here we

will use PQL which can be chosen by specifying 0 to the number of quadrature points

 116

input as AGQ has problems with this example and the small sample sizes. The inputs

in MLPowSim are as follows:

 Welcome to MLPowSim

Please input 0 to generate R code or 1 to generate MLwiN macros: 0

 Please choose model type

1. 1-level model

2. 2-level balanced data nested model

3. 2-level unbalanced data nested model

4. 3-level balanced data nested model

5. 3-level unbalanced data nested model

6. 3-classification balanced cross-classified model

7. 3-classification unbalanced cross-classified model

Model type : 2

Please input the random number seed: 1

Please input the significant level for testing the parameters: 0.025

Please input number of simulations per setting: 1000

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 1

Please input link function [0 – logit, 1 – probit, 2- cloglog] : 0

Please input number of quadrature points(>=0, 1 corresponds to Laplace approximation) : 0

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

Do you want to have a random intercept in your model (1=YES 0=NO)? 1

 Predictor(s) Input

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 0

 Sample size set up

Please input the smallest number of units for the second level: 10

Please input the largest number of units for the second level: 50

Please input the step size for the second level: 5

Please input the smallest number of units for the first level per second level: 10

Please input the largest number of units for the first level per second level: 10

Please input the step size for the first level per second level: 1

 Parameter estimates

 Fixed Effects Input

Please input estimate of beta_0: -0.4055

 Random Effects Input

Please input estimate of sigma^2_u: 0.25

 Final sample size check

The second level: start=10 end=50 step size=5

The first level: start=10 end=10 step size=1

Do you want to continue (YES=1 , NO=0)? 1

Do you want to have the CI for the power in your output (YES=1 , NO=0)? 1

 117

Having responded to all the questions in MLPowSim, we now need to fire up the R

package and run the macro file powersimu.r (see Section 1.5 for details on how to do

this). Please note that R will take considerably longer than MLwiN to run this model,

but will give you progress updates by letting you know each time 10 iterations are

complete. Upon finishing all iterations, R will finish running the code, and the results

will be stored in a file called powerout.txt. We can view the results by typing the

name of the data frame (output) saved by the commands we have just executed in the

R console:

> output

N n zLb0 zpb0 zUb0 sLb0 spb0 sUb0

10 10 0.333 0.363 0.393 0.347 0.354 0.363

15 10 0.430 0.461 0.492 0.497 0.505 0.514

20 10 0.581 0.611 0.641 0.608 0.617 0.626

25 10 0.679 0.707 0.735 0.708 0.717 0.725

30 10 0.755 0.781 0.807 0.776 0.784 0.791

35 10 0.806 0.829 0.852 0.838 0.844 0.850

40 10 0.835 0.857 0.879 0.881 0.886 0.890

45 10 0.891 0.909 0.927 0.919 0.923 0.926

50 10 0.929 0.943 0.957 0.946 0.949 0.951

Here we see that R gives powers of 0.829 and 0.844 for 35 districts, which compares

favourably with powers of 0.838 and 0.847 from MLwiN.

MLPowSim can fit all the data structures covered in Chapter 2 using binary responses

as well as normally distributed responses. For the sake of brevity we will not,

however, give examples of unbalanced data structures, three level models and cross-

classified models. Instead we move onto count data.

4 Count Data

We have now considered modelling both continuous and binary responses and

calculating power calculations for such models. Clustered binary responses can also

be considered as counts. If we assume we have collected pass/fail exam responses for

children within a classroom, we would generally model the data as binary to allow the

inclusion of predictor variables for the individual children, for example gender or

birth date, to see if they influence whether the child passes. If, however, we have no

pupil-level predictors, then we could model the proportion that pass using a (general)

Binomial distribution with parameters ni (the number of pupils in classroom i (that is

known)) and pi (the probability of passing for classroom i which we will model using

classroom and school level predictors).

In MLPowSim we do not explicitly deal with general Binomial modelling as it is less

common than the use of the Bernouilli (Binomial when n=1) distribution for binary

data. It is also always possible to expand a single general Binomial response into a

series of Bernouilli responses each with the same probability.

One can also think of the number of pupils passing the exam as a count response and

model these individual counts using a different distribution designed for such

 118

responses, for example a Poisson distribution. We encounter two problems here:

firstly, although the number passing is indeed a count, it has a finite upper limit – the

number of pupils in the school. This means that through a Poisson model we will have

a positive probability of more pupils passing than are present in the class. Secondly, if

we model the counts without accounting for the class-size we will generally find the

unsurprising result that larger classes have more pupils passing! We will discuss this

further in later sections.

Other examples of count data are the number of heavy good vehicles (HGVs) passing

a road junction in an hour and the number of cancer cases of a particular type in a

population over a 10 year period. In the first example there will be a finite number of

HGVs in the area, but the number is unknown, and also each HGV can pass the

junction more than once during our survey period and so we would not consider this

as a proportion. In the second example, we might be able to work out the population

size for the population, however the incidence rate of most cancers is (thankfully)

very small, and so the Poisson distribution is a good approximation for the Binomial

in such cases.

4.1 Modelling rates

Both the illustrative examples of HGVs and cancer cases have one thing in common:

the response is a count over a fixed time period. In reality, the Poisson distribution is

generally used to model event rates: for example HGVs per hour. If the time periods

for each measurement (or the population size, in the case of the cancer example we

considered) are the same size, then there isn’t a big distinction between rates and

counts. If, however, the sizes associated with each response are different (which is

often the case when dealing with populations) then there are methods to adjust for

these different sizes via what is known as an offset. We will consider this further

below, and in more detail in Section 4.4. There are standard formulae for sample size

calculations for models comparing a single rate to a hypothesized value, and for

comparing two rates. These formulae are very similar to those for continuous

Normally-distributed data, but with both the variances and means replaced by the

rates. Here we should recall that the Poisson distribution has one parameter, λ, and

both the mean and variance of a Poisson (λ) distribution are λ. We will now describe a

1-level Poisson model to illustrate the case of two rates.

4.2 Comparison of two rates

We will here consider an example of traffic control. Let’s assume we believe that a

stretch of minor road experiences, on average, 10 HGVs per hour travelling along it

during the peak period of 7am to 10am. Due to road works to another road, local

people believe that this will increase to 15 HGVs per hour during this period, and they

want to petition the authorities to put safety measures in place whilst the roadworks

are taking place. They want to know how many periods they would need to watch the

road, counting HGVs, to show an increase in HGV traffic.

The standard formula for the sample size is

 119

𝑛 ≥
(𝑍𝛽 + 𝑍𝛼/2)2(𝜆𝑎 + 𝜆𝑏)

(𝜆𝑎 − 𝜆𝑏)2
=

(0.842 + 1.96)2(15 + 10)

(15 − 10)2
= 7.85

where λb and λa are the expected rates before and after the road works start, and so 8

hours of watching both before and after (i.e. 16 hours in total) will suffice to gain a

power of at least 0.8 of detecting a significant increase in traffic.

We will now show how this model can fit into a Poisson modelling framework.

4.3 Poisson log-linear regressions

For Poisson models we need to relate a rate (that has to be positive) to predictor

variables in such a way that we do not predict rates that are negative. We do this by

modelling the log of the rate as a linear function of predictor variables in what is

known as a log-linear model and can be described as follows:

𝑦𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖)
𝑙𝑜𝑔(𝜆𝑖) = 𝑋𝑖𝛽

Here the exponentials of the β coefficients represent multiplicative effects to the rate

as we would predict λi as exp(Xiβ).

We can fit a model with different rates for two groups as follows:

𝑦𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖)
𝑙𝑜𝑔(𝜆𝑖) = 𝛽0 + 𝛽1𝐴𝑓𝑡𝑒𝑟𝑖

Here Afteri is an indicator variable that takes value 1 if the hour was after the

roadworks started and 0 if the hour was before the roadworks started. We now need to

link the effect sizes β to the expected rates for the two periods. For the period before

the road works we expect 10 HGVs per hour and so exp(β0)=10 so β0=loge(10)=2.303.

For the period after the road works we expect 15 HGVs and so exp(β0+ β1)=15, β0+

β1=loge(15)=2.708 and so β1=2.708-2.303 = 0.405.

To test for no increase we are interested in whether β1 is greater than 0. We will now

run MLPowSim to create the macros for MLwiN to perform the power calculation.

 Welcome to MLPowSim

Please input 0 to generate R code or 1 to generate MLwiN macros: 1

 Please choose model type

1. 1-level model

2. 2-level balanced data nested model

3. 2-level unbalanced data nested model

4. 3-level balanced data nested model

5. 3-level unbalanced data nested model

6. 3-classification balanced cross-classified model

7. 3-classification unbalanced cross-classified model

Model type : 1

 120

Please input the random number seed: 1

Please input the significant level for testing the parameters: 0.025

Please input number of simulations per setting: 1000

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 2

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 1

How many explanatory variables do you want to include in your model? 1

Please choose a type for the predictor x1 (1=Binary 2=Continuous): 1

Please input probability of a 1 for x1 : 0.5

 Sample size set up

Please input the smallest sample size : 4

Please input the largest sample size : 40

Please input the step size: 2

 Parameter estimates

Please input estimate of beta_0: 2.303

Please input estimate of beta_1: 0.405

Files to perform power analysis for the 1 level model with the following sample criterion have been

created

Sample size starts at 2 and finishes at 40 with the step size 2

1000 simulations for each sample size combination will be performed

Press any key to continue…

It should be noted that here we are starting with two survey periods and working up to

40. Due to restrictions in how this is set up in MLPowSim, we have to give a

probability that each period is before or after. This is NOT what we want here since,

in the case of small samples especially, we would likely generate some simulated

datasets where all periods are before, or all periods are after, the roadworks, and these

would be useless for testing our hypothesis (i.e. that the rate of HGVs passing is

greater after the roadworks have begun, than before). Consequently, we will need to

slightly modify the macros produced. If we load up the file setup.txt in a text editor

we can find the line that produces the predictor that indicates whether the period is

before, or after. This line is as follows:

BRAN b23 c11 0.500000 1

We can remove this line and place the following three lines before the line LOOP b40

1 b41

CALC b24 = b23/2

CODE 2 1 b24 c11

CALC c11 = c11 – 1

 121

Note that these lines firstly work out the number of pairs of survey periods, and then

generate a predictor that labels the pairs and place this in c11. The CODE line uses

the labels 1 and 2, and so to use the labels 0 and 1 to indicate before and after, we

subtract 1 from c11. It is important after making these changes to ensure you save

setup.txt.

If we now run the macro simu.txt in MLwiN, changing directory as usual, and open

the View/Edit Data window to view columns `spow1’, `zpow1’ and `Samplesize’, to

see the sample size and power estimates for the difference parameter β1 from the two

methods, we get the following:

Here we see that a power of 0.8 is reached when we have roughly 16 observations, i.e.

8 in each group which agrees with the formulae given previously.

4.1.1 Using R

 122

For 1-level Poisson models (and in fact for 1-level Binomial models) it turns out that

using R is quicker than MLwiN as we can call a function designed specifically for

fitting a 1-level model. If we initially select 0 for R when prompted in MLPowSim,

we can enter the same inputs as above, although for R we will not be asked which

estimation method we require. As above, we will again need to modify the code to

create the balanced x predictor, and we do this by removing the following line in

outputted file powersimu.r (NB we can inactivate this line of code by preceding it

with ##, as shown below):

x[,2]<-rbinom(length,1,xprob[2])

and replacing it with the following:

 ##x[,2]<-rbinom(length,1,xprob[2])

 zer <- rep(0,length/2)

 one <- rep(1,length/2)

 x[,2] <- c(zer,one)

If we run R, and then look at the output, we see the following estimates for the β1

parameter (note here we don’t show the estimates for β0):

> output

n zLb1 zpb1 zUb1 sLb1 spb1 sUb1

4 0.258 0.286 0.314 0.277 0.280 0.282

6 0.383 0.414 0.445 0.394 0.397 0.399

8 0.470 0.501 0.532 0.500 0.503 0.506

10 0.548 0.579 0.610 0.595 0.598 0.601

12 0.664 0.693 0.722 0.672 0.674 0.676

14 0.729 0.756 0.783 0.739 0.741 0.744

16 0.771 0.796 0.821 0.795 0.797 0.799

18 0.824 0.846 0.868 0.841 0.842 0.844

20 0.876 0.895 0.914 0.877 0.878 0.879

22 0.910 0.926 0.942 0.905 0.906 0.907

24 0.919 0.934 0.949 0.928 0.929 0.929

26 0.926 0.941 0.956 0.945 0.946 0.947

28 0.962 0.972 0.982 0.958 0.959 0.959

30 0.968 0.977 0.986 0.969 0.969 0.970

32 0.963 0.973 0.983 0.977 0.977 0.978

34 0.975 0.983 0.991 0.983 0.983 0.983

36 0.989 0.994 0.999 0.987 0.987 0.988

38 0.986 0.992 0.998 0.991 0.991 0.991

40 0.994 0.997 1.000 0.993 0.993 0.993

Here again we see that we need approximately 8 observations in each group to get a

power of 0.8 as we saw both theoretically and using MLwiN.

 123

4.4 Random effect Poisson regressions

We will here consider another example that appears in the MLwiN User’s Guide

(Rasbash et al, 2004). The melanoma mortality dataset (Langford, Bentham &

McDonald, 1998) contains data on the number of male deaths due to malignant

melanoma in various regions of Europe over a 10 year period. The dataset has three

levels, with individual counts for counties nested within regions of 9 European

countries. For the purpose of our modelling example here, we will simply consider the

two levels of counties nested within regions, and will consider the effect of UVB

exposure on the rates of melanoma. UVB exposure is measured as the amount of

UVB reaching the surface of the earth in each county, and this data is centred.

Running the two-level model in MLwiN (1st order MQL estimation) we get the

following output:

So we actually see (perhaps surprisingly) a negative effect of UVB exposure on the

number of melanoma cases. Note that we are purely using this example to illustrate a

certain type of model, but any reader interested in why this happens in this dataset

should read the Langford et al. paper; our interest here is in performing a sample size

calculation to determine how many counties in how many regions we would need to

sample to find a significant effect. In the real dataset there are 354 counties in 78

regions, i.e. roughly 5 per region, so here we will consider varying the number of

regions while maintaining a balanced design of 5 counties in each region.

One thing to note in the above model is that the population size of counties varies, and

so we are using an offset term to convert the number of cases to a rate response. In

fact, as cancers are rare, rather than use the (logged) population size as an offset,

expected numbers of cases are used instead. These are calculated by taking the total

number of cases and working out how many cases we would expect in each county if

 124

there was an equal risk for each person (in fact, information on sex and age

demographics in each region are usually used to calculate more accurate expected

counts). Therefore, in order to replicate the model for the sample size calculation, we

will need to modify the standard macro generated by MLPowSim to include an offset

term.

If we plot a histogram of the 354 expected counts, we get the following:

Basically, a fairly skewed distribution; taking logs of the data we get:

 125

This is slightly longer-tailed than a normal distribution (compare the histogram with

the curve in the figure above), however the normal is nevertheless a reasonable

approximation. For each observation we will therefore generate a normally distributed

offset from a Normal (2.9,1) distribution.

Firstly, however, we need to run MLPowSim to generate the macro code without the

offset. To get information on the (centred) variable uvbi we first fit a 2-level model to

see where the variance in this predictor lies:

 126

From this we will use 0 as the mean (as the data is centred) and 0.4 and 22.4 as the

two levels of variability. These variances make sense as the UVB hitting the earth

over a region is going to be fairly constant, while between regions it can vary a lot.

The inputs to MLPowSim are therefore as follows:

 Welcome to MLPowSim

Please input 0 to generate R code or 1 to generate MLwiN macros: 1

 Please choose model type

1. 1-level model

2. 2-level balanced data nested model

3. 2-level unbalanced data nested model

4. 3-level balanced data nested model

5. 3-level unbalanced data nested model

6. 3-classification balanced cross-classified model

7. 3-classification unbalanced cross-classified model

Model type : 2

Please input the random number seed: 1

Please input the significant level for testing the parameters: 0.025

Please input number of simulations per setting: 1000

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 2

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1

Please input Method [0 - MQL, 1 - PQL] : 0

Please input order [1 - 1st, 2 - 2nd] : 1

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

Do you want to have a random intercept in your model (1=YES 0=NO)? 1

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 1

How many explanatory variables do you want to include in your model? 1

Please choose a type for the predictor x1 (1=Binary 2=Continuous): 2

 127

Assuming normality, please input its parameters here:

The mean of the predictor x1: 0

The variance of the predictor x1 at level 1: 0.4

The variance of the predictor x1 at level 2: 22.4

Do you want the coefficient associated with explanatory variable x1 to be random (1=YES 0=NO) ? 0

 Sample size set up

Please input the smallest number of units for the second level: 20

Please input the largest number of units for the second level: 80

Please input the step size for the second level: 5

Please input the smallest number of units for the first level per second level: 5

Please input the largest number of units for the first level per second level: 5

Please input the step size for the first level per second level: 1

 Parameter estimates

Please input estimate of beta_0: -0.05

Please input estimate of beta_1: -0.04

Please input estimate of sigma^2_u: 0.2

Files to perform power analysis for the 2 level nested model with the following sample criterion have

been created

Sample size in the first level starts at 5 and finishes at 5 with the step size 1

Sample size in the second level starts at 20 and finishes at 80 with the step size 5

1000 simulations for each sample size combination will be performed

Press any key to continue…

We now need to add some code to include the offset; this variable will be added into

column c6. We make changes to the macro setup.txt, adding extra code around the

line

LOOP b40 1 b41

as shown below (added lines in italics)

LFUN 3

DOFF 1 c6

LOOP b40 1 b41

 NRAN b23 c8

 CALC c6 = c8+2.9

 CALC ‘offs’ = c6

 NRAN b22 c990

Note that MLwiN will assign another column called ‘offs’ to contain the offsets and

so it is important not only to say that there is an offset via the DOFF command but

also to set the ‘offs’ column at each iteration.

We also need to add the offset into the simulations by changing

 SIMU c5

to read (again, additional line in italics)

 128

 SIMU c5

 CALC c5= c5+c6

so that the Poisson random numbers generated also include the offset. We then save

the macro setup.txt and run the macro simu.txt in MLwiN.

If we bring up the View/Edit Data window and select columns `spow1’, `zpow1’, `N-

level 1’ and `N-level 2’, then once the macro has been run then we will see the

following:

It is worth noting that for non-normal data the standard-error method doesn’t work so

well with estimation methods (like MQL1) that give biased estimates, however here

we see reasonable agreement between the power estimates in zpow1 and spow1,

suggesting that this isn’t such a problem for this Poisson model. The simulations

suggest that between 35 and 40 regions should be enough to get the desired power of

0.8 when following cancer rates for a 10-year period. The user could also try fitting

the models using PQL2, but we omit the details here.

4.5 Further thoughts on Poisson data

In the examples in this chapter we have seen that it is possible to alter the output from

MLPowSim to construct power calculations for models that do not naturally fit into

the framework of those covered by the software. In the traffic example we saw how to

 129

construct a predictor variable that has a regular form rather than one that is generated

from a specified probability distribution. In the melanoma example we saw how to

include an offset in a Poisson model to deal with counts from different size

populations. Disease mapping data, of which the melanoma dataset is an example, are

often fitted with spatially-correlated random effects, either using multiple membership

models or CAR models. Power calculations for these models are beyond the scope of

the current version of MLPowSim but may be included (subject to funding) in later

developments.

If we return to the melanoma dataset, it’s worth noting that we can alter the sample

size by changing more than just one aspect of the study design. Up to now, we have

been looking at the effect of varying the number of counties for which data is

collected (based on a 10-year collection period), however we could also look at

varying the collection period length. We have seen that the modelling contains an

offset that contains the (log of the) expected cases in a 10-year period. If we assume

the probability of a case is uniform over that period, then we would expect half as

many cases in a 5-year period. If we translate this into a distribution for the log of the

expected counts we find that a Normal with a mean of 2.2, and a variance (once

again) of 1, fits the bill. To fit such a model we simply need to modify one line in the

macro setup.txt :

 CALC c6 = c8+2.9 becomes CALC c6 = c8+2.2

We can then rerun the macros in MLwiN to get the following results:

 130

Here we now require 40 to 45 regions to get a power of 0.8 (as opposed to 35 to 40

when we study the regions over 10 years). So we see that we can reduce the length of

the study by increasing the number of regions and still get a similar power.

5 Code Details, Extensions and Further work

In this chapter we will firstly use an example to illustrate what the code generated by

MLPowSim does, line by line. We will then employ this example to demonstrate how

we might change the code to find power calculations for models that do not fit the

standard framework. Finally, we will briefly discuss a further Bayesian method that

creates power calculations using prior distributions for effect sizes, rather than point

estimates (described in Wang and Gelfand, 2002).

5.1 An example using MLwiN

In this section, we will return to the tutorial example considered in Chapter 2. There

we considered a variance components model with three predictors, but here we will

ignore the London Reading Test (LRT) predictor, which needed a very small sample

size due to its high correlation with the outcome. Instead, we will just focus on two

gender-related predictors: pupil gender and school gender. The observed effects in the

real dataset are different from those in the three predictor model since – when we do

not include an intake measure – they represent effects of gender and school gender on

raw attainment, rather than progress. Here we will use the actual estimates we

obtained in the tutorial example, and we will give all the inputs for the model, so that

we can see where the numbers come from when we look at the macros in detail.

 Welcome to MLPowSim

Please input 0 to generate R code or 1 to generate MLwiN macros: 1

 Please choose model type

1. 1-level model

2. 2-level balanced data nested model

3. 2-level unbalanced data nested model

4. 3-level balanced data nested model

5. 3-level unbalanced data nested model

6. 3-classification balanced cross-classified model

7. 3-classification unbalanced cross-classified model

Model type : 2

Please input the random number seed: 1

Please input the significant level for testing the parameters: 0.025

Please input number of simulations per setting: 1000

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0

Please enter estimation method [0 - RIGLS, 1 - IGLS, 2 - MCMC] : 1

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

Do you want to have a random intercept in your model (1=YES 0=NO)? 1

 131

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 1

How many explanatory variables do you want to include in your model? 2

Please choose a type for the predictor x1 (1=Binary 2=Continuous 3=all MVN): 3

Assuming multivariate normality, please input its parameters here:

The mean of the predictor x1: 0.6

The mean of the predictor x2: 0.462

The variance matrix of the predictors at level 1

The element [1,1] : 0.120

The element [2,1] : 0

The element [2,2] : 0

The variance matrix of the predictors at level 2

The element [1,1] : 0.125

The element [2,1] : 0.045

The element [2,2] : 0.249

Do you want the coefficient associated with explanatory variable x1 to be random (1=YES 0=NO) ? 0

Do you want the coefficient associated with explanatory variable x2 to be random (1=YES 0=NO) ? 0

 Sample size set up

Please input the smallest number of units for the second level: 20

Please input the largest number of units for the second level: 300

Please input the step size for the second level: 20

Please input the smallest number of units for the first level per second level: 40

Please input the largest number of units for the first level per second level: 40

Please input the step size for the first level per second level: 10

 Parameter estimates

Please input estimate of beta_0: -0.226

Please input estimate of beta_1: 0.257

Please input estimate of beta_2: 0.146

Please input estimate of sigma^2_u: 0.156

Please input estimate of sigma^2_e: 0.839

Files to perform power analysis for the 2 level nested model with the following sample criterion have

been created

Sample size in the first level starts at 20 and finishes at 300 with the step size 20

Sample size in the second level starts at 40 and finishes at 40 with the step size 10

1000 simulations for each sample size combination will be performed

Press any key to continue…

If we run the macros in MLwiN, and then highlight columns spow1, spow2, zpow1,

zpow2, and N-level 2 in the View/Edit Data window, we will see the following:

 132

Here we see that the gender predictor needs very few (20 or less) schools to gain a

power of 0.8 (zpow1 & spow1), whilst the school gender predictor needs at least 260

schools and maybe even 280 to gain this power (zpow2 & spow2). We will now

examine, in detail, the corresponding macros:

5.1.1 The simu.txt macro

The simu.txt macro code for this example is as follows:

NOTE MLwiN macro code generated by MLPowSim

NOTE This is outer code to be run directly in MLwiN

NOTE You will also need simu2.txt, setup.txt and analyse.txt

INIT 5 5000 5000 3 40

MARK 0

SEED 1

ERASE C994-C998

NOTE setup the values of beta, sigma2u, sigma2e etc.

JOIN C998 -0.226000 C998

JOIN C998 0.257000 C998

JOIN C998 0.146000 C998

JOIN C996 0.156000 C996

JOIN C996 0.839000 C996

NOTE put MVN variances for predictors in model

JOIN c994 0.120000 c994

JOIN c994 0.000000 c994

JOIN c994 0.000000 c994

JOIN c995 0.125000 c995

JOIN c995 0.045000 c995

JOIN c995 0.249000 c995

 133

LINK 10 G40

LINK 2 G21

LINK 3 G22

LINK 3 G23

LINK 3 G24

LINK 3 G25

LINK 3 G26

LINK 3 G27

LINK 3 G31

LINK 3 G32

LINK 3 G33

LINK 2 G34

LINK 0 G40

NAME G21[1] "N-level 1"

NAME G21[2] "N-level 2"

NAME G22[1] "zpow0"

NAME G23[1] "zlow0"

NAME G24[1] "zupp0"

NAME G25[1] "spow0"

NAME G26[1] "slow0"

NAME G27[1] "supp0"

NAME G22[2] "zpow1"

NAME G23[2] "zlow1"

NAME G24[2] "zupp1"

NAME G25[2] "spow1"

NAME G26[2] "slow1"

NAME G27[2] "supp1"

NAME G22[3] "zpow2"

NAME G23[3] "zlow2"

NAME G24[3] "zupp2"

NAME G25[3] "spow2"

NAME G26[3] "slow2"

NAME G27[3] "supp2"

CALC b41 = 1000

LOOP b22 20 300 20

 OBEY simu2.txt

ENDL

MARK 1

MLwiN uses three storage devices: firstly columns, which begin with the letter ‘c’

(but which can also be named), and which contain a vector of numbers, and secondly

boxes, which begin with the letter ‘b’, and contain single numbers. Thirdly there are

groups (of columns) which begin with the letter ‘G’ and are a device to refer to

columns that are grouped together. The advantage of the grouping device is that you

do not need to specify column numbers and it avoids overwriting existing columns.

The macro code contains some housekeeping commands so the INIT command

initialises the numbers of levels, columns etc. and in particular increases the number

of columns to 5000. Then the MARK command simply stops the macro giving

warning messages each time it overwrites a column.

The NOTE command in MLwiN allows us to provide comments, for our own

reference as is done at the top of this file. The macro begins by setting the random

number seed (SEED command) to the value inputted in MLPowSim. Then the

columns c994-c998 are erased in case other macros have been run previously. The

fixed effect estimates for the simulation are then stacked in column C998 using the

 134

JOIN command, as are the variance estimates in C996. Next the (lower diagonal)

variance matrices for the two predictor variables are stacked in c994 and c995 for

levels 1 and 2, respectively.

The LINK command is then used to specify the lengths of several groups in terms of

numbers of columns with the NAME command used to give names to the columns

within the groups to aid the viewer when inspecting the output. These contain the

sample size at each level (N-level 1 or 2), and the power estimates (pow), together

with upper (upp) and lower (low) intervals, for the intercept (0) and predictors (1 and

2) (for both standard error (s) and zero/one method (z)). Note that G40 is in fact not

used in this macro but may be used elsewhere in MLwiN so the 2 calls to G40 simply

block off 10 columns not to be used by other groups.

The number of simulations to be executed per setting (1000) is then stored in box b41.

A loop is then run over the numbers of level 2 units, which at each pass through the

loop are stored in box b22. Here the command LOOP b22 20 300 20 means looping

starts from value 20 and steps through the loop in multiples of 20 until we reach 300.

The OBEY command within the loop then calls another macro (simu2.txt) which will

be run each time through the LOOP. Note that one feature of the MLwiN macro

language is that only one LOOP can be present in each macro hence the need for

additional macro files that are called via the OBEY command. We next look at the

macro simu2.txt.

5.1.2 The simu2.txt macro

The simu.txt macro sets up looping through the desired numbers of highest level (in

this case level 2) units. For one-level models, this macro will call straight through to

the setup macro, whilst for three-level models there will be both a simu2 and a simu3

macro. In our case, the simu2 macro allows looping through the numbers of level 1

units to be considered within the level 2 units, and the code, in simu2, looks like this:

NOTE MLwiN macro code generated by MLPowSim

NOTE This code simply covers second level of looping!

LOOP b21 40 40 10

 OBEY setup.txt

ENDL

Here b21 will store the number of level 1 units per level 2 unit, and since here we

only consider 40, we have a loop running from 40 to 40 which will simply set b21 to

40 and be performed once. The file then calls the setup macro which does most of the

work.

5.1.3 The setup.txt macro

As the name suggests, the setup macro sets up the data structures for the simulations,

and runs the models. The code is as follows:

NOTE MLwiN macro code generated by MLPowSim

NOTE b21 - number of level per level 2, b22 - number of level 2

 135

CALC b23 = b21*b22

ERASE c1011 c1012

GENErate 1 b23 c1

CODE b22 b21 1 c2

PUT b23 1 c4

PUT b23 1 c5

NAME c1 'l1id' c2 'l2id' c4 'cons' c5 'resp'

CLEAr

RESP c5

IDEN 2 c2

IDEN 1 c1

EXPL 1 c4

SETV 1 c4

SETV 2 c4

PUT b23 1 c11

ADDT c11

PUT b23 1 c12

ADDT c12

ERROR 0

BATCH 1

LOOP b40 1 b41

 MRAN b22 c995 c601-c602

 REPE b21 c601 c621

 REPE b21 c602 c622

 MRAN b23 c994 c11-c12

 CALC c11 = 0.600000 + c11 +c621

 CALC c12 = 0.462000 + c12 +c622

 PICK 1 c998 b51

 EDIT 1 c1098 b51

 PICK 2 c998 b51

 EDIT 2 c1098 b51

 PICK 3 c998 b51

 EDIT 3 c1098 b51

 PICK 1 c996 b51

 EDIT 1 c1096 b51

 PICK 2 c996 b51

 EDIT 2 c1096 b51

 PUT b23 1 c5

 SIMU c5

 METH 1

 START

 JOIN c1098 c1096 c1011 c1011

 SEPICK c1001

 JOIN c1001 c1012 c1012

ENDL

OBEY analyse.txt

PAUSE 1

As can be seen, there is slightly more to this macro. The first CALC command puts

the total number of pupils into box b23. The ERASE command empties some

columns that will be used later. The command GENE 1 b23 c1 creates a column that

contains the sequence of numbers from 1 to b23, representing the level 1 identifiers.

Next, the CODE command will create a column of b21 repeats of the numbers

between 1 and b22: i.e. will create a column of level 2 identifiers. The two PUT

commands then create constant columns, one for the intercept and one for the

response, which will later be replaced with a simulated response.

 136

The NAME command labels the columns created, the CLEAR command clears any

existing model and the RESP command tells MLwiN that the response variable is

stored in column c5. The IDEN commands give the columns that contain the level 2

and level 1 identifiers. The EXPL command sets the intercept as a predictor variable,

and the two SETV commands then include residuals at level 1, and random intercepts

at level 2, respectively.

The combinations of PUT and ADDT commands create columns for the two

predictors (gender and school gender) which, before simulating, are simply given

constant values, and adds these predictors into the model. The command ERROR 0

tells MLwiN to continue running the macro regardless of error messages, and the

BATCH 1 command tells MLwiN that we are running in batch mode: i.e. from a

macro.

We then LOOP through the b41 simulations for this setting (in this example b41 is

1000). The code inside the LOOP will create a simulated dataset, run the model, and

then store the output as described below.

The first MRAN command generates b22 pairs of random (zero mean) multivariate

normal-distributed variables in columns c601 and c602, using the (lower diagonal)

variance matrix stored in c995: i.e. it creates the school-level parts of the two

predictors. The two REPEat commands then match these school-level parts to the

dataset in columns C621 and C622, respectively. The second MRAN command

generates b23 pairs of random (zero mean) multivariate normal-distributed variables

in columns c11 and c12, using the (lower diagonal) variance matrix stored in c994:

i.e. it creates the student-level parts of the two predictors. The 2 CALC commands

then create the whole predictor variables in c11 and c12, by adding their means to the

student and school parts.

There are then a whole list of PICK and EDIT commands; these basically transfer the

fixed effect and variance parameters for the simulation from their stored columns

(c996 and c998) to the columns c1096 and c1098. These are special columns in

MLwiN, containing the estimates for the variances and fixed effects (respectively) for

the current fitted model. We copy the values in here so that we can run the SIMU

command; this will create a response variable in C5 based on the values in c1096 and

c1098, and the currently-set-up model.

We then have the METH 1 command which confirms that we are to use IGLS

estimation, and the START command which fits the model to the current simulated

data using IGLS. The two JOIN commands then take the estimates (fixed effects and

variances) and their standard errors via the SEPICK command, respectively, for this

simulation and place them into columns c1011 and c1012. It would be possible here

to only store the fixed effects estimates and their standard errors, since that is all we

will use, but for completeness the variances are stored. The LOOP then ends with the

ENDL command, and after the 1000 simulations are run the analyse.txt macro is

called to create power estimates from the output.

The macro ends with a PAUSE 1 command which, for a split second, gives back

control to the screen, and hence updates all the windows so that we can observe

progress of the macro in the Data window. It is worth noting that if the macros have

 137

come up with a numerical error while model-fitting, which is possible for example

when we have small sample sizes and random slopes models, then this error will be

displayed when the PAUSE 1 command is reached; here, the effect of the error-

suppressing ERROR 0 command will be nullified at this point. If you have this

problem, it will be sensible to either increase the size of your smaller simulation

designs, or remove the PAUSE 1 command so that MLwiN will perform all

simulations before displaying the error message.

5.1.4 The analyse.txt macro

The analyse.txt macro takes the output from one set of simulations and calculates

power estimates and confidence intervals for these estimates. The code is as follows:

NOTE MLwiN macro code generated by MLPowSim

CODE 5 1 b41 c1002

SPLIT c1011 c1002 G31 G34

SPLIT c1012 c1002 G32 G34

NOTE calculate IGLS interval coverage

NED 0.975000 b42

JOIN "N-level 1" b21 "N-level 1"

JOIN "N-level 2" b22 "N-level 2"

CALC c1005= G31[1] + b42*G32[1]

CALC c1006= c1005<0

AVER c1006 b202 b203 b204

JOIN "zpow0" b203 "zpow0"

CALC b204 = (b203)*(1-b203)/b41

CALC b205 = b203-b42*sqrt(b204)

JOIN "zlow0" b205 "zlow0"

CALC b205 = b203+b42*sqrt(b204)

JOIN "zupp0" b205 "zupp0"

CALC c1005= G31[2] - b42*G32[2]

CALC c1006= c1005>0

AVER c1006 b202 b203 b204

JOIN "zpow1" b203 "zpow1"

CALC b204 = (b203)*(1-b203)/b41

CALC b205 = b203-b42*sqrt(b204)

JOIN "zlow1" b205 "zlow1"

CALC b205 = b203+b42*sqrt(b204)

JOIN "zupp1" b205 "zupp1"

CALC c1005= G31[3] - b42*G32[3]

CALC c1006= c1005>0

AVER c1006 b202 b203 b204

JOIN "zpow2" b203 "zpow2"

CALC b204 = (b203)*(1-b203)/b41

CALC b205 = b203-b42*sqrt(b204)

JOIN "zlow2" b205 "zlow2"

CALC b205 = b203+b42*sqrt(b204)

JOIN "zupp2" b205 "zupp2"

NOTE calculate IGLS SE method

AVER G32[1] b202 b203 b204 b205

CALC b206= b203+b42*b205

CALC b207= b203-b42*b205

CALC b203=(-0.226000)/b203

CALC b203 = b203+b42

CALC b206=(-0.226000)/b206

 138

CALC b206 = b206+b42

CALC b207=(-0.226000)/b207

CALC b207 = b207+b42

NPRO b203 b204

JOIN "spow0" b204 "spow0"

NPRO b206 b204

JOIN "slow0" b204 "slow0"

NPRO b207 b204

JOIN "supp0" b204 "supp0"

AVER G32[2] b202 b203 b204 b205

CALC b206= b203+b42*b205

CALC b207= b203-b42*b205

CALC b203=0.257000/b203

CALC b203 = (-1)*b203+b42

CALC b206=0.257000/b206

CALC b206 = (-1)*b206+b42

CALC b207=0.257000/b207

CALC b207 = (-1)*b207+b42

NPRO b203 b204

JOIN "spow1" b204 "spow1"

NPRO b206 b204

JOIN "slow1" b204 "slow1"

NPRO b207 b204

JOIN "supp1" b204 "supp1"

AVER G32[3] b202 b203 b204 b205

CALC b206= b203+b42*b205

CALC b207= b203-b42*b205

CALC b203=0.146000/b203

CALC b203 = (-1)*b203+b42

CALC b206=0.146000/b206

CALC b206 = (-1)*b206+b42

CALC b207=0.146000/b207

CALC b207 = (-1)*b207+b42

NPRO b203 b204

JOIN "spow2" b204 "spow2"

NPRO b206 b204

JOIN "slow2" b204 "slow2"

NPRO b207 b204

JOIN "supp2" b204 "supp2"

Here there is a lot of repetition, since there are three fixed effect parameters to deal

with. The first CODE command is to create indicator columns, so that the individual

parameter estimates (in c1011) and their standard errors (in c1012) can be extracted.

The two SPLIT commands perform this extraction, and put the estimates in groups

G31 and G34, and their standard errors in groups G32 and G34.

Next, the NED command finds the correct value from the normal distribution to

represent the desired significance level; since we have set the significance level at

0.025, this is set at 0.975 (1-0.025). The following two JOIN commands store the

numbers of level 1 and 2 units in the appropriate columns for this set of simulations,

respectively for output purposes. We then have 2 CALC commands, followed by an

AVER command and a JOIN command. The first CALC creates upper limits for the

confidence intervals (as the predicted effect is negative) and stores them in c1005, the

second CALC then evaluates how many of these upper limits are themselves negative

(i.e. we evaluate whether the confidence interval contains 0 or not): if an upper limit

doesn’t contain 0 then a value of 1 is stored in c1006, whereas if it does contain 0 then

 139

a value of 0 is stored. The AVER command calculates the average of the 0/1 values,

which is the 0/1 method of estimating power; this is then stored in b203. Finally, the

JOIN command adds this estimate to the column (in this case “zpow0”) which will

contain the stacked list of powers for the various settings.

The next 5 lines calculate the standard error of this power estimate based on a

Bernouilli assumption (in b204), and create lower and upper confidence intervals

which are stored initially in b205 before being stacked in “zlow0” and “zupp0”,

respectively. The 9 lines for the intercept parameter are then repeated for the two

predictors, with the lower limits being used, since the predicted effects are positive.

This will take us to the NOTE command and finish the O/1 method.

For the SE method, we start by finding the average of the estimated standard errors.

We begin with the intercepts, using G32[1], and store the result in b203, along with

normally-distributed confidence limits stored in b206 and b207. The two lines CALC

b203 = (-0.226000)/b203 and CALC b203 = b203+b42 then construct a value in b203

which, when converted to a normal probability, will give the power. Similar lines are

given for the two confidence limits. The 3 pairs of NPRO and JOIN commands then

calculate and stack the powers for the SE method in “spow0”, with the lower limits in

“slow0”, and the upper limits in “supp0”.

These 15 lines are all for the intercept parameter, and similar lines are then given for

the two predictors, which takes us to the end of macro. The ending of the macro will

result in a return to the setup macro, where we will run through the next scenario of

pupil and school numbers, with the analyse macro being called once per scenario.

5.1.5 The graph.txt macro

The graphs macro is an additional macro which can assist the user in graphing their

power calculations. It is called after the macros have run, and produces graphs like the

ones shown below:

 140

Basically, for each predictor and each method, three lines are drawn giving the mean

power curve and confidence intervals. The macro is rather repetitive and so here we

give just the code that produces the lines for the 0/1 method, and the intercept:

NOTE MLwiN macro code generated by MLPowSim

NOTE can be run after finishing execution to give graphs

GIND 1 1

GYCO "zpow0"

GXCO "N-level 2"

GTYP 1

GCLR 1

CALC "zlow0" = "zpow0" - "zlow0"

GYER 1 "zlow0"

GYER 2 "zlow0"

GETY 1

The commands, in sequence, give the display and line number in GIND, and the

columns to plot in GYCO and CXCO; GTYP 1 gives a line graph, and GCLR 1 gives

colour 1 (dark blue). The CALC command constructs the difference between the

mean and the upper limit to use as errors. Note that for the SE method, we do not have

symmetric errors, and so there will be two CALC commands. The two GYER

 141

commands then state that the upper and lower errors are in “zlow0”. The GETY

command sets error plotting to lines, as opposed to bars.

5.2 Modifying the example in MLwiN to include a multiple category

predictor

Again, using the education-based example we employed in the preceding section, here

we will look at how we might alter the code produced by MLPowSim to better

represent the predictors in the model. Our modifications will need to take account of

the following three factors:

(i) in reality, the school gender takes 3 values, representing mixed schools, girls’

schools and boys’ schools. We would typically fit this as a pair of indicator

vectors that signify whether a school is a girls’ school or not, and whether a

school is a boys’ school or not;

(ii) the gender predictor is strongly related to the school gender predictor, and if

the school is single sex, then the gender predictor is determined for all the

school’s pupils;

(iii) the school gender predictor would normally be tested using a deviance test

rather than separate Z tests for each category.

We will show how to modify the code to cater for each of these features, building up

from the initial macros that can be generated by MLPowSim, which is where we start

our discussion.

5.2.1 Initial macros

Although the code given previously is similar to our modelling situation, and we

could in theory start from that, in practice it will be easier to start by assuming that we

have two school gender predictors, representing girls’ schools and boys’ schools. It is

also better to assume independence between the three predictors. To do this we need

to change two parts of the macros we employed earlier. Firstly, when defining the

predictors, we will have:

How many explanatory variables do you want to include in your model? 3

Please choose a type for the predictor x1 (1=Binary 2=Continuous 3=all MVN): 1

Please input probability of a 1 for x1 : 0.6

Please choose a type for the predictor x2 (1=Binary 2=Continuous): 2

Assuming normality, please input its parameters here:

The mean of the predictor x2: 0.15

The variance of the predictor x2 at level 1: 0

The variance of the predictor x2 at level 2: 0.13

Please choose a type for the predictor x3 (1=Binary 2=Continuous): 2

Assuming normality, please input its parameters here:

The mean of the predictor x3: 0.30

The variance of the predictor x1 at level 1: 0

The variance of the predictor x1 at level 2: 0.21

Do you want the coefficient associated with explanatory variable x1 to be random (1=YES 0=NO) ? 0

 142

Do you want the coefficient associated with explanatory variable x2 to be random (1=YES 0=NO) ? 0

Do you want the coefficient associated with explanatory variable x3 to be random (1=YES 0=NO) ? 0

In the real data there are twice as many girls’ schools than boys’ schools, and we want

to specify these as level 2 variables; this can only be done in MLPowSim if we

assume the predictors are continuous, as we have specified in our input above.

Secondly, we need to alter the expected estimates to cater for the additional predictor,

as follows:

 Parameter estimates

Please input estimate of beta_0: -0.228

Please input estimate of beta_1: 0.262

Please input estimate of beta_2: 0.191

Please input estimate of beta_3: 0.123

Please input estimate of sigma^2_u: 0.155

Please input estimate of sigma^2_e: 0.839

Here, most of the estimates have changed little from the model with a common single-

sex school effect, however the 0.146 effect of single sex school has been split into a

stronger (0.191) boys’ school effect, and a slightly weaker (0.123) girls’ school effect.

To confirm that you have the correct macros running, they should give the following

output in MLwiN:

 143

Here, we see results similar to those in Section 5.1, indicating that we need very few

schools to detect a gender effect (spow1) but far more schools to detect school gender

effects. We see that the girls’ school effect (spow3) has less power than the boys’

school effect (spow2); this is due, in the main, to the estimate for boys’ schools being

bigger in magnitude than the estimate for girls’ schools.

5.2.2 Creating a multiple category predictor

The results above are based on assuming two independent continuous level 2

predictors to represent the two single sex school categories. This is problematic, since

the continuous predictors will have more information than the binary predictors, and

so the power calculations may be overoptimistic. Here, we will alter the code in the

macro setup.txt to convert these two continuous predictors to a multinomial variable

that corresponds to two dummy variables. Below is the start of the inner loop code in

setup.txt where added lines have been included in italics, and removed lines are

superseded with a NOTE command (although in reality it might be easier to simply

delete the commands):

LOOP b40 1 b41

 BRAN b23 c11 0.600000 1

 URAN b22 c989

 CALC c990 = c989< 0.15

 NOTE NRAN b22 c990

 NOTE CALC c990 = c990*0.360555

 NOTE REPE b21 c990 c991

 NOTE NRAN b23 c12

 NOTE CALC c12 = 0.150000 + c12*0.000000 + c991

 REPE b21 c990 c12

 NOTE NRAN b22 c990

 NOTE CALC c990 = c990*0.458258

 CALC c990 = (c989 > 0.15)&(c989 < 0.45)

 NOTE REPE b21 c990 c991

 NOTE NRAN b23 c13

 REPE b21 c990 c13

 NOTE CALC c13 = 0.300000 + c13*0.000000 + c991

If we save these changes to setup.txt and rerun the macros we will get the following

results:

 144

So here we see that when we truly use a multinomial distribution, the powers obtained

are smaller. We next need to tie up the gender predictor with the school gender

predictor.

5.2.3 Linking gender to school gender

So far, the modelling has assumed independence between gender and school gender,

which means that the code will generate simulated datasets where single sex schools

have both boys and girls. We will now change the macro so that for girls’ schools all

pupils are girls and for boys’ schools all pupils are boys. In the mixed schools, 48.8%

of pupils are girls, and school identifier only explains about 10% of the variability in

pupil gender. With regard to the gender predictor, we will assume that for mixed

schools we have a probability of 0.5 for each pupil being a girl. Once more, we need

to modify the file setup.txt to implement this change (the lines of code we have added

are again in italics and for space we have not put all the lines beginning NOTE):

LOOP b40 1 b41

 NOTE BRAN b23 c11 0.600000 1

 BRAN b23 c11 0.5 1

 URAN b22 c989

 CALC c990 = c989< 0.15

 REPE b21 c990 c12

 145

 CALC c990 = (c989 > 0.15)&(c989 < 0.45)

 REPE b21 c990 c13

 CALC c11 = c13 + c11*((c12==0)&(c13==0))

Here we have changed 2 lines. Firstly we have updated the probability of being a girl

to 0.5, as this now corresponds to mixed schools only. Secondly, whilst the gender

response is created as before, in the last line its value is only taken if both c12 and c13

are 0: i.e. only for mixed schools. Otherwise, all pupils have gender 1 for girls’

schools, and gender 0 for boys’ schools. If we again run the macros with these

changes, we will get the following results:

Here we see that the power for the gender predictor reduces when we use this better

simulation of the predictors. Again, this makes sense, since for the single sex schools

you will not be able to separate both the gender effect and the school gender effect,

and so for the gender predictor you are relying on the mixed effect schools. The

school gender power is also slightly reduced for the same reasons.

5.2.4 Performing a deviance test

Generally one would test the inclusion of a group of predictors as a group using a

single test. For example, we would often use a deviance test in which we record the

 146

difference in deviance (-2*loglike) between models fitted both with, and without, the

terms to be tested. To do this here, we will use the LIKE command to store the

deviance for each model. We will need to change both the setup.txt macro and the

analyse.txt macro.

With regard to the setup.txt macro, we need to change one line at the top as follows:

ERASE c1011 c1012 c1013

(i.e. the addition of c1013 to the existing line), together with the following changes to the

bottom of setup.txt macro:

 SIMU c5

 METH 1

 EXPL 0 c12

 EXPL 0 c13

 START

 LIKE b52

 EXPL 1 c12

 EXPL 1 c13

 START

 LIKE b53

 CALC b53 = b52 - b53

 JOIN c1098 c1096 c1011 c1011

 SEPICK c1001

 JOIN c1001 c1012 c1012

 JOIN c1013 b53 c1013

ENDL

Here we have added several commands to change the model, fitting the model with,

and without, the two school gender predictors. We will then store the difference in

deviance in c1013. We need to add some code to the bottom of analyse.txt to deal

with the deviance test results. Here we will hardwire things for our example, and

assume we are interested in the 0.025 significance level again (i.e. a 2-sided test with

a significance level of 0.05). The change in deviance follows a chi-squared

distribution with 2 degrees of freedom; the 0.975 value is 7.38, and so we will use this

in the macro. The following lines are added to the bottom of analyse.txt:

CALC c1014 = c1013 > 7.38

AVER c1014 b202 b203 b204 b205

JOIN c235 b203 c235

Here we have a 0/1 approach which we store in column c235. These macros will take

longer to run as they fit two models for each simulated dataset. The results of running

the macros after these changes can be seen below:

 147

Here we see that the power values from the deviance test (c235) start lower than the

two independent Z test powers, as might be expected. Then, as the sample size

increases, the power sits somewhere between the power when testing the 2 individual

school gender terms.

5.3 An example using R

As discussed elsewhere in this document, MLPowSim can create either MLwiN

macros, or R code, as specified by the user. Above, we discussed editing the outputted

MLwiN macros to accommodate models which cannot be specified in the

MLPowSim interface; here, we will do the same for the R code produced.

5.3.1 The R code produced by MLPowSim: powersimu.r

We will again consider the example studied in Section 5.1. In MLPowSim, if we

request output for R rather than MLwiN, and then enter the same inputs as in Section

5.1 (requesting ML estimation, and asking for the confidence intervals to be included

in the output), the code (saved in a file called powersimu.r) produced will be as

follows:

A programme to obtain the power of parameters in 2 level

balanced model with Normal response

generated on 30/01/23

###~~~~~~~~~~~~~~~~~ Required packages ~~~~~~~~~~~~~~~~~~~~~###

 148

library(MASS)

library(lme4)

###~~~~~~~~~~~~~~~~~~~ Initial inputs ~~~~~~~~~~~~~~~~~~~~###

set.seed(1)

siglevel <- 0.025

z1score <- abs(qnorm(siglevel))

simus <- 1000

n1low <- 40

n1high <- 40

n1step <- 10

n2low <- 20

n2high <- 300

n2step <- 20

npred <- 2

randsize <- 1

beta <- c(-0.226000, 0.257000, 0.146000)

betasize <- length(beta)

effectbeta <- abs(beta)

sgnbeta <- sign(beta)

randcolumn <- 0

meanpred <- c(0, 0.600000, 0.462000)

varpred <- matrix(c(0.120000, 0.000000, 0.000000, 0.000000), npred, npred)

varpred2 <- matrix(c(0.125000, 0.045000, 0.045000, 0.249000), npred, npred)

sigma2u <- matrix(c(0.156000), randsize, randsize)

sigmae <- sqrt(0.839000)

n1range <- seq(n1low, n1high, n1step)

n2range <-seq(n2low, n2high, n2step)

n1size <- length(n1range)

n2size <- length(n2range)

totalsize <- n1size*n2size

finaloutput <- matrix(0, totalsize, 6*betasize)

rowcount <- 1

##----------------- Inputs for model fitting -----------------##

fixname <- c("x0", "x1", "x2")

fixform <- "1+x1+x2"

randform <- "(1|l2id)"

expression <- paste(c(fixform, randform), collapse="+")

modelformula <- formula(paste("y ~", expression))

data <- vector("list", 2+length(fixname))

names(data) <- c("l2id", "y", fixname)

#####--------- Initial input for power in two approaches ----------------#####

powaprox <- vector("list", betasize)

names(powaprox) <- c("b0", "b1", "b2")

powsde <- powaprox

cat(" The programme was executed at", date(),"\n")

cat("--\n")

for (n2 in seq(n2low, n2high, n2step)) {

 for (n1 in seq(n1low, n1high, n1step)) {

 length <- n1*n2

 x <- matrix(1, length, betasize)

 z <- matrix(1, length, randsize)

 l2id <- rep(c(1:n2), each=n1)

 sdepower <- matrix(0, betasize, simus)

 powaprox[1:betasize] <- rep(0,betasize)

 powsde <- powaprox

 cat(" Start of simulation for sample sizes of ", n1, " micro and ", n2, "macro

units\n")

 for (iter in 1:simus) {

 if (iter/10 == floor(iter/10)) {

 cat(" Iteration remain=", simus-iter,"\n")

 }

 ## +++++++++++++++++++ Set up X matrix +++++++++++++++++++ ##

 micpred <- mvrnorm(length, meanpred[-1], varpred)

 macpred <- mvrnorm(n2, rep(0, npred), varpred2)

 x[, (2:dim(x)[2])] <- micpred+macpred[l2id,]

 ##--##

 e <- rnorm(length, 0, sigmae)

 149

 u <- mvrnorm(n2, rep(0, randsize), sigma2u)

 fixpart <- x %*% beta

 randpart <- rowSums(z*u[l2id,])

 y <- fixpart+randpart+e

 ##------------------- Inputs for model fitting ---------------##

 data$l2id <- as.factor(l2id)

 data$y <- y

 data$x0 <- x[, 1]

 data$x1 <- x[, 2]

 data$x2 <- x[, 3]

 ###~~~~~~~~~~ Fitting the model using lmer funtion ~~~~~~~~~~###

 (fitmodel <- lmer(modelformula, data, REML=FALSE))

 ######~~~~~~~~~~ To obtain the power of parameter(s) ~~~~~~~~~~######

 estbeta <- fixef(fitmodel)

 sdebeta <- sqrt(diag(vcov(fitmodel)))

 for (l in 1:betasize)

 {

 cibeta <- estbeta[l]-sgnbeta[l]*z1score*sdebeta[l]

 if (beta[l]*cibeta > 0) powaprox[[l]] <- powaprox[[l]]+1

 sdepower[l, iter] <- as.numeric(sdebeta[l])

 }

 ##---##

 } ## iteration end here

 ###--------- Powers and their CIs ---------###

 for (l in 1:betasize) {

 meanaprox <- powaprox[[l]] <- unlist(powaprox[[l]]/simus)

 Laprox <- meanaprox-z1score*sqrt(meanaprox*(1-meanaprox)/simus)

 Uaprox <- meanaprox+z1score*sqrt(meanaprox*(1-meanaprox)/simus)

 meansde <- mean(sdepower[l,])

 varsde <- var(sdepower[l,])

 USDE <- meansde-z1score*sqrt(varsde/simus)

 LSDE <- meansde+z1score*sqrt(varsde/simus)

 powLSDE <- pnorm(effectbeta[l]/LSDE-z1score)

 powUSDE <- pnorm(effectbeta[l]/USDE-z1score)

 powsde[[l]] <- pnorm(effectbeta[l]/meansde-z1score)

 ###--------- Restrict the CIs within 0 and 1 ---------##

 if (Laprox < 0) Laprox <- 0

 if (Uaprox > 1) Uaprox <- 1

 if (powLSDE < 0) powLSDE <- 0

 if (powUSDE > 1) powUSDE <- 1

 finaloutput[rowcount, (6*l-5):(6*l-3)] <- c(Laprox, meanaprox, Uaprox)

 finaloutput[rowcount, (6*l-2):(6*l)] <- c(powLSDE, powsde[[l]], powUSDE)

 }

 ###~~~~~~~~~~ Set out the results in a data frame ~~~~~~~~~~###

 rowcount <- rowcount+1

 cat("--\n")

 } ## end of the loop over the first level

} ## end of the loop over the second level

###--------- Export output in a file ---------###

finaloutput <- as.data.frame(round(finaloutput, 3))

output <- data.frame(cbind(rep(n2range, each=n1size), rep(n1range, n2size),

finaloutput))

names(output) <- c("N", "n", "zLb0", "zpb0", "zUb0", "sLb0", "spb0", "sUb0", "zLb1",

"zpb1", "zUb1", "sLb1", "spb1", "sUb1", "zLb2", "zpb2", "zUb2", "sLb2", "spb2",

"sUb2")

write.table(output, "powerout.txt", sep="\t ", quote=FALSE, eol="\n", dec=".",

col.names=TRUE, row.names=FALSE, qmethod="double")

 150

As can be seen, the code is organised into various sections, and we will now look at

each of these in turn.

5.3.1.1 “Required packages”

The first line(s) of code in powersimu.r (not including comments, which in the R

language are denoted by a # sign) specify the packages that are required for the

subsequent code to execute correctly: in this case MASS (for the mvrnorm function)

and lme4 (note that it is not necessary to load the package lme4 to fit one-level

models, since the command glm is used for model fitting, and this is already available

in the stats package that is automatically installed with R).

5.3.1.2 “Initial Inputs”

The next section of code includes some of the variables and objects which will be

used as inputs in later commands and functions. The first line (set.seed) declares the

random seed, i.e. the value for the random number generator. The significance level

is specified in the second line (siglevel); in this example, it is set to 0.025 (for a 2-

sided test with a significance level of 0.05). The third line (z1score) represents the

absolute value of the quantile of the standard Normal distribution evaluated at the

specified significance level. Next the number of simulations to be conducted, for

each sample size combination, is declared (simus).

Lines 5 to 10 specify the minimum sample size (low), maximum sample size (high),

and intervening step size (step) for each level (n1 and n2). Line 11 (npred) specifies

the number of fixed predictors (not including the intercept), whilst the following line

(randsize) specifies the number of unique elements in the variance matrix at level 2.

Next, the fixed coefficients are stored in the vector variable beta, with the next three

lines indicating the length (betasize), effect size (effectbeta) and sign (sgnbeta) of this

vector. The last of these variables is required in order to obtain the confidence

intervals for the power estimates calculated using the zero/one method (e.g. see

Section 1.4.1).

The variable randcolumn is only important for random slopes models, and so here is

set to zero. The next three lines (meanpred, varpred & varpred2) store the mean and

variances of the predictors (at the first and second levels). The following two lines

(sigma2u & sigmae) define the variances of the residuals at the second and first

levels, respectively.

The range of sample units at each level, along with their length (i.e. how many

different sizes of sample units there are at each level), are then specified in the next

few lines (n1range, n2range, n1size & n2size). From these sample ranges, the total

number of sample size combinations is determined, and this is saved as the variable

totalsize.

Next, the variable finaloutput defines a matrix structure, with the columns

representing the power estimates, together with corresponding confidence intervals,

 151

generated from each of the two different methods (i.e. zero/one and standard error),

with a separate row for each sample unit combination. The final line in this section of

code, rowcount, acts as a counter.

5.3.1.3 “Inputs for model fitting”

The next section of code creates a structure for the grouped data which will be used as

an argument when fitting the model using the function lmer; the grouped data

structure consists of a formula and a data set (a list of named numeric vectors). The

predictors are specified by the variable fixname, and the model formula is then created

by combining the forms of the fixed and random parts (fixform, randform,

expression). If further explanation is required, we recommend that the reader consults

the relevant available documentation discussing model formulae in mixed effect

models in R (e.g. Pinheiro and Bates (2000)).

Finally, we build a data structure (modelformula & data) and assign relevant names

(names), so that at the end of this section we have a grouped data structure consisting

of the formula for the hierarchical structure, together with the names of the variables

in the data. Note that in each simulation, the dataset changes, whilst the formula and

names of the variables remains fixed.

5.3.1.4 “Initial inputs for power in two approaches”

The next section of code creates two lists of vectors corresponding to the zero/one and

standard error method, and gives their corresponding column names the same names

as the fixed parameters in the model. In our current example, the parameters are b0,

b1 and b2.

The function cat, which can be provided with other arguments (e.g. date), prints the

material between the subsequent quotation marks; therefore, the next two lines print

the time and date the code is run in R, above a long dashed line.

We then start to loop (for) over the sample size units in the second and first levels,

respectively. Note that the inner loop is over the lowest level. The total number of

observations depends on the sample size combination, and this is calculated in the

following lines (length).

The design matrices for the fixed (x) and random (z) effects, respectively, are then

initialised. In order to identify the structure of the grouped data, we create a vector for

the second level (l2id), and use this as a grouping factor when fitting the model.

Next, matrices are initialised to store the power estimates (sdepower, powaprox &

powsde). Then, just before the simulation starts, a message is printed (cat) declaring

the current sample size combination being simulated. Using the if keyword, together

with cat, the number of remaining iterations is then printed after every tenth iteration.

5.3.1.5 “Set up X matrix”

 152

The components of the design matrix are a mixture of random variables at different

levels, and so in the next section of code we combine the random vectors generated

for the first and second levels to create the predictors (micpred, macpred & x). If

appropriate, we would derive the design matrix of the random effects in the next few

sections; however, since we have only a random intercept in this example, with a

design matrix consisting of a vector of ones, no such commands are included.

We are now at the stage of creating the residuals at both levels, and deriving the

response vector; therefore, we generate the random vector corresponding to the level

one residual in the next line (e), and then simulate the level two residuals (u). Matrix

manipulations are then used to build the fixed part (fixpart) and random part

(randpart), which correspond to Xβ and ZU in mathematical formulae; these are then

added to the level one residual to create the response vector, y.

5.3.1.6 “Inputs for model fitting”

We now save the generated objects (l2id, y & x) in the data list before fitting the

model, allocating each element of the list to a corresponding object.

5.3.1.7 “Fitting the model using lmer function”

Immediately after storing all the required objects in our data list, we can fit the model

(fitmodel) for the i-th iteration of the current simulation run. The model is fitted using

the lmer function, along with any required arguments. In this example, maximum

likelihood estimation, ML, is used to fit the model. However, by changing the REML

= FALSE argument, other estimation methods, such as REML (the default method

when calling the lmer function), can be applied instead.

5.3.1.8 “To obtain the power of parameter(s)”

In the next section of code we obtain our estimated powers by extracting the estimated

fixed effects (estbeta) and their standard errors (sdebeta), before closing the loop. For

the zero/one method of calculating power, we construct an upper/lower bound for the

fixed effects (cibeta), whilst for the standard error method of calculating power, we

just accumulate the standard errors of the estimated fixed effects (sdepower). The

entire procedure is then set in a loop over the fixed effects in the model, and once this

loop finishes, we are ready to go ahead to the next stage.

5.3.1.9 “Powers and their CIs”

The section of code which follows derives the power estimates and their confidence

intervals. Here, for the zero/one method, the estimated power (meanaprox) is taken as

the average of the 0s and 1s (powaprox) obtained for each simulation. Then, as this is

a binary variable, the confidence interval (Laprox (lower) & Uaprox (upper)) is

derived using a Normal approximation. For the standard error method, the mean

(meansde) and variance (varsde) of the vector of the standard errors for the fixed

 153

parameters is first derived, and then the confidence interval about the mean is

obtained (USDE, LSDE). Finally, the mean (powsde) and its confidence interval

(powLSDE, powUSDE) are plugged into the approximated formula

𝛾

𝑆𝐸(𝛾)
≈ 𝑧1−𝛼 + 𝑧1−𝛽

to obtain the approximated power and confidence intervals.

Since the confidence intervals are approximate, the lower and upper bounds may be

less than zero or greater than one, respectively, and therefore the next section of code

(the four lines beginning with if) constrains such values to zero and one.

The relevant information is then saved in the correct row and correct columns of the

matrix object finaloutput. The row counter (rowcount) then increases by one, and the

two loops over the sample units in the first and second level, respectively, end.

5.3.1.10 “Export output in a file”

In this final section of code the matrix object finaloutput is first converted to a data

frame. Then, after adding two extra columns detailing the sample size units at each

level (in the line beginning output), each column is identified with an appropriate

name (names). Finally, the data frame output is saved into the text file powerout.txt

via the write.table command.

5.3.2 The output file produced by R: powerout.txt

As mentioned earlier, MLPowSim produces R code output which it saves in a file

called powersimu.r, an example of which we reviewed above. Once this code has run

to completion in R (see Section 1.5.1 for details on how to execute the code), an

output text file called powerout.txt is saved; this presents the estimated power and

confidence intervals (if requested) for both the zero/one and standard error method. If

we run the R code we have been discussing in this section, we get the following

results (for details of how to view the estimates outputted by R, see Section 1.5.1;

please note that here we only show a selected portion of the output):

N zpb1 spb1 zpb2 spb2

20 0.838 0.826 0.139 0.119

40 0.978 0.983 0.213 0.191

60 1 0.999 0.286 0.268

80 1 1 0.333 0.341

100 1 1 0.437 0.405

120 1 1 0.482 0.475

140 1 1 0.539 0.531

160 1 1 0.603 0.587

180 1 1 0.628 0.640

200 1 1 0.696 0.687

220 1 1 0.711 0.726

 154

240 1 1 0.722 0.764

260 1 1 0.774 0.794

280 1 1 0.834 0.825

300 1 1 0.840 0.847

A quick look at the estimated powers indicates that they are similar to those we

obtained earlier in MLwiN (see Section 5.1), especially those derived from the

standard error method.

As mentioned earlier, the R code produced by MLPowSim does not automatically

produce plots of the power curves, and this task is left to the user. However, below we

give an example of how one can go about plotting power curves in R.

5.3.3 Plotting the output

Unlike the output for MLwiN, MLPowSim does not generate R code to generate

graphs (i.e. this task is left to the user). Whilst it’s possible to plot the outputs using

some simple graphics tools available in the MASS library, we provide an example here

of how to do so using the lattice package:

library(lattice)

output <- read.table("powerout.txt", header =TRUE, sep = " ", dec = ".")

method <- rep(c("Zero/one method","Standard error method"), each=length(n2range), times=betasize)

sample <- rep(n2range, times=2*betasize)

parameter <- rep(c("b0", "b1", "b2"), each=2*length(n2range))

power <- c(output$zpb0, output$spb0, output$zpb1, output$spb1, output$zpb2, output$spb2)

Lpower <- c(output$zLb0, output$sLb0, output$zLb1, output$sLb1, output$zLb2, output$sLb2)

Upower <- c(output$zUb0, output$sUb0, output$zUb1, output$sUb1, output$zUb2, output$sUb2)

dataset <- data.frame(method, sample, parameter, Lpower, power, Upower)

xyplot(power ~ sample | method*parameter,

 data = dataset,

 xlab = "Sample size of second level",

 scales = list(x=list(tick.number=12, at=sample),

 y = list(tick.number=12, at=seq(0,1,.1))),

 as.table = TRUE,

 subscripts = TRUE,

 panel = function(x, y, subscripts) {

 panel.grid(h=15, v=15)

 panel.xyplot(x, y, type="l")

 panel.lines(dataset$sample[subscripts], dataset$Lpower[subscripts], lty=2, col=2)

 panel.lines(dataset$sample[subscripts], dataset$Upower[subscripts], lty=2, col=2)

 }

)

We’ll go through these function calls line by line, and then look at the resulting power

curves. The first line loads the lattice package, which we will use for plotting the data.

Then we load the file powerout.txt, and store this as a data.frame (output), keeping the

column headings and the space between the columns and rows.

Next, we create a data frame indicating the method used to obtain the power estimates

(method; i.e. zero/one or standard error), the sample size combinations (sample), the

parameters in the model (parameter), and the power estimates (power) with their

 155

corresponding lower and upper confidence intervals (Lpower, Upower). These objects

are then combined to form the data frame dataset.

The command xyplot is then used to plot the output stored in the data frame. This

command involves a number of arguments, including a formula which describes the

form of the plot, together with arguments specifying the axis labels and tick markers.

The panel function is then used to specify how each panel will be plotted; for

example, the panel.lines command draws the confidence intervals as dashed lines

around the estimated powers.

After copying and pasting these lines into the R console, the following graph should

appear.

Sample size of second level

p
o

w
e

r

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Standard error method

b0

20 40 60 8010012014016018020022024026028030020 40 60 8010012014016018020022024026028030020 40 60 8010012014016018020022024026028030020 40 60 8010012014016018020022024026028030020 40 60 8010012014016018020022024026028030020 40 60 80100120140160180200220240260280300

Zero/one method

b0

Standard error method

b1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Zero/one method

b1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

20 4060 8010012014016018020022024026028030020 4060 8010012014016018020022024026028030020 4060 8010012014016018020022024026028030020 4060 8010012014016018020022024026028030020 4060 8010012014016018020022024026028030020 4060 80100120140160180200220240260280300

Standard error method

b2

Zero/one method

b2

 156

5.4 Modifying the example in R to include a multiple category

predictor

5.4.1 Initial changes

In this section we will look at how we might change the R code generated by

MLPowSim. We will consider the same example we studied in Section 5.2, when we

were adjusting macros in MLwiN. The input data which we repeat here is similar to

that which appeared in Section 5.2.1, except that R, instead of MLwiN, is chosen,

together with ML estimation, and also we start the sample size for the second level at

60, instead of 20.

 Welcome to MLPowSim

Please input 0 to generate R code or 1 to generate MLwiN macros: 0

 Please choose model type

1. 1-level model

2. 2-level balanced data nested model

3. 2-level unbalanced data nested model

4. 3-level balanced data nested model

5. 3-level unbalanced data nested model

6. 3-classification balanced cross-classified model

7. 3-classification unbalanced cross-classified model

Model type : 2

Please input the random number seed: 1

Please input the significant level for testing the parameters: 0.025

Please input number of simulations per setting: 1000

 Model setup

Please input response type [0 - Normal, 1- Bernouilli, 2- Poisson] : 0

Please enter estimation method [0 – REML, 1 - ML] : 1

Do you want to include the fixed intercept in your model (1=YES 0=NO)? 1

Do you want to have a random intercept in your model (1=YES 0=NO)? 1

Do you want to include any explanatory variables in your model (1=YES 0=NO)? 1

How many explanatory variables do you want to include in your model? 3

Please choose a type for the predictor x1 (1=Binary 2=Continuous 3=all MVN): 1

Please input probability of a 1 for x1 : 0.6

Please choose a type for the predictor x2 (1=Binary 2=Continuous): 2

Assuming normality, please input its parameters here:

The mean of the predictor x2: 0.15

The variance of the predictor x2 at level 1: 0

The variance of the predictor x2 at level 2: 0.13

Please choose a type for the predictor x3 (1=Binary 2=Continuous): 2

Assuming normality, please input its parameters here:

The mean of the predictor x3: 0.30

The variance of the predictor x1 at level 1: 0

The variance of the predictor x1 at level 2: 0.21

Do you want the coefficient associated with explanatory variable x1 to be random (1=YES 0=NO) ? 0

Do you want the coefficient associated with explanatory variable x2 to be random (1=YES 0=NO) ? 0

Do you want the coefficient associated with explanatory variable x3 to be random (1=YES 0=NO) ? 0

 157

 Sample size set up

Please input the smallest number of units for the second level: 60

Please input the largest number of units for the second level: 300

Please input the step size for the second level: 20

Please input the smallest number of units for the first level per second level: 40

Please input the largest number of units for the first level per second level: 40

Please input the step size for the first level per second level: 10

 Parameter estimates

Please input estimate of beta_0: -0.228

Please input estimate of beta_1: 0.262

Please input estimate of beta_2: 0.191

Please input estimate of beta_3: 0.123

Please input estimate of sigma^2_u: 0.155

Please input estimate of sigma^2_e: 0.839

Running the generated R code in the R console will lead to the following output

(which, again, we have abridged):

N spb1 spb2 spb3

60 1 0.244 0.179

80 1 0.310 0.222

100 1 0.378 0.271

120 1 0.431 0.309

140 1 0.493 0.355

160 1 0.545 0.398

180 1 0.595 0.436

200 1 0.640 0.475

220 1 0.682 0.514

240 1 0.722 0.549

260 1 0.752 0.580

280 1 0.781 0.609

300 1 0.810 0.641

5.4.2 Creating a multiple category predictor

As mentioned in Section 5.2.2, there is currently no option in MLPowSim to specify a

multinomial density when one is asked to choose a distribution for the predictor(s). In

our example dataset it would be useful to assume a multinomial distribution for the

school gender predictor. Here, we will look at how the R code produced by

MLPowSim can be altered to accommodate such a model, by changing the

independent continuous predictors to multinomial variables. Here, we change the

design matrix as follows; in the section of code entitled To set up X matrix, we replace

the following eight lines:

 micpred <- rnorm(length, meanpred[3], sqrt(varpred[3]))

 macpred <- rnorm(n2, 0, sqrt(varpred2[3]))

 macpred <- rep(macpred, each=n1)

 x[, 3] <- micpred+macpred

 micpred <- rnorm(length, meanpred[4], sqrt(varpred[4]))

 macpred <- rnorm(n2, 0, sqrt(varpred2[4]))

 158

 macpred <- rep(macpred, each=n1)

 x[, 4] <- micpred+macpred

with these three lines:

 macpred <- rmultinom(n2, 1, c(0.15, 0.30, 0.55))

 x[, 3] <- macpred[1,][l2id]

 x[, 4] <- macpred[2,][l2id]

There is no change in the first predictor, but the second (school gender) is constructed

differently. First, we generate n2 multinomial variables of size one, with probabilities

which corresponding to boys’ schools, girls’ schools and mixed schools, respectively.

As can be seen, the first two probabilities correspond to the means of the two

predictors, treating them as continuous variables. The first and second rows of the

generated variable indicate the presence or absence of a boys’ school or girls’ school.

Since the probability of choosing a boys’ school is low, we may have all zeroes in the

first row of the generated multinomial variable: i.e. no boys’ schools in n2 schools

generated. Consequently, the whole of the third column of the design matrix for the

fixed parameters, X, would then be zero. In such instances it would not be possible to

estimate the parameters, and attempting to fit this model would lead to an error

message in R. This is why we start the sample size for the second level from 60 rather

than 20 to avoid this. Note that in MLwiN this would also occur however MLwiN

identifies the problem and in such cases sets the associated fixed effect to zero.

After storing the above changes and running the entire code once more in R, we get

the following output (which again, we have abridged):

N spb1 spb2 spb3

60 1 0.226 0.174

80 1 0.284 0.214

100 1 0.344 0.256

120 1 0.398 0.297

140 1 0.454 0.339

160 1 0.507 0.377

180 1 0.552 0.413

200 1 0.594 0.448

220 1 0.642 0.488

240 1 0.676 0.520

260 1 0.710 0.553

280 1 0.742 0.583

300 1 0.772 0.612

As can be seen, the powers associated with each of the parameters, particularly the

last two, have decreased, because the multinomial variable provides less information

about them.

5.4.3 Linking gender to school gender

 159

Following our discussion in Section 5.2.3, we need to further alter the changes made

in the previous section to link gender to school gender. In fact, two changes need to be

made. First, we need to adjust the probability of being a girl to 0.5; this represents

what is expected in the mixed schools, since boys and girls have an equal chance of

being chosen. Then, we need to specify the correct number for the gender predictor:

i.e. fix it to 1 if the chosen school is a girls’ school, fix it to 0 if it is boys’ school, and

keep its initial generated value if it is a mixed school. To do this, we make the

following changes to the section of R code entitled To set up X matrix:

we alter:

 x[, 2] <- rbinom(length, 1, xprob[2])

so that it now reads:

 x[, 2] <- rbinom(length, 1, 0.5)

In addition, under the line:

 x[, 4] <- macpred[2,][l2id]

we add the following:

 x[, 2] <- x[, 4]+x[, 2]*(x[, 3]==0&x[, 4]==0)

If we store these changes, then run the R code again, this results in the following

output:

N spb1 spb2 spb3

60 0.999 0.221 0.169

80 1 0.278 0.207

100 1 0.336 0.247

120 1 0.389 0.286

140 1 0.445 0.327

160 1 0.497 0.363

180 1 0.541 0.399

200 1 0.583 0.433

220 1 0.630 0.471

240 1 0.665 0.503

260 1 0.699 0.535

280 1 0.731 0.565

300 1 0.761 0.593

Here we see very similar estimates to those derived from MLwiN in Section 5.2.3,

again with a slight decrease in power compared to the preceding model.

5.4.4 Performing the deviance test

As discussed in Section 5.2.4, comparisons between whole groups of predictors can

be conducted using deviance tests, comparing likelihood statistics from models with,

 160

and without, certain predictors. We can achieve this in R using the command

deviance.

In this section we will describe several changes to the code that allow us to perform

the deviance test, and also to display the result in our final output.

We first need to add an extra column to the output to contain the deviance information

and can do this by changing the following line:

finaloutput <- matrix(0, totalsize, 6*betasize)

to:

finaloutput <- matrix(0, totalsize, 6*betasize+1)

To the section of code entitled Inputs for model fitting we add a formula that specifies

a model without the two school gender predictors; we will subsequently fit this model,

and then find the difference in deviance between it and the fitted model with the

gender predictors. Under the line:

names(data) <- c("l2id", "y", fixname)

we add the following:

modelformula1 <- formula(y ~ 1+x1+(1|l2id))

devtestsim <- rep(0, simus)

Note the second line simply initialises a vector which will store the difference in

deviance for each dataset. We next need to change the code in the inner loop that fits

the model, so that it now fits the model with, and without, the school gender terms,

and we then need to compare the deviance. So, after the line:

(fitmodel <- lmer(modelformula, data, REML=FALSE))

we add the following:

(fitmodel1 <- lmer(modelformula1, data, REML=FALSE))

devtestsim[iter] <- deviance(fitmodel1) - deviance(fitmodel)

The first line fits the model we specified above, whilst the second line calculates the

difference in deviance between the two fitted models.

The next step is to summarise the variable devtestsim in terms of how often it is

greater than the critical value of 7.38 (see Section 5.2.4), and we do this when piecing

together the finaloutput object. After the lines:

finaloutput[rowcount,(6*l-5):(6*l-3)] <- c(Laprox,meanaprox,Uaprox)

finaloutput[rowcount,(6*l-2):(6*l)] <- c(powLSDE,powsde[[l]],powUSDE)

we add:

finaloutput[rowcount,6*l+1] <- mean(devtestsim > 7.38)

 161

The final change we need to make is simply to include a column heading for the

deviance test output, and we can do this by adding the relevant name at the end of the

names line, as follows:

names(output) <- c("N", "n", "zLb0", "zpb0", "zUb0", "sLb0", "spb0",

"sUb0", "zLb1", "zpb1", "zUb1", "sLb1", "spb1", "sUb1", "zLb2",

"zpb2", "zUb2", "sLb2", "spb2", "sUb2", "zLb3", "zpb3", "zUb3",

"sLb3", "spb3", "sUb3", "devtest")

If we save these changes, and run this code anew, we get the following results (again

we present only selected portions of the output here):

N zpb2 spb2 zpb3 spb3 devtest

60 0.229 0.221 0.191 0.169 0.158

80 0.296 0.278 0.211 0.207 0.197

100 0.332 0.336 0.265 0.247 0.237

120 0.394 0.389 0.264 0.286 0.283

140 0.477 0.445 0.35 0.327 0.38

160 0.496 0.497 0.359 0.363 0.394

180 0.524 0.541 0.38 0.399 0.453

200 0.602 0.583 0.416 0.433 0.505

220 0.649 0.63 0.476 0.471 0.557

240 0.65 0.665 0.495 0.503 0.571

260 0.713 0.699 0.539 0.535 0.648

280 0.713 0.731 0.561 0.565 0.669

300 0.756 0.761 0.602 0.593 0.707

The results are similar to those we found in Section 5.2.4 (with MLwiN): i.e. the

power estimates for the deviance test are initially lower than those for each predictor,

but as sample size increases they reach values somewhere between the power for

testing the two individual gender terms.

5.5 The Wang and Gelfand (2002) method

When using MLPowSim we are required to give point estimates for all parameters of

interest in our model, for both effect sizes and variances. Our power calculations are

then based on assuming these estimates are correct and simulating data conditional on

these estimates. This approach therefore does not take account of uncertainty in the

estimates themselves. Wang and Gelfand (2002) discuss using simulation-based

techniques for power calculations in a Bayesian framework. Their paper contains

many interesting ideas but we will here focus only on one: namely allowing

uncertainty in the estimated effect sizes and variances.

Wang and Gelfand (2002) use MCMC methods to fit their models in a Bayesian

framework, and consequently all their parameters have prior distributions which, for

clarity, they describe as ‘fitting priors’. They then argue for a second set of ‘sampling

priors’ which are used to cope with the uncertainty in the estimated effect sizes and

variances. Basically the ‘sampling priors’ are used during the creation of the

simulated datasets, while the ‘fitting priors’ are used in the fitting of models to the

 162

simulated data created. Typically the ‘fitting priors’ will be more ‘diffuse’ as they are

meant to represent the priors we would anticipate using once the data is obtained.

Here we will adapt the MLwiN macro output from MLPowSim so that we use a

method similar to that of Wang and Gelfand (2002); in fact, the only difference is that

we revert to classical frequentist inference for model fitting (if we were to instead use

MCMC, then our method would essentially replicate that of Wang and Gelfand, apart

from the choice of model performance criteria).

For simplicity, here we will consider the first single level model that we studied back

in Section 1.3.2. You may recall that in that section we were interested in whether

boys fared worse than average in exams, and we had an effect size of -0.140 and a

population variance estimate of 1.051. As is standard with power calculations, our

approach assumed that these values are fixed and known, but what if instead we

thought there was some uncertainty in these measures? Wang and Gelfand (2002)

often use Uniform priors in their examples, and so let us instead assume that the effect

size (β0) has a Uniform[-0.18,-0.1] sampling prior and σ2
e has a

Uniform[0.8051,1.2051] prior.

We will firstly repeat our earlier inputs in MLPowSim by working through Section

1.3.2 to create the macros. We will then need to modify the macro setup.txt to allow

for the sampling priors. We will create 1000 draws from the sampling priors for β0

and σ2
e in columns c501 and c502, respectively. We can generate from a Uniform[0,1]

distribution via the URAN command, and then manipulate the values so that they are

from the correct uniform prior. We then pick these values when we fit each model.

The modified setup.txt macro looks as follows (with added/modified lines in italics):

NOTE MLwiN macro code generated by MLPowSim

NOTE b23 - number of units

ERASE c1011 c1012

GENErate 1 b23 c1

PUT b23 1 c4

PUT b23 1 c5

NAME c1 'l1id' c4 'cons' c5 'resp'

CLEAr

RESP c5

IDEN 1 c1

EXPL 1 c4

SETV 1 c4

ERROR 0

URAN b41 c501

CALC c501 = (c501-0.5)*0.08

PICK 1 c998 b51

CALC c501 = c501+b51

URAN b41 c502

CALC c502 = (c502-0.5)*0.4

PICK 1 c996 b51

CALC c502 = c502+b51

BATCH 1

LOOP b40 1 b41

 163

 PICK b40 c501 b51

 EDIT 1 c1098 b51

 PICK b40 c502 b51

 EDIT 1 c1096 b51

 SIMU c5

 METH 1

 START

 JOIN c1098 c1096 c1011 c1011

 SEPICK c1001

 JOIN c1001 c1012 c1012

ENDL

OBEY analyse.txt

PAUSE 1

If we save this macro and then run the macro simu.txt in the usual way (as detailed in

Section 1.4), then by viewing columns `spow0’, `zpow0’ and `Samplesize’ we see the

following:

 164

We can also run the macro graphs.txt (as detailed in Section 1.4.3) to get the

following:

 165

In fact, allowing for the sampling priors here hasn’t made much difference to the SE

method (the smoother line) when comparing this graph to the equivalent one in

Section 1.4.3, but it has resulted in a slight reduction in power for the 0/1 method (the

more erratic line) for larger sample sizes, and an increase for smaller sample sizes.

Strictly speaking, the SE method is still using the point estimate of -0.140 in its power

calculations after the 1000 simulations have run, and so it isn’t truly using the

sampling prior correctly. In fact, it’s very close to the standard method without the

sampling prior (i.e. as in Section 1.4.3), and so it is useful for comparison.

We could increase our uncertainty in our effect sizes by doubling the widths of the

Uniform priors, i.e. change the following lines in the setup.txt macro:

CALC c501 = (c501-0.5)*0.08

and

CALC c502 = (c502-0.5)*0.4

to

 166

CALC c501 = (c501-0.5)*0.16

and

CALC c502 = (c502-0.5)*0.8

If we were to restart MLwiN and rerun the macros then we would now get the

following graphs:

Here we see a larger drop in power for higher sample sizes and a slightly larger

increase in power for smaller sample sizes. To understand what is going on we need

to think what adding uncertainty to our effect size is actually doing. If our effect size

is fixed then we know that increasing our sample size will increase power. Allowing

the effect size to vary means that for some simulations the effect size will need a

smaller sample size to give a prescribed power, and for some simulations the effect

size will need a larger sample size to give the same prescribed power. When the

sample size is such that power to detect is normally high, the occasional small effect

sizes will pull the power down; in contrast, when we have small sample sizes and the

power to detect is low, then the occasional large effect sizes will increase the power.

If we continue to increase the width of our priors we begin to include effect sizes of

differing signs and, assuming a one-sided hypothesis, these are more likely not to be

 167

rejected as we increase sample size; this means that as the prior intervals get

arbitrarily big we should end up with a power of 0.5 for all sample sizes. Note that if

we make the prior interval arbitrarily big and consider a 2-sided alternative, then the

probability of generating an effect size (for use in simulations) that is close to 0

becomes arbitrarily small, and so a power of 1 for all sample sizes will be the result.

Clearly this motivates the practice of an assumed (known) effect size and also

highlights the fact that if one uses the Wang and Gelfand approach, one should not

use a ‘sampling’ prior that is too diffuse.

 168

REFERENCES

Afshartous, D. (1995). Determination of sample size for multilevel model design. In:

V.S. Williams, L.V. Jones and I. Olkin (Eds.), Perspectives on statistics for

educational research: Proceedings of the National Institute of Statistical Sciences

(NISS) (Tech. Rep. No. 35).

Bosker R.J., Snijders T.A.B, and Guldemond, H. (2003). PINT (Power IN Two-level

designs) User Manual.

Browne, W.J. (2009). MCMC Estimation in MLwiN. London: Institute of Education.

Browne, W.J. and Draper, D. (2006). A comparison of Bayesian and likelihood-based

methods for fitting multilevel models. Bayesian Analysis 1: 473-550

Gelman, A. and Hill, J. (2007) Data Analysis Using Regression and Multilevel /

Hierarchical Models. Cambridge University Press: Cambridge.

Goldstein, H. and J. Rasbash. (1996). Improved approximations for multilevel models

with binary responses. Journal of the Royal Statistical Society (Series A) 159: 505-

513.

Langford, I.H., Bentham, G. and McDonald, A. (1998). Multilevel modelling of

geographically aggregated health data: a case study on malignant melanoma mortality

and UV exposure in the European community. Statistics in Medicine 17: 41-58.

Mok, M. (1995) Sample Size Requirements for 2-Level Designs in Educational

Research Multilevel Modelling Newsletter 7 (2): 11-15

Nuttall DL, Goldstein H, Prosser R & Rasbash J. (1989). Differential School

Effectiveness. International Journal of Educational Research, 13: 769-776.

Pinheiro, J.C. and Bates, D.M. (2000). Mixed-Effects Models in S and S-PLUS. New

York, NY: Springer-Verlag.

Rasbash, J., Steele, F., Browne, W.J. and Prosser, B. (2009). A User’s Guide to

MLwiN. London: Institute of Education.

Snijders T.A.B, and Bosker R.J. (1993) Standard Errors And Sample Sizes For 2-

Level Research. Journal Of Educational Statistics 18 (3): 237-259.

Wang, F. and Gelfand, A.E. (2002). A simulation-based approach to Bayesian sample

size determination for performance under a given model and for separating models.

Statistical Science, 17(2), 193-208.

	1 Introduction
	1.1 Scope of document
	1.2 Sample size / Power Calculations
	1.2.1 What is a sample size calculation?
	1.2.2 What is a hypothesis test?
	1.2.3 How would such hypotheses be tested?
	1.2.4 What is Power?
	1.2.5 Why is Power important?
	1.2.6 What Power should we aim for?
	1.2.7 What are effect sizes?
	1.2.8 How are power/sample size calculations done more generally?

	1.3 Introduction to MLPowSim
	1.3.1 A note on retrospective and prospective power calculations
	1.3.2 Running MLPowSim for a simple example

	1.4 Introduction to MLwiN and MLPowSim
	1.4.1 Zero/One method
	1.4.2 Standard error method
	1.4.3 Graphing the Power curves

	1.5 Introduction to R and MLPowSim
	1.5.1 Executing the R code
	1.5.2 Graphing Power curves in R

	2 Continuous Response Models
	2.1 Standard Sample size formulae for continuous responses
	2.1.1 Single mean – one sample t-test
	2.1.2 Comparison of two means – two-sample t-test
	2.1.3 Simple linear regression
	2.1.4 General linear model
	2.1.5 Casting all models in the same framework

	2.2 Equivalent results from MLPowSim
	2.2.1 Testing for differences between two groups
	2.2.2 Testing for a significant continuous predictor
	2.2.3 Fitting a multiple regression model.
	2.2.4 A note on sample sizes for multiple hypotheses, and using sample size calculations as ‘rough guides’
	2.2.5 Using RIGLS
	2.2.6 Using MCMC estimation
	2.2.7 Using R

	2.3 Variance Components and Random Intercept Models
	2.3.1 The Design Effect formula
	2.3.2 PINT
	2.3.3 Multilevel two sample t-test example
	2.3.4 Higher level predictor variables
	2.3.5 A model with 3 predictors
	2.3.6 The effect of balance
	2.3.6.1 Pupil non-response
	2.3.6.2 Structured sampling

	2.4 Random slopes/ Random coefficient models
	2.5 Three-level random effect models
	2.5.1 Balanced 3-level models – The ILEA dataset
	2.5.2 Non-response at the first level in a 3-level design
	2.5.3 Non-response at the second level in a 3-level design
	2.5.4 Individually chosen sample sizes at level 1

	2.6 Cross-classified Models
	2.6.1 Balanced cross-classified models.
	2.6.2 Non-response of single observations.
	2.6.3 Dropout of whole groups
	2.6.4 Unbalanced designs – sampling from a pupil lookup table.
	2.6.5 Unbalanced designs – sampling from lookup tables for each primary/secondary school.
	2.6.6 Using MCMC in MLwiN for cross-classified models.

	3 Binary Response models
	3.1 Simple binary response models – comparing data with a fixed proportion.
	3.2 Comparing two proportions.
	3.3 Logistic regression models
	3.3.1 A single proportion in the logistic regression framework
	3.3.2 Comparing two proportions in the logistic regression framework

	3.4 Multilevel logistic regression models
	3.5 Multilevel logistic regression models in R

	4 Count Data
	4.1 Modelling rates
	4.2 Comparison of two rates
	4.3 Poisson log-linear regressions
	4.1.1 Using R

	4.4 Random effect Poisson regressions
	4.5 Further thoughts on Poisson data

	5 Code Details, Extensions and Further work
	5.1 An example using MLwiN
	5.1.1 The simu.txt macro
	5.1.2 The simu2.txt macro
	5.1.3 The setup.txt macro
	5.1.4 The analyse.txt macro
	5.1.5 The graph.txt macro

	5.2 Modifying the example in MLwiN to include a multiple category predictor
	5.2.1 Initial macros
	5.2.2 Creating a multiple category predictor
	5.2.3 Linking gender to school gender
	5.2.4 Performing a deviance test

	5.3 An example using R
	5.3.1 The R code produced by MLPowSim: powersimu.r
	5.3.1.1 “Required packages”
	5.3.1.2 “Initial Inputs”
	5.3.1.3 “Inputs for model fitting”
	5.3.1.4 “Initial inputs for power in two approaches”
	5.3.1.5 “Set up X matrix”
	5.3.1.6 “Inputs for model fitting”
	5.3.1.7 “Fitting the model using lmer function”
	5.3.1.8 “To obtain the power of parameter(s)”
	5.3.1.9 “Powers and their CIs”
	5.3.1.10 “Export output in a file”

	5.3.2 The output file produced by R: powerout.txt
	5.3.3 Plotting the output

	5.4 Modifying the example in R to include a multiple category predictor
	5.4.1 Initial changes
	5.4.2 Creating a multiple category predictor
	5.4.3 Linking gender to school gender
	5.4.4 Performing the deviance test

	5.5 The Wang and Gelfand (2002) method

