MCMC estimation in MLwilN
Version 2.31

by
William J. Browne

Programming by
William J. Browne, Chris Charlton and Jon Rasbash

Updates for later versions by
William J. Browne, Chris Charlton, Mike Kelly and Rebecca Pillinger

Printed 2014

Centre for Multilevel Modelling
University of Bristol



ii

MCMC Estimation in MLwiN version 2.31

(© 2014. William J. Browne.

No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, for any purpose
other than the owner’s personal use, without the prior written permission of
one of the copyright holders.

ISBN: 978-0-903024-99-0

Printed in the United Kingdom

First printing November 2004

Updated for University of Bristol, October 2005, January 2009, July 2009,
August 2011, January 2012, September 2012 and August 2014.



Contents

[I'able of Contents| viii
[Acknowledgements| ix
[Preface to the 2009, 2011, 2012 and 2014 Editions| Xi

(1 Introduction to MCMC Estimation and Bayesian Modelling] 1
[1.1 Bayesian modelling using Markov Chain Monte Carlo methods| 1

(1.2 MCMC methods and Bayesian modelling| . . . . . . ... ... 2
(1.3 Detault prior distributions| . . . . . . ... .. ... ... ... 4
(L4 MCMC estimationl . . . . ... ... ... L. 5
(1.5  Gibbs sampling] . . . . ... ... ... ... ... ... ... 5
(1.6  Metropolis Hastings samplingl . . . . ... ... ... .. ... 8
(1.7 Running macros to perform Gibbs sampling and Metropolis |
| Hastings sampling on the simple linear regression model| . . . 10
(1.8 Dynamic traces for MCMC|. . . . . ... ... ... ... ... 12
(1.9 Macro to run a hybrid Metropolis and Gibbs sampling method |
| for a linear regression example| . . . . . . . ... ... L. 15
(.10 MCMC estimation of multilevel models in MLwiNl . . . . . . . 18
[Chapter learning outcomes|. . . . . . . ... ... .. ... ... .. 19
2 Single Level Normal Response Modelling| 21
[2.1 Running the Gibbs Sampler| . . . . . . .. .. ... ... ... 26
[2.2  Deviance statistic and the DIC diagnosticf . . . . . ... ... 28
2.3  Adding more predictors|. . . . . . .. ... ... 29
[2.4  Fitting school effects as fixed parameters| . . . . . . . . . ... 32
[Chapter learning outcomes|. . . . . . . ... ... ... ... ... 33
[3 Variance Components Models| 35
[3.1 A 2 level variance components model for the Tutorial dataset|. 36
3.2 DIC and multilevel modeld . . . . . . ... ... ... ... .. 41
[3.3  Comparison between fixed and random school eftects| . . . . . 41
[Chapter learning outcomes|. . . . . . . . ... .. ... ... .... 43
[4  Other Features of Variance Components Models| 45
4.1 Metropolis Hastings (MH) sampling for the variance compo- |
[ nentsmodell . . . ... 46
[4.2  Metropolis-Hastings settings| . . . . . . ... ... ... .... 47

[4.3  Running the variance components with Metropolis Hastings] . 48

il



iv CONTENTS
4.4  MH cycles per Gibbs iteration| . . . . . . . .. ... ... ... 49
4.5 Block updating MH sampling| . . . .. ... .. ... .. ... 49
4.6 Residuals in MCMC| . . .. ... ... o oL 51
4.7 Comparing two schools| . . . . . . .. ... .. ... ... ... 54
4.8  Calculating ranks of schools| . . . . ... ... ... ... ... 959
4.9  Estimating a function of parameters|. . . . . . . . . . ... .. 59
[Chapter learning outcomes|. . . . . . . . . . . ... ... .. .... 61

[5  Prior Distributions, Starting Values and Random Number |

[ Seeds 63
.1 Prior distributionsl . . . . . . ... ..o 63
[>.2  Uniform on variance scale priors| . . . . . . . . ... ... ... 63
[>.3  Using informative priors| . . . . . . . . . . .. ... ... ... 64
(5.4  Specifying an informative prior for a random parameter|. . . . 67
[5.0  Changing the random number seed and the parameter starting [

[ valuesl . . . .. L L 68
(5.6  Improving the speed of MCMC Estimation| . . . . . . . . . .. 71
[Chapter learning outcomes|. . . . . . . . . ... ... ... ... .. 72

[6 Random Slopes Regression Models| 73
[6.1 Prediction intervals for a random slopes regression model| . . . 77
[6.2  Alternative priors for variance matrices| . . . . . . . . . . . .. 80
6.3 WinBUGS priors (Prior 2) . . . . ... ... ... ... ... 80
(6.4  Uniform prior| . . . . . . . . . . ... 81
[6.5 Informative prior| . . . . . . .. ... 82
B6 Resultd. . . . . . .o 83
[Chapter learning outcomes|. . . . . . . . . . . ... ... .. .... 83

sing the Win nterface 1n wi 85
[7.1 Variance components models in WinBUGS| . . . . . . .. . .. 86
(7.2 So why have a WinBUGS intertace 7| . . . . .. .. ... ... 94
(.3t distributed school residualsl . . . . . ... ... ... ... .. 94
[Chapter learning outcomes| . . . . . . . . . ... ... ... ... ... 98

(8 Running a Simulation Study in MLwilN| 99
8.1 JSP dataset simulation study| . . . . ... ... ... ..... 99
[8.2  Setting up the structure of the dataset| . . . . . . . . ... .. 100
[8.3  Generating simulated datasets based on true values| . . . . . . 104
(8.4  Fitting the model to the simulated datasets| . . . . . .. ... 108
[8.5 Analysing the simulation results| . . . . . . .. ... ... ... 111
[Chapter learning outcomes| . . . . . . . . . ... ... ... ... .. 112

[9 Modelling Complex Variance at Level 1 / Heteroscedasticity|115
9.1 MCMC algorithm for a 1 level Normal model with complex [

[ variationl . . . . . . ... L 117
9.2 Setting up the model in MLwiN| . . . . .. ... .. ... ... 119
[9.3  Complex variance functions in multilevel models| . . . . . . . . 123
9.4 Relationship with gender| . . . . . . . . .. .. ... ... ... 127

[9.5 Alternative log precision formulation| . . . . . . . . . ... .. 130




CONTENTS v

[Chapter learning outcomes| . . . . . . . . . ... ... ... ..... 132
(10 Modelling Binary Responses| 133
(10.1 Simple logistic regression model . . . . . . . . ... ... ... 134
[10.2 Random effects logistic regression model| . . . . . . . . . . .. 140
[10.3 Random coefhicients for area type| . . . . . . . . . . ... ... 142
(10.4 Probit regression| . . . . . . . . ... ... ... 144
(10.5 Running a probit regression in MLwiN| . . . . . . . . . . . .. 146
(10.6 Comparison with WinBUGS| . . . ... ... ... ... ... . 147
[Chapter learning outcomes|. . . . . . . . ... ... ... .. .... 155
(11 Poisson Response Modelling| 157
(11.1 Simple Poisson regression modell . . . . . . . . ... ... ... 159
(11.2 Adding in region level random eftects . . . . . . . . . . . ... 161
[11.3 Including nation effects in the model| . . . . . . . . ... ... 163
(11.4 Interaction with UV exposurel . . . . . . . .. ... ... ... 165
(11.5 Problems with univariate updating Metropolis procedures|. . . 167
[Chapter learning outcomes|. . . . . . . . .. ... .. ... ... .. 169
(12 Unordered Categorical Responses| 171
[12.1 Fitting a first single-level multinomial model| . . . . . . . . .. 173
[12.2 Adding predictor variables| . . . . . . . .. .. ... ... ... 177
[12.3 Interval estimates for conditional probabilities| . . . . . . . .. 179
[12.4 Adding district level random effects| . . . . . . . .. .. .. .. 181
[Chapter learning outcomes|. . . . . . . . . . ... ... ... .... 184
(13 Ordered Categorical Responses| 185
(13.1 A level chemistry dataset|. . . . . . .. ... ... ... .... 185
[13.2 Normal response models| . . . . . . ... ... ... .. .... 187
[13.3 Ordered multinomial modelling| . . . . . ... ... ... ... 190
(13.4 Adding predictor variables| . . . . .. ... ... ... ... .. 195
[13.5 Multilevel ordered response modelling| . . . . . ... ... ... 196
[Chapter learning outcomes|. . . . . . . ... ... ... ... ... 200

(14 Adjusting for Measurement Errors in Predictor Variables| 201

(14.1 Effects of measurement error on predictors| . . . . . . . . . .. 202
[14.2 Measurement error modelling in multilevel models| . . . . . . . 207
(14.3 Measurement errors in binomial modelsl . . . . . . .. ... .. 210
[ fications . . . . ... 214
[Chapter learning outcomes|. . . . . . . . . ... .. ... ... ... 215
(15 Cross Classified Models| 217
[I5.1 Classifications and eveld . . . . . .. ... ... ... ... .. 218
[15.2 Notation| . . . . . . . . . . ... . 219
(15.3 The Fife educational dataset| . . . . . .. .. ... .. ... .. 219
(15.4 A Cross-classified modell . . . . . ... ... ... ... .... 222
(15.5 Residualsl . . . . . . . .. o 225




vi CONTENTS

[15.7 Current restrictions for cross-classified models . . . . . . . .. 231
[Chapter learning outcomes|. . . . . . . . .. ... .. ... ... 232
(16 Multiple Membership Models| 233
(16.1 Notation and weightings| . . . . . . . . ... .. ... .. ... 234
[16.2 Office workers salary dataset| . . . . . . . . .. ... ... ... 234
[16.3 Models for the earnings datal . . . . . . . ... ... ... ... 237
[16.4 Fitting multiple membership models to the dataset| . . . . . . 239
[16.5 Residuals in multiple membership models|. . . . . . . . . . .. 242
[16.6 Alternative weights for multiple membership models|. . . . . . 245
[16.7 Multiple membership multiple classification (MMMC) models| 246
[Chapter learning outcomes|. . . . . . . . . . . ... ... .. .... 247
(17 Modelling Spatial Datal 249
[17.1 Scottish lip cancer dataset| . . . . . . .. ... ... ... ... 249
172 Fixed effects models) . . . . . . ... ... 250
[17.3 Random effects modeld . . . . . . . ... ... ... ... ... 253
[17.4 A spatial multiple-membership (MM) modell . . . . . . . . .. 254
(17.5 Other spatial models| . . . . . . ... ... ... ... ..... 257
(17.6 Fitting a CAR model in MLwiN|. . . . . ... ... ... ... 257
(17.7 Including exchangeable random effects . . . . . . . . . .. .. 261
(17.8 Further reading on spatial modelling . . . . .. .. ... ... 262
[Chapter learning outcomes|. . . . . . . . .. ... ... ... ... 263

[18 Multivariate Normal Response Models and Missing Datal 265

(18.1 GCSE science data with complete records only|. . . . . . . .. 266
[18.2 Fitting single level multivariate models| . . . . . . . . . . . .. 267
(18.3 Adding predictor variables . . . . .. ... ... ... 272
184 A multilevel multivariate modell . . . . . . . . ... ... .. 273
[18.5 GCSE science data with missing records| . . . . . . . .. ... 277
[18.6 Imputation methods for missing data] . . . . . . .. ... ... 282
[18.7 Hungarian science exam dataset| . . . . . . . . ... ... ... 284
[Chapter learning outcomes| . . . . . . . . . ... ... ... ... ... 288
[19 Mixed Response Models and Correlated Residuals| 289
(19.1 Mixed response models| . . . . . . .. .. ... ... ... .. 289
(19.2 The JSP mixed response examplel . . . . . . . ... ... ... 291
[19.3 Setting up a single level mixed response model . . . . . . . .. 293
(19.4 Multilevel mixed response modelf . . . . . . .. ... ... .. 296
19.5 Ratsdatasetl. . . . . . .. . . ... ... ... 297
[19.6 Fitting an autoregressive structure to the variance matrix/. . . 300
[Chapter learning outcomes|. . . . . . . . .. ... .. ... ... .. 303
20 Multilevel Factor Analysis Modelling] 305
[20.1 Factor analysis modelling|. . . . . . ... ... ... .. ... .. 305
20.2 MCMC algorithm|. . . . . ... ... .. ... ... .. .... 306
[20.3 Hungarian science exam dataset| . . . . . . . . ... ... ... 306
[20.4 A single factor Bayesian model| . . . . . . ... ... ... 310

[20.5 Adding a second factor to the modell . . . . . . . .. ... .. 315




CONTENTS

[20.10Extensions and some warnings| . . . . . . . . . .. . ... ...
[Chapter learning outcomes| . . . . . . . . . ... ... ... .....

[21 Using Structured MCMC|
21.1 EOTY| v v o e e e e e e
[21.2 Fitting the model using MLwiN| . . . . . . .. ... ... ...
[21.3 A random intercepts modell . . . . .. ... .o
[21.4 Examining the residual chains| . . . . . . . ... ... ... ..
[21.5 Random slopes model theory{. . . . . . . . .. ... ... ...
[21.6 Random Slopes model practice[. . . . . . . . . ... ... ...
[Chapter learning outcomes|. . . . . . . . ... .. ... ... ....

[22 Using the Structured M VN framework for models|
[22.1 MCMC theory for Structured MVN models|. . . . . . . . . ..
[22.2 Using the SMVN framework in practice]. . . . . . . . .. . ..
[22.3 Model Comparison and structured MVN models| . . . . . . ..
[22.4 Assessing the need tfor the level 2 variance] . . . . . . . . . ..
[Chapter learning outcomes|. . . . . . . . ... .. ... ... ....

[23 Using Orthogonal fixed effect vectors|
[23.1 A simple example| . . . . . ... oL
[23.2 Constructing orthogonal vectors| . . . . . . .. ... ... ...
[23.3 A Binomial response example| . . . . . . . ... ... ... ..
[23.4 A Poisson example| . . . . . ..o
[23.5 An Ordered multinomial example| . . . . . . . ... ... ...
Iz;i,(i llls: Millli[](;:i illlf:llag:ffl .....................

[Chapter learning outcomes|. . . . . . . . .. ... .. ... ... ..

[24 Parameter expansion|
[24.1 What is Parameter Expansion?| . . . . . . .. ... ... ...
[24.2 The tutorial example| . . . . . . ... ... oL
[24.3 Binary responses - Voting example| . . . . . . ... ... ...
[24.4 'The choice of prior distribution| . . . . . . . ... . ... ...
[24.5 Parameter expansion and WinBUGS| . . . ... .. ... ...
[24.6 Parameter expansion and random slopes| . . . . . . . .. ...
[Chapter learning outcomes|. . . . . . . . .. . ... ... .. ....

(25 Hierarchical Centring|
[25.1 What is hierarchical centering?| . . . . . ... ... ... ...
[25.2 Centring Normal models using WinBUGS| . . . .. .. .. ..
[25.3 Binomial hierarchical centering algorithm|. . . . . . . . . . ..
[25.4 Binomial example in practice] . . . .. ... ... ...
[25.5 The Melanoma example| . . . . . .. ... .. ... ... ...
[25.6 Normal response models in MLwiN| . . . . . .. ... ... ..
[Chapter learning outcomes| . . . . . . . . . . .. . ... ... ....

vii

319
321
322
323
326
327

329
329
332
336
337
338
340
342

343
343
346
351
352
357

359
360
361
362
366
370
374
381

383
383
385
388
392
393
398
401



viii CONTENTS

(Bibliography| 425




Acknowledgements

This book would not have been written without the help of many people.

Firstly thanks to Jon Rasbash who has been responsible for the majority
of the programming effort in the MLwiN software package over the past 20
years or so, and is also responsible for much of the interface work between
my MCMC estimation engine and the rest of the MLwiN package.

Thanks to all my colleagues at the Centre for Multilevel Modelling both now
and in the past. In particular thanks to Harvey Goldstein, Jon Rasbash,
Fiona Steele, Min Yang and Philippe Mourouga for their comments and
advice on the material in the original version of this book.

Thanks to Chris Charlton for his programming effort in the more recent
versions of MLwiN. Thanks to Edmond Ng for assistance in updating ealier
versions of the book when MLwiN changed and thanks to Michael Kelly and
Rebecca Pillinger for TEXing and updating the previous version. Thanks
to Hilary Browne for her work on the multilevel modelling website that hosts
the manuals and software.

The Economic and Social Research Council (ESRC) has provided me person-
ally with funding off and on since 1998 when I started my first post-doctoral
position and has provided members of the project team with continuous fund-
ing since 1986 and without their support MLwiN and hence this book would
not have been possible.

In particular the grant RES-000-23-1190-A entitled “Sample Size, Identifia-
bility and MCMC Efficiency in Complex Random Effect Models” has allowed
me to extend the MCMC features in MLwiN and add the final five chapters
to this version of the book.

Thanks to my colleagues at Langford and in particular Richard Parker and
Sue Hughes for reading through this extended version and pointing out incor-
rect screen shots and typographic errors. Thanks also to Mousa Golalizadeh
for his work on the ESRC grant and to Camille Szmagard for completing my
current postdoc team at Langford.

Thanks to David Draper for his support to me as PhD supervisor at the

X



X ACKNOWLEDGEMENTS

University of Bath. Thanks for sparking my interest in multilevel modelling
and your assistance on the first release of MLwiN.

Thanks to the past attendees of the MLwiN fellows group for their comments
and advice. Thanks in no particular order to Michael Healy, Toby Lewis,
Alastair Leyland, Alice McLeod, Vanessa Simonite, Andy Jones, Nigel Rice,
Ian Plewis, Tony Fielding, Tan Langford, Dougal Hutchison, James Carpenter
and Paul Bassett.

Thanks to the WinBUGS project team (of the time of writing the original
book) for assistance and advice on the MLwiN to WinBUGS interface and
the DIC diagnostic. Thanks to David Spiegelhalter, Nicky Best, Dave Lunn,
Andrew Thomas and Clare Marshall.

Finally thanks to Mary, my lovely daughters, Sarah and Helena, my Mum and
Dad and my many friends, relatives and colleagues for their love, friendship
and support over the years.

To health, happiness and honesty and many more years multilevel modelling!

William Browne, 7" July 2009.



Preface to the 2009, 2011, 2012
and 2014 Editions

I first wrote a book entitled “MCMC estimation in MLwiN” towards the end
of my time at the Centre for Multilevel Modelling at the Institute of Educa-
tion (in 2002). This original work greatly expanded the couple of chapters
that appeared in the MLwiN User’s Guide and mirrored the material in the
User’s Guide whilst including additional chapters that contained extensions
and features only available via MCMC estimation.

I then spent four and a half years away from the centre whilst working in the
mathematics department at the University of Nottingham. For the first few
years at Nottingham, aside from minor bug fixing, the MCMC functionality
in MLwiN was fairly static. In 2006 I started an ESRC project RES-000-23-
1190-A which allowed me to incorporate some additional MCMC function-
ality into MLwiN. This new functionality does not increase the number of
models that can be fitted via MCMC in MLwiN but offers some alternative
MCMC methods for existing models.

I needed to document these new features and so rather than creating an
additional manual I have added 5 chapters to the end of the existing book
which in the interim has been converted to KTEX by Mike Kelly for which I
am very grateful. T also took the opportunity to update the existing chapters
a little. The existing chapters were presented in the order written and so I
have also taken the opportunity to slightly reorder the material.

The book now essentially consists of 5 parts. Chapters 1-9 cover single level
and nested multilevel Normal response models. Chapters 10-13 cover other
response types. Chapters 14-17 cover other non-nested structures and mea-
surement errors. Chapters 18-20 cover multivariate response models includ-
ing multilevel factor analysis models and finally chapters 21-25 cover ad-
ditional MCMC estimation techniques developed specifically for the latest
release of MLwiN.

The book as written can be used with versions of MLwiN from 2.13 onward
- earlier versions should work with chapters 1-20 but the new options will
not be available. This version also describes the WinBUGS package and the
MLwiN to WinBUGS interface in more detail. I used WinBUGS version 1.4.2

x1
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when writing this version of the book and so if you use a different version
you may encounter different estimates, such is the nature of Monte Carlo
estimation and evolving estimation.

Please report any problems you have replicating the analyses in this book
and indeed any bugs you find in the MCMC functionality within MLwiN.
Happy multilevel modelling!

William J. Browne, 7" July 2009.

This book has been slightly updated for versions of MLwiN from 2.24 on-
wards. Historically the residuals produced by the IGLS algorithm in MLwiN
have been used as starting values when using MCMC. This doesn’t really
make much sense for models like cross-classified and multiple-membership
models where the IGLS estimates are not from the same model. We have
therefore made some changes to the way starting values are given to MCMC.
As MCMC methods are stochastic the change results in some changes to
screen shots in a few chapters. We have also taken this opportunity to cor-
rect a few typographical mistakes including a typo in the Metropolis macro
in chapter 1 and in the quantiles for the rank2 macro in chapter 4.

William J. Browne, 10" August 2011.

This book has had one further change for version 2.25 onwards with re-
gard residual starting values for models like cross-classified and multiple-
membership models. We initially made these all zero but this didn’t have
the desired effect and so they are now chosen at random from Normal distri-
butions.

William J. Browne, 31°° January 2012.

Dedicated to the memory of Jon Rasbash. A great mentor and friend who
will be sorely missed.



Chapter 1

Introduction to MCMC
Estimation and Bayesian
Modelling

In this chapter we will introduce the basic MCMC methods used in MLwiN
and then illustrate how the methods work on a simple linear regression model
via the MLwiN macro language. Although MCMC methods can be used for
both frequentist and Bayesian inference, it is more common and easier to use
them for Bayesian modelling and this is what we will do in MLwiN.

1.1 Bayesian modelling using Markov Chain
Monte Carlo methods

For Bayesian modelling MLwiN uses a combination of two Markov Chain
Monte Carlo (MCMC) procedures: Gibbs sampling and Metropolis-Hastings
sampling. In previous releases of MLwiN, MCMC estimation has been re-
stricted to a subset of the potential models that can be fitted in MLwiN. This
release of MLwiN allows the fitting of many more models using MCMC, in-
cluding many models that can only be fitted using MCMC but there are still
some models where only the maximum likelihood methods can be used and
the software will warn you when this is the case.

We will start this chapter with some of the background and theory behind
MCMC methods and Bayesian statistics before going on to consider develop-
ing the steps of the algorithms to fit a linear regression model. This we will
do using the MLwiN macro language. We will be using the same examination
dataset that is used in the User’s Guide to MLwiN (Rasbash et al. |2008)
and in the next chapter we demonstrate how simple linear regression models
may be fitted to these data using the MCMC options in MLwiN.



2 CHAPTER 1.

Users of earlier MLwiN releases will find that the MCMC options and screen
layouts have been modified slightly and may find this manual useful to famil-
iarise themselves with the new structure. The MCMC interface modifications
are due to the addition of new features and enhancements, and the new in-
terface is designed to be more intuitive.

1.2 MCMC methods and Bayesian modelling

We will be using MCMC methods in a Bayesian framework. Bayesian statis-
tics is a huge subject that we cannot hope to cover in the few lines here.
Historically Bayesian statistics has been quite theoretical, as until about
twenty years or so ago it had not been possible to solve practical problems
through the Bayesian approach due to the intractability of the integrations
involved. The increase in computer storage and processor speed and the rise
to prominence of MCMC methods has however meant that now practical
Bayesian statistical problems can be solved.

The Bayesian approach to statistics can be thought of as a sequential learning
approach. Let us assume we have a problem we wish to solve, or a question
we wish to answer: then before collecting any data we have some (prior)
beliefs /ideas about the problem. We then collect some data with the aim of
solving our problem. In the frequentist approach we would then take these
data and with a suitable distributional assumption (likelihood) we could
make population-based inferences from the sample data. In the Bayesian
approach we wish to combine our prior beliefs/ideas with the data collected
to produce new posterior beliefs/ideas about the problem. Often we will have
no prior knowledge about the problem and so our posterior beliefs/ideas will
combine this lack of knowledge with the data and will tend to give similar
answers to the frequentist approach. The Bayesian approach is sequential
in nature as we can now use our posterior beliefs/ideas as prior knowledge
and collect more data. Incorporating this new data will give a new posterior
belief.

The above paragraph explains the Bayesian approach in terms of ideas, in
reality we must deal with statistical distributions. For our problem, we will
have some unknown parameters, ¢, and we then condense our prior beliefs
into a prior distribution, p(#). Then we collect our data, y, which (with a
distributional assumption) will produce a likelihood function, L(y|€), which is
the function that maximum likelihood methods maximize. We then combine
these two distributions to produce a posterior distribution for €, p(f]y)
p(0)L(y|0). This posterior is the distribution from which inferences about
0 are then reached. To find the implicit form of the posterior distribution
we would need to calculate the proportionality constant. In all but the
simplest problems this involves performing a many dimensional integration,
the historical stumbling block of the Bayesian approach. MCMC methods
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however circumvent this problem as they do not calculate the exact form of
the posterior distribution but instead produce simulated draws from it.

Historically, the methods used in MLwiN were IGLS and RIGLS, which are
likelihood-based frequentist methods. These methods find maximum like-
lihood (restricted maximum likelihood) point estimates for the unknown
parameters of interest in the model. These methods are based on itera-
tive procedures and the process involves iterating between two deterministic
steps until two consecutive estimates for each parameter are sufficiently close
together, and hence convergence has been achieved. These methods are de-
signed specifically for hierarchical models although they can be adapted to
fit other models. They give point estimates for all parameters, estimates
of the parameter standard deviations and large sample hypothesis tests and
confidence intervals (see the User’s Guide to MLwiN for details).

MCMC methods are more general in that they can be used to fit many
more statistical models. They generally consist of several distinct steps mak-
ing it easy to extend the algorithms to more complex structures. They are
simulation-based procedures so that rather than simply producing point es-
timates the methods are run for many iterations and at each iteration an
estimate for each unknown parameter is produced. These estimates will not
be independent as, at each iteration, the estimates from the last iteration are
used to produce new estimates. The aim of the approach is then to generate a
sample of values from the posterior distribution of the unknown parameters.
This means the methods are useful for producing accurate interval estimates
(Note that bootstrapping methods, which are also available in MLwiN can
also be used in a similar way).

Let us consider a simple linear regression model

Yi = Bo + Bz + €
€; ~ N(O,Jz)

In a Bayesian formulation of this model we have the opportunity to combine
prior information about the fixed and random parameters, Sy, (1, and o2,
with the data. As mentioned above these parameters are regarded as random
variables described by probability distributions, and the prior information for
a parameter is incorporated into the model via a prior distribution. After
fitting the model, a distribution is produced for the above parameters that
combines the prior information with the data and this is known as the pos-
terior.

When using MCMC methods we are now no longer aiming to find simple
point estimates for the parameters of interest. Instead MCMC methods
make a large number of simulated random draws from the joint posterior
distribution of all the parameters, and use these random draws to form a
summary of the underlying distributions. These summaries are currently
univariate. From the random draws of a parameter of interest, it is then
possible to calculate the posterior mean and standard deviation (SD), as
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well as density plots of the complete posterior distribution and quantiles of
this distribution.

In the rest of this chapter, the aim is to give users sufficient background
material to have enough understanding of the concepts behind both Bayesian
statistics and MCMC methods to allow them to use the MCMC options
in the package. For the interested user, the book by |Gilks, Richardson &
Spiegelhalter| (1996) gives more in-depth material on these topics than is
covered here.

1.3 Default prior distributions

In Bayesian statistics, every unknown parameter must have a prior distri-
bution. This distribution should describe all information known about the
parameter prior to data collection. Often little is known about the parame-
ters a priori, and so default prior distributions are required that express this
lack of knowledge. The default priors applied in MLwiN when MCMC esti-
mation is used are ‘flat’ or ‘diffuse’ for all the parameters. In this release the
following diffuse prior distributions are used (note these are slightly different
from the default priors used in release 1.0 and we have modified the default
prior for variance matrices since release 1.1):

e For fixed parameters p(f) oc 1. This émproper uniform prior is func-
tionally equivalent to a proper Normal prior with variance c¢?, where
c is extremely large with respect to the scale of the parameter. An
improper prior distribution is a function that is not a true probability
distribution in that it does not integrate to 1. For our purposes we only
require the posterior distribution to be a true or proper distribution.

e For scalar variances, p(%) ~ T'(e,¢), where ¢ is very small. This
(proper) prior is more or less equivalent to a Uniform prior for log(o?).

e For variance matrices p(Q ') ~ Wishart,(p, p, Q) where p is the number
of rows in the variance matrix and € is an estimate for the true value
of Q. The estimate {0 will be the starting value of © (usually from
the IGLS/RIGLS estimation routine) and so this prior is essentially an
informative prior. However the first parameter, which represents the
sample size on which our prior belief is based, is set to the smallest
possible value (n the dimension of the variance matrix) so that this
prior is only weakly informative.

These variance priors have been compared in Browne| (1998), and some follow
up work has been done on several different simulated datasets with the default
priors used in release 1.0. These simulations compared the biases of the
estimates produced when the true values of the parameters were known.
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It was shown that these priors tend to generally give less biased estimates
(when using the mean as the estimate) than the previous default priors used
in release 1.0 although both methods give estimates with similar coverage
properties. We will show you in a later chapter how to write a simple macro
to carry out a simple simulation in MLwiN. The priors used in release 1.0
and informative priors can also be specified and these will be discussed in
later chapters. Note that in this development release the actual priors used
are displayed in the Equations window.

1.4 MCMC estimation

The models fitted in MLwiN contain many unknown parameters of interest,
and the objective of using MCMC estimation for these models is to gener-
ate a sample of points in the space defined by the joint posterior of these
parameters. In the simple linear regression model defined earlier we have
three unknowns, and our aim is to generate samples from the distribution
p(Bo, B1,02|y). Generally to calculate the joint posterior distribution directly
will involve integrating over many parameters, which in all but the simplest
examples proves intractable. Fortunately, however, an alternative approach
is available. This is due to the fact that although the joint posterior distri-
bution is difficult to simulate from, the conditional posterior distributions for
the unknown parameters often have forms that can be simulated from easily.
It can be shown that sampling from these conditional posterior distributions
in turn is equivalent to sampling from the joint posterior distribution.

1.5 Gibbs sampling

The first MCMC method we will consider is Gibbs Sampling. Gibbs sampling
works by simulating a new value for each parameter (or block of parameters)
in turn from its conditional distribution assuming that the current values for
the other parameters are the true values. For example, consider again the
linear regression model.

We have here three unknown variables 3y, 31 and o and we will here consider
updating each parameter in turn. Note that there is lots of research in MCMC
methodology involved in finding different blocking strategies to produce less
dependent samples for our unknown parameters (Chib & Carlin, [1999; Rue,
2001; Sargent et al. 2000) and we will discuss some such methods in later
chapters.

Ideally if we could sample all the parameters together in one block we would
have independent sampling. Sampling parameters individually (often called
single site updating) as we will describe here will induce dependence in the
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chains of parameters produced due to correlations between the parameters.
Note that in the dataset we use in the example, because we have centred
both the response and predictor variables, there is no correlation between
the intercept and slope and so sampling individually still gives independent
chains. In MLwiN as illustrated in the next chapter we actually update all
the fixed effects in one block, which reduces the correlation.

Note that, given the values of the fixed parameters, the residuals e; can be
calculated by subtraction and so are not included in the algorithms that
follow.

First we need to choose starting values for each parameter, 5,(0), 51(0) and
02(0), and in MLwiN these are taken from the current values stored before
MCMC estimation is started. For this reason it is important to run IGLS or
RIGLS before running MCMC estimation to give the method good starting
values. The method then works by sampling from the following conditional

posterior distributions, firstly

1. p(Boly, 81(0),5%(0)) to generate By(1), and then from
2. p(Bily, Bo(1),02(0)) to generate B1(1), and then from

3. p(a?ly, Bo(1), 51(0) to generate o>(1).

Having performed all three steps we have now updated all of the unknown
quantities in the model. This process is then simply repeated many times
using the previously generated set of parameter values to generate the next
set. The chain of values generated by this sampling procedure is known as
a Markov chain, as every new value generated for a parameter only depends
on its previous values through the last value generated.

To calculate point and interval estimates from a Markov chain we assume
that its values are a sample from the posterior distribution for the parameter
it represents. We can then construct any summaries for that parameter that
we want, for example the sample mean can easily be found from the chain
and we can also find quantiles, e.g. the median of the distribution by sorting
the data and picking out the required values.

As we have started our chains off at particular starting values it will gener-
ally take a while for the chains to settle down (converge) and sample from
the actual posterior distribution. The period when the chains are settling
down is normally called the burn-in period and these iterations are omitted
from the sample from which summaries are constructed. The field of MCMC
convergence diagnostics is concerned with calculating when a chain has con-
verged to its equilibrium distribution (here the joint posterior distribution)
and there are many diagnostics available (see later chapters). In MLwiN by
default we run for a burn-in period of 500 iterations. As we generally start
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from good starting values (ML estimates) this is a conservative length and
we could probably reduce it.

The Gibbs sampling method works well if the conditional posterior distribu-
tions are easy to simulate from (which for Normal models they are) but this is
not always the case. In our example we have three conditional distributions
to calculate.

To calculate the form of the conditional distribution for one parameter we
write down the equation for the conditional posterior distribution (up to pro-
portionality) and assume that the other parameters are known. The trick is
then that standard distributions have particular forms that can be matched
to the conditional distribution, for example if x has a Normal(u, 0?) distri-
bution then we can write: p(z) o exp(az?® + bz + const), where a = —55
and b = %3, so we are left to match parameters as we will demonstrate in the
example that follows.

Similarly if « has a I'(«, ) distribution then we can write: p(z) o 2% exp(bx),
where a = a — 1 and b = —f.

We will assume here the MLwiN default priors, p(f8y) o« 1, p(81) o 1,
p(1/0?) ~ T'(g,¢), where ¢ = 1073. Note that in the algorithm that fol-
lows we work with the precision parameter, 1/02, rather than the variance,
02, as it has a distribution that is easier to simulate from. Then our posterior
distributions can be calculated as follows

Step 1: 50

1/2
p(Boly, Br,07) o U (Uig) exp {—%‘g(yi — o — %31)2]

%

N 1
X exp [—thﬁé + 52 Z (yi — x:51)Bo + Const]

= exp [aﬁg + bBy + const]

Matching powers gives:

1 o2 1 Z
2 __Ye _ 2
Uﬁo__%_ﬁ and ,Ltﬁo—bO'ﬁO—N i (yz—$150)7
1 03

and so p(60|ya6170-g> ~N (ﬁ Z (yi = xib), W)

%
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Step 2: 5,

1 1
X exp [_ﬁ Z x? 87 + i Z (y; — Bo)xif1 + const]

%

Matching powers gives:

) 1 o2 ) ; (yi — Bo)xi
051:—522 5 and uﬁlzb%l:—Zﬁ ,

Zyz’xi - 502%’ o2

e
T

and so p(/31|y>50>03) ~ N

Step 3: 1/0?

e

A 1 1
2
X (;) €xp [_a_g (5 + 5 ;(yz — Bo — 951'51) )]
1 N 1
and so p <U—g|y,ﬁg,ﬁl) ~T (6 + ?,6 + 3 zi:ef>

So in this example we see that we can perform one iteration of our Gibbs
sampling algorithm by taking three random draws, two from Normal distri-
butions and one from a Gamma distribution. It is worth noting that the
first two conditional distributions contain summary statistics, such as _ z7,

which are constant throughout the sampling and used at every iteratiori. To
simplify the code and speed up estimation it is therefore worth storing these
summary statistics rather than calculating them at each iteration. Later in
this chapter we will give code so that you can try running this model yourself.

1.6 Metropolis Hastings sampling

When the conditional posterior distributions do not have simple forms we
will consider a second MCMC method, called Metropolis Hastings sampling.
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In general MCMC estimation methods generate new values from a proposal
distribution that determines how to choose a new parameter value given
the current parameter value. As the name suggests a proposal distribution
suggests a new value for the parameter of interest. This new value is then
either accepted as the new estimate for the next iteration or rejected and the
current value is used as the new estimate for the next iteration. The Gibbs
sampler has as its proposal distribution the conditional posterior distribution,
and is a special case of the Metropolis Hastings sampler where every proposed
value is accepted.

In general almost any distribution can be used as a proposal distribution. In
MLwiN, the Metropolis Hastings sampler uses Normal proposal distributions
centred at the current parameter value. This is known as a random-walk
proposal. This proposal distribution, for parameter 6 at time step ¢ say, has
the property that it is symmetric in 6(¢t — 1) and 6(¢), that is:

p(O(t) = alf(t — 1) = b) = p(8(t) = blo(t — 1) = a)

and MCMC sampling with a symmetric proposal distribution is known as
pure Metropolis sampling. The proposals are accepted or rejected in such
a way that the chain values are indeed sampled from the joint posterior
distribution. As an example of how the method works the updating procedure
for the parameter (3 at time step ¢ in the Normal variance components model
is as follows:

1. Draw f; from the proposal distribution 3y(t) ~ N(Bo(t — 1),07) where
a}% is the proposal distribution variance.

2. Define r, = p(ﬁ&ﬁl(t - 1)70-3(t - 1)|y)/p(60(t - 1)751@ - 1)703(t -
1)|y) as the posterior ratio and let a; = min(1,7;) be the acceptance
probability.

3. Accept the proposal fy(t) = 5 with probability a;, otherwise let
Bo(t) = Bo(t — 1)

So from this algorithm you can see that the method either accepts the new
value or rejects the new value and the chain stays where it is. The difficulty
with Metropolis Hastings sampling is finding a ‘good’ proposal distribution
that induces a chain with low autocorrelation. The problem is that, since
the output of an MCMC algorithm is a realisation of a Markov chain, we are
making (auto)correlated (rather than independent) draws from the posterior
distribution. This autocorrelation tends to be positive, which can mean that
the chain must be run for many thousands of iterations to produce accurate
posterior summaries. When using the Normal proposals as above, reducing
the autocorrelation to decrease the required number of iterations equates to
finding a ‘good’ value for Ug, the proposal distribution variance. We will see

later in the examples the methods MLwiN uses to find a good value for aﬁ.
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As the Gibbs sampler is a special case of the Metropolis Hastings sampler,
it is possible to combine the two algorithms so that some parameters are
updated by Gibbs sampling and other parameters by Metropolis Hastings
sampling as will be shown later. It is also possible to update parameters
in groups by using a multivariate proposal distribution and this will also be
demonstrated in the later chapters.

1.7 Running macros to perform Gibbs sam-
pling and Metropolis Hastings sampling
on the simple linear regression model

MLwiN is descended from the DOS based multilevel modelling package MLn
which itself was built on the general statistics package Nanostat written by
Professor Michael Healy. The legacy of both MLn and Nanostat lives on in
MLwiN within its macro language. Most functions that are performed via
selections on the menus and windows in MLwiN will have a corresponding
command in the macro language. These commands can be input directly
into MLwiN via the Command interface window available from the Data
Manipulation menu. The list of commands and their parameters are cov-
ered in the Command manual (Rasbash et al.; 2000) and in the interactive
help available from the Help menu.

The user can also create files of commands for example to set up a model
or run a simulation as we will talk about in Chapter 8. These files can be
created and executed via the macros options available from the File menu.
Here we will look at a file that will run our linear regression model on the
tutorial dataset described in the next chapter.

We will firstly have to load up the tutorial dataset:

e Select Open Sample Worksheet from the File menu.

e Select tutorial.ws from the list of possible worksheets.

When the worksheet is loaded its name (plus filepath) will appear at the top
of the screen and the Names window will appear giving the variable names
in the worksheet. We now need to load up the macro file:

e Select Open Macro from the File menu.

e Select gibbslr.txt from the list of possible macros.

When the macro has been loaded a macro window showing the first twenty
or so lines of the macro will appear on the screen:
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B C:\Program Files (x86)\MLwiN v2.31\samples\gibbslr.txt =EES

note Gibbslr.txt - performs Gibbs sampling for a linear regression model -~
note

note ¥ in 3, x in 5, =x*2 in ecl1, xy in cl12, e in cl13,

note store betal in cl4, betal in cl15, sigma®2 e in cl6, iteration number in c21
note random normals in 17,cl18

note b6 - current betald, b7 current betal, b8 current sigma2e, b% - epsilon
note bll - sum of ¥y, k12 - sum of x, bl3 - sum of x*2, bl4 - N, bl5 - sum of xy
note blé - burnin, bl17 - main run, bl8 refresh rate

seed 1

calc cll=c5#%c5

calc cl2 = ¢3%ch

sum c3 bll

sum cd bl2

sum cll bl3

sum c4 bl4d

sum cl2 bl3

erase cl4-clé

erase c2l

name cl4 "betal®' cl5 '"betal’ clé 'sigmaZe’ c21 "itno’

note starting values

calc be = 0 e
< >
Go toend | [ Execute | Find | |

Execute selection | Replace |

You will notice that the macro contains a lot of lines in green beginning with
the word note and this command is special in that it is simply a comment
used to explain the macro code and does nothing when executed. The macro
sets up starting values and then loops around the 3 steps of the Gibbs sam-
pling algorithm as detailed earlier for the number of stored iterations (b17)
plus the length of the burn-in (b16).

To run the macro we simply press the Execute button on the macro window.
The mouse pointer will turn into an egg timer while the macro runs and then
back to a pointer when the macro has finished. The chains of values for the
three parameters have been stored in columns c14-c16 and we can look at
some summary statistics via the Averages and Correlations window

e Select Averages and Correlations from the Basic Statistics
menu

If we now scroll down the list of columns we can select the three output
columns that contain the chains, these have been named beta0, betal and
sigma2e. Note to select more than one column in this and any other window
press the ‘Ctrl” key when you click on the selection with the mouse. When
the three are selected the window should look as follows:

B3+ Averages and Correlation E o .

Operation gl -
{v Averages schoend
" Corelation avslt

schay
wiband
[~ ‘“weights Column 11

-

Help

Now to display the estimates:



12 CHAPTER 1.

e Click the Calculate button

and the output window will appear with the following estimates:

B Output =]=]E

->AVERage 3 'betal' "betal' "sigmaZe’ -
N Miz=ing Mean =.d. _

betal 5000 1] —-0.0014769 0.012782 =

betal S000 o 0.59508 0.012821

sigmalZe 5000 1] 0.64895 0.014340 -

< >
Include output from system
Zoom|100 ~| Copy as table | Clear |r generated commands

These estimates are almost identical to those produced by the MLwiN MCMC
engine. Any slight differences will be due to the stochastic nature of MCMC
algorithms and will reduce as the number of updates is increased.

1.8 Dynamic traces for MCMC

One feature that is offered in MLwiN and some other MCMC based packages
such as WinBUGS (Spiegelhalter et al., 2000a)) is the ability to view estimate
traces that update as the estimation proceeds. We can perform a crude
version of this with our macro code that we have written to fit this model. If
you scan through the code you will notice that we define a box b18 to have
value 50 and describe this in the comments as the refresh rate. Near the
bottom of the code we have the following switch statement:

calc b60 = bl mod bi18
switch b60
case O:
pause 1
leave
ends

The box bl stores the current iteration and all this switch statement is really
saying is if the iteration is a multiple of 50 (b18) perform the pause 1
command. The pause 1 command simply releases control of MLwiN from
the macro for a split second so that all the windows can be updated. This
will be how we set up dynamic traces and we will use this command again
in the simulation chapter later.

We now have to set up the graphs for the traces. The Customised graph
window is covered in reasonable detail in Chapter 5 of the User’s Guide to
MLwiN and so we will abbreviate our commands here for brevity. Firstly:
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This will bring up the blank Customised graph window:

v autosort on x

— Details for for data set r(ds#)1
plntwtnt?'f plD‘lsl}‘leT position TerrorbnrsT othe

[none] | * |[nnm=] vl

fone] v| 9o [[none] |

- [none] -

We will now select three graphs (one for each variable).

This will set up the first graph (although not show it yet). We now need to
add the other two graphs:

Finally for parameter 3:
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Select itno from the x list.

Select line from the plot type list.

Now select the position tab.
Click in the third box in the first column of the grid.

Click on Apply and the 3 graphs will be drawn.

As we have already run the Gibbs sampler we should get three graphs of the
5000 iterations for these runs as follows:

- Graph display

|
T T T T
1300 600 3200 5200

Bl
=

I I
130 =0 o=

By
=

T T T
1300 200 300

These chains show that the Gibbs sampler is mixing well as the whole of the
posterior distribution is being visited in a short period of time. We can tell
this by the fact that there are no white large white patches on the traces.
Convergence and mixing of Markov chains will be discussed in later chapters.

If we wish to now have dynamic traces instead we can simply restart the
macro by pressing the Execute button on the macro window. Note that as
the iterations increase estimation will now slow down as the graphs redraw
all points every refresh! Note also that after the chains finish you will get the
same estimates as you had for the first run. This is because the macro has a
Seed command at the top. This command sets the MLwiN random number
seed used and although the MCMC estimation is stochastic, given the same
parameter starting values and random numbers it is obviously deterministic.
It is also possible to have dynamic histogram plots for the three variables
but this is left as an exercise for the reader.

We will now look at the second MCMC estimation method: Metropolis Hast-
ings sampling.
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1.9 Macro to run a hybrid Metropolis and
Gibbs sampling method for a linear re-
gression example

Our linear regression model has three unknown parameters and we have
in the above macro updated all three using Gibbs sampling from the full
conditional posterior distributions. We will now look at how we can replace
the updating steps for the two fixed parameters, 5, and $; with Metropolis
steps.

We first need to load up the Metropolis macro file:

e Select Open Macro from the File Menu.

e Select mhlr.txt from the list of possible macros.

We will here discuss the step to update 3y as the step for (; is similar. At
each iteration, ¢, we firstly need to generate a new proposed value for 3y, 3,
and this is done in the macro by the following command:

» calc b30 = b6+b32*b21

Here b30 stores the new value (5j), b6 is the current value (Bo(t — 1)),
b32 is the proposal distribution standard deviation and b21 is a random
Normal(0,1) draw.

Next we need to evaluate the posterior ratio. It is generally easier to work
with log-posteriors than posteriors so in reality we work with the log-posterior
difference, which at step t is:

re = p(Bg, Bu(t — 1), 02(t = Dy) /p(Bo(t — 1), Bt — 1), 02(t — 1)|y)
= exp(log(p(Bg, Bi(t — 1), 02(t = 1)|y))
—log(p(Bo(t — 1), Bu(t — 1),02(t = 1)|y)))
= exp(dy)

We then have

R — (Z@i 55— afult — 1))

C202(t —1)

)

- Z (i = Bo(t — 1) — ifa(t — 1)>2>
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which with expansion and cancellation of terms can be written as

1
dy = —m : (2 (Z:yz - 51@ - 1)2;%)
(Bt = 1) = 85+ N((5)* = B3t - 1))))

We evaluate this in the macro with the command

» calc b34 = -1*x(2x(b7-b31)*(b15-b6*b12) + b13*(b31*b31 -
b7*b7)) /(2*b8)

Then to decide whether to accept or not, we need to compare a random
uniform with the minimum of (1, exp(d;)). Note that if d; > 0 then exp(d;) >
1 and so we always accept such proposals and in the macro we then only
evaluate exp(d,) if d; > 0. This is important because as d; becomes larger,
exp(d;) — oo and so if we try and evaluate it we will get an error. The
accept/reject decision is performed via a SWITch command as follows in
the macro:

calc b35 = (b34 > 0)

switch b35

case 1 :

note definitely accept as higher likelihood
calc b6 = b30
calc b40 = b40+1
leave

case 0 :

note only sometimes accept and add 1 to b40 if accept
pick bl c30 b36
calc b6 = b6 + (b30-b6)*(b36 < expo(b34))
calc b40 = b40 + 1%(b36 < expo(b34))
leave

ends

Here b40 is storing the number of accepted proposals. As the macro lan-
guage does not have an if statement the calc b6 = b6 + (b30-b6)*(b36 <
expo (b34)) statement is equivalent to an if that keeps b6 (fy) at its current
value if the proposal is rejected and sets it to the proposed value (b30) if it
is accepted.

The step for 5; has been modified in a similar manner. Here the log posterior
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ratio at iteration t after expansion and cancellation of terms becomes

dy = m ((szyz ﬂo Z%)
(e =1 = a0+ (602 - - 1) Zw>

To run this second macro we simply press the Execute button on the macro
window. Again after some time the pointer will have changed back from the
egg timer and the model will have run. As with the Gibbs sampling macro
earlier we can now look at the estimates that are stored in c14-c16 via the
Averages and Correlations window. This time we get the following:

"sigmaZe’

Missing Mean .d.
i} -0.0017458 0.011823

0 0.59501 0.012365
0 0.64503

Include output from system
generated commands

The difference in the estimates between the two macros is small and is due
to the stochastic nature of the MCMC methods. The number of accepted
proposals for both (5, and [; is stored in boxes b40 and b4l respectively
and so to work out the acceptance rates we can use the command interface
window:

These commands will give the following acceptance rates:

->calc b40=b40/5500
0.75655
->calc b41=b41/5500
0.74291

So we can see that both parameters are being accepted about 75% of the
time. The acceptance rate is inversely related to the proposal distribution
variance and one of the difficulties in using Metropolis Hastings algorithms
is choosing a suitable value for the proposal variance. There are situations
to avoid at both ends of the proposal distribution scale. Firstly choosing
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too large a proposal variance will mean that proposals are rarely accepted
and this will induce a highly autocorrelated chain. Secondly choosing too
small a proposal variance will mean that although we have a high acceptance
rate the moves proposed are small and so it takes many iterations to explore
the whole parameter space again inducing a highly autocorrelated chain. In
the example here, due to the centering of the predictor we have very little
correlation between our parameters and so the high (75%) acceptance rate
is OK. Generally however we will aim for lower acceptance rates.

To investigate this further the interested reader might try altering the pro-
posal distribution standard deviations (the lines calc 132 = 0.01 and calc
b33 = 0.01 in the macro) and seeing the effect on the acceptance rate. It is
also interesting to look at the effect of using MH sampling via the parameter
traces described earlier.

1.10 MCMC estimation of multilevel models
in MLwiN

The linear regression model we have considered in the above example can
be fitted easily using least squares in any standard statistics package. The
MLwiN macro language that we have used to fit the above model is a com-
piled language and is therefore computationally fairly slow. In fact the speed
difference will become evident when we fit the same model with the MLwiN
MCMC engine in the next chapter. If users wish, to improve their under-
standing of MCMC, they can write their own macro code for fitting more
complex models in MCMC and the algorithms for many basic multilevel
models are given in Browne| (1998)). Their results could then be compared
with those obtained using the MCMC engine.

The MCMC engine can be used to fit many multilevel models and many
extensions. As was described earlier, MCMC algorithms involve splitting
the unknown parameters into blocks and updating each block in a separate
step. This means that extensions to the standard multilevel models generally
involve simply adding extra steps to the algorithm. These extra steps will
be described when these models are introduced.

In the standard normal models that are the focus of the next few chapters we
use Gibbs sampling for all steps although the software allows the option to
change to univariate Metropolis sampling for the fixed effects and residuals.
The parameters are blocked in a two level model into the fixed effects, the
level 2 random effects (residuals), the level 2 variance matrix and the level
1 variance. We then update the fixed effects as a block using a multivariate
normal draw from the full conditional, the level 2 random effects are updated
in blocks, 1 for each level 2 unit again by multivariate normal draws. The
level 2 variance matrix is updated by drawing from its inverse-Wishart full
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conditional and the level 1 variance from its inverse Gamma full conditional.
For models with extra levels we have additional steps for the extra random
effects and variance matrix.

Chapter learning outcomes

* Some theory behind the MCMC methods

* How to calculate full conditional distributions

* How to write MLwiN macros to run the MCMC methods
* How MLwiN performs MCMC estimation.
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Chapter 2

Single Level Normal Response
Modelling

In this chapter we will consider fitting simple linear regression models and
normal general linear models. This will have three main aims: to start the
new user off with models they are familiar with before extending our mod-
elling to multiple levels; to show how such models can be fitted in MLwiN,
and finally to show how these models can be fit in a Bayesian framework and
to introduce a model comparison diagnostic DIC (Spiegelhalter et al., [2002)
that we will also be using in the models in later chapters.

We will consider here an examination dataset stored in the worksheet tuto-
rial.ws. This dataset will be used in many of the chapters in this manual
and is also the main example dataset in the MLwiN user’s guide (Rasbash
et al., 2008)). To view the variables in the dataset you need to load up the
worksheet as follows:

e Select Open Sample Worksheet from the File menu.

e Select tutorial.ws.

This will open the following Names window:

B3 Names E“E‘.
Column Data Categories Window
Name| Description | Toggle Categorical ‘ Copy Paﬁte| Delete | | ‘ Paste ‘ [” Used columns ﬂ Help
MName |Cn ‘ n | missing | min | max ‘ categorical ‘ description -~
school 1 4059 0 1 65 False Humeric school identifier
student 2 4059 0 1 198 False Humeric student identifier
normexam 3 4059 0 -3.666072  3.666091 False Students exam score at age 16, normalised to have approximately a standa|
cons 4 4059 0 1 1 False A column of ones. Ifincluded as an y variable in a mod
standirt 5 4059 0 -2.934953  3.015952 False Students score at age 11 on the London Reading Test, standarised using Z-5
girl 6 4059 0 1 False 1=girl, 0 = boy
schgend T 4059 0 3 True Schools gender (1 =mixed school, 2 = boys school, 3 = girls school)
avsirt 8 4059 0 -0.7559605 0.6376559 False Average LRT score in school
schav 9 4059 0 3 True Average LRT score in school, coded into 3 categories (1 = bottom 25%, 2 =m
vrband 10 4059 0 1 3 True Students score in test of verbal reasoning at age 11, coded into 3 categories
< m >

Our response of interest is named normexam and is a (normalised) total
exam score at age 16 for each of the 4059 students in the dataset. Our

21
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main predictor of interest is named standlrt and is the (standardised) marks
achieved in the London reading test (LRT) taken by each student at age
11. We are interested in the predictive strength of this variable and we can
measure this by looking at how much of the variability in the exam score is
explained by a simple linear regression on LRT. Note that this is the model
we fitted using macros in the last chapter.

We will set up the linear regression via MLwiN’s Equations window that can
be accessed as follows:

The Equations window will then appear:

(0 of 0 cases in use)

- | Add Term | Estimates | Honlinear | Clear | Notation Responses  Store

How to set up models in MLwiN is explained in detail in the User’s Guide
to MLwiN and so we will simply reiterate the procedure here but generally
less detail is given in this manual.

We now have to tell the program the structure of our model and which
columns hold the data for our response and predictor variables. We will
firstly define our response (y) variable to do this:

We will next set up the structure of the model. We will be extending the
model to 2 levels later, so for now we will specify two levels although the
model itself will be 1 level. The model is set up as follows:

In the Equations window the red y has changed to a black ¥;; to indicate
that the response and the first and second level indicators have been defined.
We now need to set up the predictors for the linear regression model:
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Note that cons is a column containing the value 1 for every student and
will hence be used for the intercept term. The fixed parameter tick box
is checked by default and so we have added to our model a fixed intercept
term. We also need to set up residuals so that the two sides of the equation
balance. To do this:

Note that we specify residuals at the student level only as we are fitting a
single-level model. We have now set up our intercept and residuals terms
but to produce the linear regression model we also need to include the slope
(standlrt) term. To do this we need to add a term to our model as follows:

Note that this adds a fixed effect only for the standlrt variable. Until we
deal with complex variation in a later chapter we will ALWAYS only have

one set of residuals at level 1, i.e. only one variable with the level 1 tick box
checked.

We have now added all terms for the linear regression model and if we look
at the Equations window and:

we get:

normexam, ~ N(XB, )
normexam; = j;cons + j3;standlrt;

Bo:= Bt ey

(4059 of 4059 cases in use)
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If we substitute the third line of the model into the second line and remember
that cons = 1 for all students we get y;; = By + Bistandlrt;; + e;;, the
standard linear regression formula. To fit this model we now simply:

This will run the model using the default iterative generalised least squares
(IGLS) method. You will see that the model only takes one iteration to con-
verge and this is because for a 1 level model the IGLS algorithm is equivalent
to ordinary least squares and the estimates produced should be identical to
the answer given by any standard statistics package regression routine. To
get the numerical estimates:

This will produce the following screen:

normexam, ~ N(XB, Q)
normexam, = 3 cons +0.595(0.013)standlrt,
Bo: =-0.001(0.013) + e,

[eo,] ~NO Q= Q= [064300.014)]

-2*loglikelihood(IGLS Deviance) = 9760.509(4059 of 4059 cases in use)

- | Add Term | Estimates | Honlinear | Clear | Motation | Responses| Store

Here we see that there is a positive relationship between exam score and
LRT score (slope coefficient of 0.595). Our response and LRT scores have
been normalised i.e. they have mean 0 and variance 1, and so the LRT scores
explain (1 —0.648) x 100 = 35.2% of the variability in the response variable.

As this manual is generally about the MCMC estimation methods in MLwiN
we will now fit this model using MCMC. Note that it is always necessary
in MLwiN to run the IGLS or RIGLS estimation methods prior to running
MCMC as these methods set up the model and starting values for the MCMC
methods.

To run MCMC:

The window should then look as follows:
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B Estimation control E
IGLS/RIGLS it MCMC | IGLSIRIGLS bootstrap

Burn in and iteration control

Bum-in Length | 5pp Monitonng Chain Length | sooo Thinning ,1_

Refresh screen every | 5p stored iterations.

Help Done

As described in the previous chapter MLwiN uses a mixture of Gibbs sam-
pling steps when the full conditionals have simple forms, and Metropolis
Hastings steps when this is not the case. Here the estimation control window
shows the default settings for burn-in length, run length, thinning and refresh
rate. All other MCMC settings are available from the Advanced MCMC
Methodology Options window available from the MCMC submenu of the
Model menu.

In this release of MLwiN the user does not have to choose between Gibbs
sampling and Metropolis Hastings sampling directly. The software chooses
the default (and most appropriate) technique for the given model, which
in the case of Normal response models is Gibbs sampling for all parameters.
The user can however modify the estimation methods used on the Advanced
MCMC Methodology Options window that will be discussed later.

The four boxes under the heading Burn in and iteration control have the
following functions:

Burn-in Length. This is the number of initial iterations that will not be
used to describe the final parameter distributions; that is they are discarded
and used only to initialise the Markov chain. The default of 500 can be
modified.

Monitoring Chain Length. The monitoring period is the number of iter-
ations, after the burn-in period, for which the chain is to be run. The default
of 5000 can be modified. Distributional summaries for the parameters can
be produced either at the end of the monitoring run or at any intermediate
time.

Thinning. This is the frequency with which successive values in the Markov
chain are stored. This works in a more intuitive way in this release, for
example running a chain for a monitoring chain length of 50,000 and setting
thinning to 10 will result in 5,000 values being stored. The default value of 1,
which can be changed, means that every iteration is stored. The main reason
to use thinning is if the monitoring run is very long and there is limited
memory available. In this situation this parameter can be set to a higher
integer, k, so that only every k-th iteration will be stored. Note, however,
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that the parameter mean and standard deviation use all the iteration values,
no matter what thinning factor is used. All other summary statistics and
plots are based on the thinned chain only.

Refresh This specifies how frequently the parameter estimates are refreshed
on the screen during the monitoring run within the Equations and Trajecto-
ries windows. The default of 50 can be changed.

For our simple linear regression model we will simply use the default settings.
With regards to prior distributions we will also use the default priors as
described in the last chapter. In this release for clarity the prior distributions
are included in the Equations window. They can be viewed by:

e Clicking on the 4+ button on the toolbar.

This will then give the following display (note the estimates are still the IGLS
estimates as we have not yet started the MCMC method.)

3. Equations IEHE‘.
normexam_ ~ N(XB, Q)

normexam; = f3y,cons +0.595(0.013)standlrt;
Bo; =-0.001(0.013) + ¢,

[ea,] N QI Q7 [0.648(0.014)]

PRIOR SPECIFICATIONS

P(ﬁo) al

p(B) a1

p(1/52,) ~ Gamma(0.001,0.001)
(4059 of 4059 cases in use)

|uame + | - | Add Term | Estimates Clear | MNotation | Responses| Store | Help |Zoom|10’0 ﬂ|

2.1 Running the Gibbs Sampler

We will now run the simple linear regression model using MCMC. Before
we start we will also open the Trajectories window so that we can see the
dynamic chains of parameter estimates as the method proceeds (note that
although viewing the chains is useful the extra graphical overhead means
that the method will run slower).

e Select Trajectories from the Model menu.

It is best to reposition the two windows so that both the equations and chains
are visible then we start estimation by:
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e Clicking the Start button.

The words Burning In... will appear for the duration of the burn in pe-
riod. After this the iteration counter at the bottom of the screen will move
every 50 iterations and both the Equations and Trajectories windows will
show the current parameter estimates (based on the chain means) and stan-
dard deviations. After the chain has run for 5,000 iterations the trajectories
window should look similar to the following:

B Trajectories
| Deviance(MCMC) = 9763.536(4059 of 4059 cases in use)”g = 0.649(0.015)

2 Aot lWWWWWWWWWMW

|8, = -0.001(0.013)

:MWMWWWWMWMW

B, = 0.595(0.013) |

|Zoom 100 ~| Select Help |wewlasl: 500 v | |raw data hd

These graphs show the estimates for each of the three parameters in our
model and the deviance statistic for each of the last 500 iterations. The
numbers given in both the Equations window and the Trajectories window
are the mean estimates for each of the parameters (including the deviance)
based on the run of 5,000 iterations (with the standard deviation of these
5,000 estimates given in brackets). It should be noted that in this example
we have almost identical estimates as the least squares estimates which given
we have used ‘diffuse’ priors is reassuring.

Healthy Gibbs sampling traces should look like any of these iteration traces;
when considered as a time series these traces should resemble ‘white noise’.
At the bottom of the screen you will see two default settings. The first allows
you to choose how many values to view and here we are showing the values
for the previous 500 iterations only; this can be changed. The second drop
down menu allows you to switch from showing the actual chain values to
viewing the running mean of each parameter over time. It is possible to get
more detailed information about each parameter and to assess whether we
have run our chains for long enough. For now we will assume we have run
for long enough and consider MCMC diagnostics in the next chapter.



28 CHAPTER 2.

2.2 Deviance statistic and the DIC diagnostic

The deviance statistic (McCullagh and Nelder, 1989) can be thought of as a
measure of how well our model fits the data. Generally the deviance is the
difference in —2xlog(likelihood) values for the fitted model and a saturated
model. In the normal model case we have:

N

52

i=1

N
log(likelihood) = -5 log(27672)

where N is the number of lowest level units (students) in the dataset, 62 is

an estimate of the level 1 variance and g; is the predicted value for student ¢,
in the case of the linear regression model ¢; = 50 + X; 61 For the saturated
model we have y; = ¢;V2 and so the second term in the log-likelihood equals
zero. In the diagnostic that follows we are interested in differences in the
deviance and so we will assume the deviance of the saturated model is zero
as this term will cancel out.

Spiegelhalter et al.| (2002) use the deviance with MCMC sampling to derive
a diagnostic known as the Deviance Information Criterion (DIC), which is a
generalization of the Akaike’s Information Criterion (AIC - See MLwiN help
system for more details). The DIC diagnostic is simple to calculate from an
MCMC run as it simply involves calculating the value of the deviance at each
iteration, and the deviance at the expected value of the unknown parameters
(D()). Then we can calculate the ‘effective’ number of parameters (pp) by
subtracting D () from the average deviance from the 5000 iterations (D).
The DIC diagnostic can then be used to compare models as it consists of the
sum of two terms that measure the ‘fit’ and the ‘complexity’ of a particular
model,

DIC =D +pp = D(0) +2pp = 2D — D(0).

It should be noted that the DIC diagnostic has not had universal approval and
the interested reader should read the discussion of the paper. Note that in
normal response models we have the additional parameter 2. In calculating
D(A)we use the arithmetic mean of 2, (E(c?)) as this generalizes easily to
multivariate normal problems.

To calculate the DIC diagnostic for our model:
e Select MCMC/DIC diagnostic from the Model menu.

This will bring up the Output window with the following information:

Dbar | D(thetabar) | pD DIC
9763.54 9760.51 | 3.02 | 9766.56
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Note that the value 9760.51 for D(f) is (almost) identical to the —2xlog-
likelihood value given for the IGLS method for the same model. For 1 level
models this will always be true but when we consider multilevel models this
will no longer be true. Also in this case the effective number of parameters
is (approximately) the actual number of parameters in this model. When we
consider fitting multilevel models this will again no longer be the case.

2.3 Adding more predictors

In this dataset we have two more predictors we will investigate, gender and
school gender. Both of these variables are categorical and we can use the
Add term button to create dummy variable fixed effects, which are then
added to our model. To set up these new parameters we MUST change
estimation mode back to IGLS/RIGLS before altering the model.

We now wish to set up a model that includes an effect of gender (girl) and
two effects for the school types (boysch and girlsch) with the base class for
our model being a boy in a mixed school. To set this up in the main effects
and interactions window we need to do the following:

The Specify term window should look as follows:

order I 1] vI I~ polynomial

variable

il -

cenhtring

& uncentred by groups defined by I vl
" grand mean  around valus I

Done ‘ LCancel |

Now if we click on the Done button a term named girl will be added to the
model. We need now to additionally add school gender effects:
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Having successfully performed this operation we will run the model using
IGLS.

This will then give the following in the Equations window:

normexam, ~ N(XB, Q)

normexam; = f.cons +0.591(0.013)standlrt, +0.133(0.034)girl,; +
0.183(0.043)boysch, + 0.168(0.033)girlsch,

Bo =-0-161(0.024) + e,

[eq,] ~NCO: Q) = Q.7 [0.634(0.014)]

-2*loglikelihood(IGLS Deviance) = 9672.195(4059 of 4059 cases in use)

So we see (by comparing the fixed effects estimates to their standard errors)
that in mixed schools, girls do significantly better than boys and that students
in single sex schools do significantly better than students of the same sex in
mixed schools. These additional effects have explained only a small amount
of the remaining variation, the residual variance has reduced from 0.648 to
0.634.

To fit this model using MCMC:

After running for 5000 iterations we get the following estimates:
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B Equations SIEES
normexam_ ~ N(XB, Q)

normexam; = f3p,cons +0.591(0.013)standlrt, +0.132(0.034)girl, +
0.182(0.042)boysch, + 0.168(0.033)girlsch,
S =-0.16000.024) + e,

[eog] ~N(0, Qg) Q.= [0_636(0.014)]

PRIOR SPECIFICATIONS
p(B) a1
p(pa 1
p(f) a1
p(B) a1
p(pa 1l
p(1/520) ~ Gamma(0.001,0.001)

Deviance(MCMC) = 9678.195(4059 of 4059 cases in use)

|ﬂame + | - |AddIerm|§stimates Clear | MNotation | Responses| Store | Help |Zoom|10’0 j|

Here again MCMC gives (approximately) the same estimates as least squares
and if we now wish to compare our new model with the last model we can
again look at the DIC diagnostic:

e Select MCMC/DIC diagnostic from the Model menu.

If we compare the output from the two models we have:

Dbar | D(thetabar) | pD DIC
9763.54 9760.51 | 3.02 | 9766.56
9678.19 9672.21 | 5.99 | 9684.18

so that adding the 3 parameters has increased the effective number of pa-
rameters to 6 (5.99) but the deviance has been reduced by approximately 88
meaning that the DIC has reduced by around 82 and so the DIC diagnostic
suggests this is a better model. Note that the DIC diagnostic accounts for
the number of parameters in the two models and so the two DIC values are
directly comparable and so any decrease in DIC suggests a better model.
However due to the stochastic nature of the MCMC algorithm there will be
random variability in the DIC diagnostic depending on starting values and
random number seeds and so if a model gives only a small difference in DIC
you should confirm if this is a real difference by checking the results with
different seeds and/or starting values.
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2.4 Fitting school effects as fixed parameters

We have in the last model seen that whether a school is single sex or mixed
has an effect on its pupils’ exam scores. We can now take this one step
further (as motivation for the multilevel models that follow) by considering
fitting a fixed effect for each school in our model. To do this we will first
have to set up the school variable as categorical:

This will set up school names coded school_1 to school_65 for schools 1 to
65 which will be OK for our purposes, however generally we could have input
all the categories for example school names here.

We will now use the Add Term button to set up the school effects. We will
for now replace the school gender effects as they will be confounded with the
school effects. Note again that as we are about to modify the model structure
we will need to:

Next we set up the fixed effects as follows:

This will now have removed the schgend terms from the model and set up
64 dummy variables for the school fixed effects using school_1 as a base
category. You will notice that all the school fixed effects have now been
added to the model in the Equations window:
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e Click the Start button.

This will run the model using least squares (in 1 iteration) and give esti-
mates for the 64 school effects. Note that these effects can be thought of as
differences in average achievement for the 64 schools when compared to the
base school. To fit this model in MCMC we need to:

e Select MCMC from the Estimation menu.
e Click on the Start button.

This model has 67 fixed effects and so even with the block updating Gibbs
sampling algorithm it will take a few minutes to run for 5000 iterations. After
running we see that the estimate for the base school () is 0.341 (0.090) so
that this school is significantly better than average (for a boy with average
standlrt mark) and all other school effect estimates (f3s,. .. ,56¢) are relative
to this school.

If we were to check the DIC diagnostic for this model we have:

Dbar | D(thetabar) pD DIC
9183.46 9115.36 | 68.10 | 9251.56

The DIC value has reduced from 9684 in our last model to 9252, a reduction of
432 points showing that the school in which the student studies has a strong
effect on their exam mark. Note that the effective number of parameters,
68.10, is still approximately correct for this model.

The variance estimate 02, has now been reduced to 0.563 and so we have now
explained 43.7% of the variation in our original response with the addition
of 67 fixed effects.

In this example we have introduced fixed school effects and shown that we
actually do not need to fit a random effects model to account for school dif-
ferences. We will however in the next chapter introduce multilevel modelling
by fitting school effects as random terms and explain why and when this may
be a better approach.

Chapter learning outcomes
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CHAPTER 2.

How to set up models in MLwiN using the Equations window.
How to set up 1 level models in MLwiN.

How to run the MCMC Gibbs sampling method.

How to access and interpret the DIC diagnostic.

How to fit a fixed effects model.



Chapter 3

Variance Components Models

We ended the last chapter with an example of how to fit school effects as
fixed terms in a linear model. In this chapter we will introduce fitting these
same school effects as random terms. Whether you choose to fit terms as
fixed or random is one of the main difficulties faced by researchers new to
multilevel modelling. In some scenarios the answer is obvious but in other
situations which model you fit will very much depend on what your main
research questions are and the context in which the data are collected.

Here we consider how to add a categorical explanatory variable to our model.
Certain categorical variables, for example gender and school gender in the
tutorial example, will ALWAYS be fitted as fixed effects. This is because
these variables have a limited number of categories and all categories are
present in the dataset. The motivation behind fitting a categorical variable,
for example school, as a set of random effects is that the categories of this
variable that we observe are, in fact, a sample of the possible categories.
Then, just like our observations at level 1, we can think of our categories
as being a sample from a population of categories and make a distributional
assumption about these categories.

The main reason for fitting a categorical variable as a random term rather
than as fixed effects is if our primary interest is in the variability across
the various categories rather than inferences about any single category. For
example we may want to calculate how much of the variability in our outcome
variable is due to the schools attended and how much is residual variation due
to pupil differences. Also as we may only have a small sample of level 1 units
for each category, the random effects produced will be more conservative than
the category effects produced by a fixed effect model. This is because we use
the fact that categories, for examples schools, are similar to each other, in
that case we may borrow strength from the other schools and when we wish
to estimate them, we “shrink” the school effects towards the average school
effect.

35
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In multilevel modelling when we treat a categorical variable as a set of random
effects we describe the set of categories as a level in the model. This is because
our observations (level 1 in the model) are nested within these categories, for
example pupils are nested within schools. The level terminology can be
extended for example to 3 levels if we want to extend our model to contain
both effects for schools, and for the local education authorities (LEASs) to
which the schools belong. Here we have a nesting of pupils within schools and
schools within LEAs and hence a 3 level structure. Note that we will see in
later chapters that structures are not always nested, leading to cross-classified
structures. Here we will use the alternative terminology of classification
rather than level.

Levels are not the same as random effects as there may be several sets of
random effects at a level; such models, called random slopes regression mod-
els, are described in a later chapter. Having more than one set of random
effects in a model can be thought of as the random equivalent of having an
interaction between a categorical variable and another explanatory variable
in the model as we will see in the later chapter.

For now, to distinguish between levels and random effects, we will have school
as the level and the school intercepts as the random effects.

3.1 A 2 level variance components model for
the Tutorial dataset

We will now return our attention to the tutorial dataset. At the end of the
last chapter we had fitted the school fixed effects model. This time we will
fit a school random effects model. To do this we will have to remove all the
fixed effects that are currently in the model, This may be done by reloading
the worksheet tutorial.ws or:

e In the Equations window click on the Clear button.

This will reset our model and we will have to set up our model from scratch.
Now we need to set up the linear regression model that contains the intercept
and the standlrt explanatory variable, which was fitted first in the last
chapter. (If you are unsure how to do this follow the instructions in the last
chapter.)

We now have to add random school level intercepts to the model. Note that
to do this you should have the estimation method set to IGLS. The variable
cons is associated with the intercepts and so you need to do the following:
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and the following X variable screen will appear:

We now need to:

to allow for level 1 variation and random intercepts for each school. Note that
you may already have the i(student) box ticked from the regression in which
case you need to ensure it is still ticked. The model we have now set up is a
member of the variance components family. A model is called a variance
components model if there is only one set of random effects (intercepts) for
each level in the model. This is because the model splits the total variation
into components of variation for each level in the model. The particular
variance components model with an intercept and slope term in the fixed
part is often called a random intercepts model. This is because graphically
(as shown in the User’s Guide to MLwiN), each school can be represented
by a (parallel) regression line with a fixed slope and a random intercept.

We will now run the model firstly using IGLS to obtain starting values, and
then using MCMC with the default settings:

Again if you have the Equations and Trajectories windows open you will
see the estimates and traces change as the estimation proceeds. Upon comple-
tion of the 5,000 iterations the Trajectories window should look as follows:
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Here we see that, unlike the linear regression example in the last chapter,
these traces do not all look healthy and the trace for 5, looks quite auto-
correlated i.e. each value of the trace is highly correlated with the preceding
value. We can get more detailed diagnostic information about a parameter,
for example the slope coefficient 5y, by clicking the left mouse button on
the parameter trace for $;. The program will then ask ‘Calculate MCMC
diagnostics?” to which you should click on Yes. The message “Calculating
MCMC diagnostics ... May take a while.” will then appear and after a
short wait you will see a diagnostics screen similar to the following:

£

MCMC diagnostics E@.
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Accuracy Diagnostics
Raftery-Lewis (quantile) : Nhat = (3803,3803 )
when q = (0.025.0.975 ). r =0.005 and s = 0.95
Brooks-Draper (mean) : Nhat = 30
when k = 2 sigfigs and aloha = 0.05

Summary Statistics

p 8581

param name : 8,  posterior mean = 0.563 (0.000} SD =0.012 mode = 0.563
quantiles : 2.5% =0.539, 3% =0.343, 50% = 0.363, 95% =0.584, 97.5% = 0.588
5000 actual iterations storing every fteration. Effective Sample Size (ESS) = 4413,

Update | Diagnosticgettings| Help |

The upper left-hand cell simply reproduces the whole trace for the parameter.
The upper right-hand cell gives a kernel density (which is like a smoothed
histogram) estimate of the posterior distribution; when an informative prior
distribution is used the density for this distribution is also displayed in black
(see examples in later chapters). We can see in this example that the density
looks to have approximately a Normal distribution. The second row of boxes
plots the autocorrelation (ACF) and partial autocorrelation (PACF) func-
tions. The PACF has a small spike at lag 1 indicating that Gibbs sampling
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here behaves like a first order autoregressive time series with a small auto-
correlation of about 0.1. The ACF is consistent with this suggesting that the
chain is adequately close to independently identically distributed (IID) data
(autocorrelation 0).

The third row consists of some accuracy diagnostics. The left-hand box
plots the estimated Monte Carlo standard error (MCSE) of the posterior
estimate of the mean against the number of iterations. The MCSE is an
indication of the accuracy of the mean estimate (MCSE = SD/y/n, where
SD is the standard deviation from the chain of values, and n is the number
of iterations). This graph allows the user to calculate how long to run the
chain to achieve a mean estimate with a particular desired MCSE. The right-
hand box contains two contrasting accuracy diagnostics. The Raftery-Lewis
diagnostic (Raftery & Lewis, 1992)) is a diagnostic based on a particular
quantile of the distribution. The diagnostic Nhat is used to estimate the
length of Markov chain required to estimate a particular quantile to a given
accuracy. In MLwiN the diagnostic is calculated for the two quantiles (the
defaults are the 2.5% and 97.5% quantiles) that will form a central interval
estimate. For this parameter the estimated chain length (Nhat) is 3,804 for
both quantiles (note this is unusual and generally the quantiles will have
different Nhat values) so having run the chain for 5,000 iterations we have
satisfied this diagnostic. The Brooks-Draper diagnostic is a diagnostic based
on the mean of the distribution. It is used to estimate the length of Markov
chain required to produce a mean estimate to k significant figures with a given
accuracy. Here we can see that to quote our estimate as 0.56 (2 significant
figures) with the desired accuracy requires the chain to be run only for 30
iterations so this diagnostic is also satisfied for this parameter.

The interpretation of the numbers q = (0.025,0.975), r = 0.005 and s = 0.95
in the Raftery-Lewis diagnostic is as follows: With these choices the actual
Monte Carlo coverage of the nominal 100(0.975 — 0.025)% = 95% interval
estimate for the given parameter should differ by no more than 100(2xr)% =
1 percentage point with Monte Carlo probability 100xs = 95%. The values
of ¢, r and s can be changed.

The bottom box contains some numerical summaries of the data. As well as
the mean (with its MCSE in parenthesis), this box also contains the mode
and median estimates. To estimate both 90% and 95% intervals this box also
contains the appropriate quantiles of the distribution. For example a 95%
central interval (Bayesian credible interval) runs from 0.539 to 0.588.

Also in the bottom row of the box details of the run length of the Markov
chain are given. We also include an estimate of the effective (independent)
sample size (see [Kass et al., [1998)). Here the number of stored iterations is
divided by a measure of the correlation of the chain called the autocorrelation
time k where
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To approximate this value, we evaluate the sum up to £ = 5 and then every
subsequent value of k until p(k) < 0.1. So in this example we have an almost
independent chain and our actual sample of 5,000 iterations is equivalent to
an independent sample of 4,413 iterations.

Note that many of the settings on the diagnostics screen can be changed from
their default values. For more information on changing the diagnostics screen
settings see the on-line Help system. To see a somewhat different picture you
can shut down this window and click, for example, on the plot for the level
2 variance in the Trajectories window (shown below).
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2= Raftery-Lewis (quantile) : Nhat = (4198,3995 )
% when q = (0.025,0.975 ). r = 0.005 and s = 0.95
o Brooks-Draper (mean) : Nhat = 11359
- 57wt &= = ™| whenk =2 siofios and aloha = 0.05

Summary Statistics
param name : g2 , Dposterior mean = 0.097 (0.000) 5D =0.021 mode =0.092
quantiles :2.5% = 0.063, 5% =0.068. 50% =0.095, 95% =0.135, 97.5% =0.145
5000 actual iterations storing every iteration. Effective Sample Size (ESS) = 2821.

Update | Diagnosticﬁettings| Help |

Here we can see in the kernel density plot that the posterior distribution
is not symmetric which is to be expected for a variance parameter. The
Raftery-Lewis diagnostics suggest that we have run for long enough although
to quote the mean estimate as 0.097 with 95% confidence the Brooks-Draper
diagnostic suggests we run for 11,365 iterations. We see in the summary
statistics that the 90% and 95% central credible interval that we can calculate
from the quantiles will reflect the skewed nature of the posterior distribution.
Also we see that the mode is less than the mean due to the long tail to the
right of the distribution.

Finally, we can compare the results from Gibbs to the results from the IGLS
method for this model in the following table:

Gibbs Posterior IGLS
Parameter || Mean | SD Mean | SD
Bo 0.005 | 0.042 0.002 | 0.040
Ioht 0.563 | 0.012 0.563 | 0.012
o2y 0.097 | 0.021 0.092 | 0.018
o 0.566 | 0.013 0.566 | 0.013

The only real difference is the slightly higher value for the Gibbs estimate of
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the level 2 variance. The Gibbs estimate for the mode of 0.092 (see above)
is identical to the IGLS estimate (to 3 decimal places) since the maximum
likelihood estimate approximates (in effect) the posterior mode (with a dif-
fuse prior) rather than the mean. In some situations, the choice of diffuse
prior (for the variance parameter) will be important, in particular when the
underlying variance is close to zero and poorly estimated (i.e. with a large
standard error). This may be particularly noticeable in random coefficient
models and is a topic of current research (Browne, |1998)). We will talk about
the choice of prior in more detail in a later chapter.

3.2 DIC and multilevel models

We can now work out the DIC diagnostic for this model via the Model
menu:

e Select MCMC/DIC diagnostic from the Model menu.

Dbar | D(thetabar) pD DIC
9209.15 9146.16 | 59.98 | 9269.13

Here we will notice a difference between random effects models and fixed
effects models. If we were to assume fixed school effects then our model
would have 65 school intercepts plus the level 1 variance plus the fixed slope
effect resulting in 67 parameters. Here however the school effects are related
through the fact that they have a common variance structure and so we do not
have independent 67 parameters. In fact, in this model the DIC diagnostic
estimates the number of independent parameters to be approximately 60.

3.3 Comparison between fixed and random
school effects

In the last chapter we fitted a fixed effects model that also included a gender
effect. We can now add this gender term into our above model. To do this
we need to do the following:

e Change estimation mode to IGLS.
e Click on the Add term button in the Equations window.

e Select girl from the variable list and click on the Done button.
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e Click on the Start button to set up the model.
e Change estimation mode to MCMC.
e (Click on the Start button to run the model using MCMC.

When the estimation has finished this time you should have estimates in the
Equations window as follows:

B Equations SIS
normexam_ ~ N(XB, Q)

normexam, = f3,,cons + 0.559(0.013)standlrt, + 0.172(0.032)girl,
Foy =-0.093(0.041) +uy + e,

[uy] ~NO Q) 2= [0.092(0.019)]
[e mj] ~N0. Q) : Q.= [0.562(0.012)]

PRIOR SPECIFICATIONS

p(B)a 1

P(ﬁ1) al

p(By a1

p(1/5.,) ~ Gamma(0.001,0.001)

p(1/52,) ~ Gamma(0.001,0.001)

Deviance(MCMC) = 9184.931(4059 of 4059 cases in use)

|ﬂame + | - | AddTerm | Estimates Clear | MNotation | Responses| Store |ﬂe|p |Zoom|10’0 ﬂ|

If we were now to compare the DIC diagnostic for this model with the equiv-
alent fixed effect formulation fitted at the end of the last chapter we would
get the following:

Dbar | D(thetabar) pD DIC
9184.93 9124.37 | 60.56 | 9245.49 | (random effects)
9183.46 9115.36 | 68.10 | 9251.56 | (fized effects)

So we see here that in terms of fit (D(thetabar) column) the random effect
model is actually a worse fit to the data than the fixed effects model. How-
ever due to the dependency between the random effects the actual effective
number of parameters has been reduced by ~ 7.5 so we have a less complex
model. When this is taken into account the actual diagnostic DIC value for
the random effects model suggests an improvement of 6 points.

In the next chapter we will continue looking at the random effects variance
components model introduced in this chapter and consider other estimation
methods and other features of the model
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Chapter learning outcomes

* What is meant by fixed effects, random effects and levels.
* How to set up a variance components model
* How to get more MCMC diagnostic information in MLwiN

* How to compare the fit of random and fixed effect models.
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Chapter 4

Other Features of Variance
Components Models

In this chapter we will return to the variance components model we consid-
ered in the last chapter. We will firstly show how to fit this model using the
other MCMC methods available in MLwiN. We will then look at some other
features of the variance components model for example residuals, school ranks
and the intra-school correlation. The final model we considered in Chapter 3
had gender effects that we will now remove. To remove a term from a model
we do the following:

The Equations window should now look as follows:

normexam, ~ N(XB, )
normexam; = f,cons + 0.563(0.012)standlrt,
Boy =0.002(0.040) +uy, +ey,

[1g] ~NO Q)2 Q7 [0.0920.018)]

[e@.] ~N@©. 0) : Q.= [0.566(0.013)]

-2*loglikelihood(IGLS Deviance) = 9357.242(4059 of 4059 cases in use)

Clear Store Help Zoorr4 100 j

45
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4.1 Metropolis Hastings (MH) sampling for
the variance components model

Although for Normal response models the default MCMC method is Gibbs
sampling for all parameters, we can still use other methods via the Advanced
MCMC Methodology Options window. Metropolis Hastings sampling is
particularly useful for multilevel generalised linear models as will be seen in
the later chapters of this manual. We shall firstly see how it can be used
on a normal response variance components model. To use MH sampling, go
back to the Estimation control window and click on MCMC. Then select
MCMC/MCMC methods from the Model menu, which will bring up
the following window:

£ Advanced MCMC Methodology Options .

Estimation Method

Fixed Effects
f* Gibbs " Univanate MH ¢ Multvanate MH

Random Effects (Residuals)
(¢ Gibbs (" Univariate MH ¢ Multivariate MH

Higher Level Variance Matrices
Updated by Gibbg sampling.

Level 1 Variance
Updated by Gibbs sampling.

Metropolis-Hastings settings
Scale factor for propogal varances | 5.8 / block dimension,
Uze adaptive method i~

Desired acceptance rate(?) ] Desired tolerancel®) [ 10
MH Cycles per Gibbs iteration 1

Beset | Done Help |

This window contains the options to change the estimation methods used
for various groups of parameters as well as other advanced options including
a selection of Metropolis Hastings settings. As the window shows you can
change the MCMC method used for both the fixed effect parameters and the
residuals (the variance parameters are always updated by the Gibbs sampling
method). To use Metropolis Hastings sampling:

o Select the method Univariate MH for the fixed effects.

e Select the method Univariate MH for the random effects (residu-
als).

e Select the Done button.

We now look at how to use the settings.
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4.2 Metropolis-Hastings settings

The performance of the Metropolis Hastings method depends very much on
the proposal distribution used. A proposal distribution that accepts too
many or too few proposals will produce highly autocorrelated chains. In
MLwiN, the Metropolis Hastings sampler has some additional settings to
help choose ‘good’ proposal distributions for the parameters. There are two
strategies that can be used in MLwiN to produce good proposal distributions.
Firstly it was shown in Gelman, Roberts & Gilks (1995) that for a simple
Normal posterior distribution, a univariate Normal proposal distribution with
a variance 5.8 times the true variance of the parameter is the best proposal
distribution. Hence in MLwiN the user has the option to input a scale factor
for proposal variances. This number will then be multiplied by the estimated
parameter variance (from IGLS/RIGLS) to give the proposal distribution
variance. Although this works for single level Normal models, studies of
multilevel models (Browne, [1998) have shown that the factor 5.8 is not always
the best and is often too high.

The second approach, the adaptive method, which is used by default in the
development release of MLwiN is to find proposal distributions that give a
particular desired acceptance rate. Experience suggests that rates of between
30% and 70% provide a useful compromise between a proposal variance that
is too large and a variance that is too small. If the proposal variance is
too large, the chain stays where it is for long periods before making a large
jump, whereas if it is too small the chain makes lots of little moves but takes
a long time to explore the whole sample space. MLwiN finds the desired
proposal distribution by running an adapting period before the burn in. In
this adapting period the proposal distribution is modified to improve the
acceptance rate.

The settings screen contains two boxes labelled desired acceptance rate
(default 50%) and desired tolerance (default 10%). If the adaptive method
is selected then when you click on the Start button, MLwiN will make an
exploratory run of up to 5,000 iterations while displaying the message ‘Run-
ning Adaptive procedure and Burning in’. During this period the proposal
variance is modified every hundred iterations depending on the acceptance
rate in the current batch of hundred iterations to ensure that the acceptance
rates for all parameters are as close to 50% as possible, and in the range
50%—10%=40% to 50%+10%=60%. Once this is achieved the adapting pe-
riod ends and the burn in begins as with Gibbs sampling.

We will now look at running the variance components model with the adap-
tive method.
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4.3 Running the variance components with
Metropolis Hastings

After setting up the variance components model as before and running the
IGLS method to get starting values, the Metropolis Hastings sampler was
run with the default settings. After 5,000 iterations clicking on the graph for
(1 in the Trajectories window you should now see diagnostics for ; similar
to the following:

. MCMC diagnostics EE.

o PAETElEr
o ® W b 8
kemel depsiyy

T T = £5 £ £ R —— £ 5
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: L LT E F2 £ ] ] 1 T 1 4 1 3
== Accuracy Diagnostics
= Raftery-Lewis (quantile) - Nhat = (13979.12572 )
‘i:, when q = (0.025.0.975 ), r = 0.005 and s = 0.95
o ‘ - Brooks-Draper (mean) : Nhat= 113
LI when k = 2 sigfigs and aloha = 0.05

Summary Statistics
param name : g,  posterior mean = 0.563 (0.000) D =0.012 mede =0.363
quantiles -2 5% = 0.540, 3% =0.543, 30%=0.364 95% =0583. 97.5% =0.586

5000 actual fterations storing every iteration. Effective Sample Size (ESS) = 973.
Update ‘ Diagnastic Settings | Help ‘

We can now see that both accuracy diagnostics give Nhat values that are
considerably higher than for Gibbs sampling so that for this model MH would
take longer than Gibbs sampling to give the same accuracy. We also see that
the first order autocorrelation is about 0.65, which is substantially higher
than for Gibbs and results in an effective sample size of only 973. This also
implies a longer chain length is needed. If we run the MH sampler without
the adaptive method, we obtain a slightly higher Nhat value of about 16,400
for the Raftery-Lewis diagnostic for the 2.5% quantile.

The following table compares parameter estimates from IGLS, Gibbs and
MH with both the scale factor and adaptive methods.

Parameter | IGLS | Gibbs | MH Scale Factor | MH Adaptive
= 5.8 | with defaults

Bo 0.002 | 0.005 0.013 -0.005

51 0.563 | 0.563 0.563 0.563

o2, 0.092 | 0.097 0.097 0.097
a2 0.566 | 0.566 0.566 0.566

MH and Gibbs sampling show good agreement, and apart from the level two
variance parameter there is good agreement with RIGLS too. The estimates
of the intercept [y show some variability but this is because this parameter
has larger Nhat values and so the chains have not been run for long enough
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and in all cases this parameter is effectively zero. It is often useful with
MCMC estimation to try both Gibbs and MH to confirm your estimates.
We will now describe some additional MH features available in MLwiN.

4.4 MH cycles per Gibbs iteration

The parameter MH cycles per Gibbs iteration governs how many times
the steps for the parameters being estimated by MH are run for each iteration.
This is useful as the MH method tends to give higher autocorrelations than
the Gibbs sampling method. For example if the parameter is set to 3 in
the above example, the Raftery Lewis Nhat for 8; reduces to 5,973 and the
autocorrelation of its chain is reduced to 0.4 (ESS increased to 2,406). Note
that this reduction in autocorrelation has to be balanced by the increase in
time to run the model and in this case the 5000 iterations takes just under
double the time.

4.5 Block updating MH sampling

As described earlier, the Gibbs sampling estimation method in MLwiN up-
dates the parameters in blocks; all fixed effects are updated together as are
all the level 2 residuals for one level 2 unit (for a variance components model
there is only 1 residual per level 2 unit). In contrast the MH estimation
method uses univariate updates for each parameter separately. In this devel-
opment release, a block updating MH method is also available. This method
updates the parameters in the same blocks used by the Gibbs sampling
method.

Parameters are updated in blocks using multivariate Normal proposals that
take account of the correlation between the parameters in the block. As
several parameters are updated together acceptance rates for each block will
be lower than the acceptance rates achieved by updating each parameter
individually, although updating the block should be faster than updating each
parameter individually. The block updating sampler constructs a proposal
based on the covariance matrix of the parameters in the block and a tuning
constant. See Browne & Draper| (2000) for more details.

In the variance components example, there is only one set of level 2 residu-
als but two fixed effects. Consequently changing the estimation method to
Multivariate MH, i.e. block updating, will have no effect for the residuals
but will have an effect for the fixed effects. After running IGLS, bring up
the Advanced MCMC Methodology Options window and change the
settings as follows:
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e Select the method Multivariate MH for the fixed effects.
e Change the Desired acceptance rate (%) to 40.
e Change the MH cycles per Gibbs iteration back to 1.

We have here changed the desired acceptance rate to 40% in the Metropolis
Hastings settings box. This is because the optimal acceptance rate for a block
update is smaller the larger the block size. The block updating method is
currently regarded as ‘experimental’ because ideally the optimal acceptance
rate for the fixed effects and the optimal acceptance rate for the level 2 resid-
uals will be different when the block sizes are different. Currently however
the user may only enter a global desired acceptance rate.

The Advanced MCMC Methodology Options window should then look
as follows:

£+ Advanced MCMC Methodology Options .

Estimation Method
Fixed Effects
" Gibbs " Univariate MH & Multvariate MH

Random Effects (Residuals)
" Gibbs * Univanate MH ¢ Mulbvanate MH

Higher Level Variance Matrices
Updated by Gibbs zampling.

Level 1 Variance
pdated by Gibbs zampling.

Metropolis-Hastings settings
Scale factor for propozal vanances | 5.8 / block. dimension.
|Jse adaptive method I~

Desired acceptance rate(#) A0 Desired tolerance(%) |10

MH Cycles per Gibbs iteration 1

Rezet | Dane Help |

The method was run for 5,000 iterations after an adapting period and tra-
jectory traces of the last 50 iterations of the chains (which can be obtained
by modifying the view last box) can be seen below:
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On close inspection it can be seen that the two chains for the fixed effects,
Bo and (3, are being updated as a block, as the jumps caused by accepted
proposals occur simultaneously. Note that sometimes (for example [ in the
last iteration) the accepted new value is very similar to the current value.
We will now return to Gibbs sampling and consider other features of the
variance components model. First we must reset all of the MCMC settings:

4.6 Residuals in MCMC

Although a multilevel model contains many parameters, by default when
running MCMC sampling, the full MCMC chains are only stored for the
fixed effects and variance parameters. For the residuals, only means and
standard errors are stored from their chains. It is then these values that
are used when the residuals options, as demonstrated in the User’s Guide to
MLwiN Chapter 3, are used whilst running MCMC. If however an accurate
interval estimate or other summary statistics are required for a residual then
there is also the option of storing all the residuals at a given level.

To store residuals will generally require a large amount of memory as there
are generally a large number of residuals per level. We will consider storing
only the level 2 residuals here, although even then we will have 65 residuals,
one per school. To store residuals:
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and the window will look as follows:

Store Level 1 Residuals [~

Store Level 2 Residual: [ Column Mumber Icam vl
Done I Help |

This option means that the chain values for the 65 residuals will be stacked
in column c301.

After running the model we will now have to split column ¢301 into 65
separate columns, one for each residual. To do this we need to generate
an indicator column that is a repeated sequence of the numbers 1 to 65 to
identify the residuals. To generate this sequence of numbers in column ¢302
select the Generate vector window from the Data Manipulation menu
and choose the options as shown in the window below:

— Type aof vectar

(" Constant vectar (' Sequence {* Repeated Sequence

Cutput column I £302 j

b airnunm number IE5

Mumber of repeats per block I1

Mumber of blocks IEDD'I

Help | Generate | Fandarn numbers...l

We now need to use the Split column option from the Data Manipulation
menu to identify the columns that will contain the individual residual chains:
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The above set of instructions will then produce the following screen:

E3.

— Split Specifization — &ction list [f = action excuted)
|nput columns — Dutput Calumnz —— I Cads I Dutput Column ~
Split data in c 1 =303
I c301 - l 2 304 =
On codes i Eggg ]
ICSD2 vl 5 c307
5 c308
BB target columns g 23103
required g ety
10 c3l2
n c313
12 c3l4
13 c315 ™
Eree Columns | 14 c1f —!
< n [ T>]
Help Add to action list I Remove | Bemove all | Execute| Undo |

The columns ¢303-¢367 will now contain the chains of the school level resid-
uals.

We can name the columns ¢303-c367 if we wish by using the Names win-
dow and then display the MCMC diagnostics via the Column diagnostics
window that can be found under the Basic Statistics menu as follows:

Calurnn IschooH - I

Apply I Done | Help |

Choose the column containing the residual for school 1 (¢303) that has here
been named ‘schooll’ via the Names window and click on Apply to see the
diagnostics as follows:
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Accuracy Diagnostics

Raftery-Lewis (quantile) : Nhat = (36464712 )
when q = (0.025,0.975 ), r=0.005 and s = 0.95
Brooks-Draper (mean) : Nhat= 1919

S when k = 2 sigfies and aloha = 0.05

Summary Statistics

Cohmn - schooll  posterior mean = 0.371 (0.002) SD =0.092 mode = 0.369
quantiles 1 2.5% =0.192, 3% =0.219, 50%=0.370, 93%=0.522, 97.5%=10.553
5001 actuzl iterations storing every iteration. Effective Sample Size (ESS) = 1878.

kemel dengity

. MCSE
Yy 5 ¥ ¥

Update ‘ D\agnoslicﬁettings| Help |

As can be seen from the kernel density plot of the residual, this residual
has a posterior distribution that is close to Normal, which is what we would
expect. This means that we can generate an interval estimate based on the
Normal assumption and do not need to use the quantiles.

4.7 Comparing two schools

We may also be interested in two schools (for example schools 1 and 2) and
finding which school has the larger effect in our model. We could do this
by simply comparing the residuals and the standard errors for these two
schools. Alternatively we could look at the chain of differences, which can be
calculated by typing the following commands in the Command interface
window:

» Calc c368=c303-c304
» Name c368 'Diffi1-2'

Then we can look at a plot of this new function using the column diagnostics
window, which will give the following diagnostics:
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Accuracy Diagnostics

Raftery-Lewis (quantile) - Nhat = (39553679 )
when q = (0.025,0975 ), r = 0.005 and s =095
Brooks-Draper {(mean) : Nhat = 2536

e when k = 2 sigfigs and alpha = 0.05

Summary Statistics

Column : diff1-2  posterior mean = -0.127 (0.002) SD =0.128 mode =-0.132
quantiles 1 2.5% =-0.374, 3% =-0338, 50% =-0.129, 95% =0.083. 97.5% =10.125
5001 actual iterations storing every iteration. Effective Sample Size (ESS) = 5163.

Update | Diagnoslicgettmgs| Help |

Here we can see that the value 0 is inside both the 90% and 95% intervals
and so the two school residuals are not significantly different, although on
average school 2 is performing better than school 1.

We can again use the command interface window to see how often each school
performs better in these chains with the following commands:

» Calc c369 = 'diffi1-2' > O
» Aver c369

These two commands give the average 0.166 so that school 1 performs better
than school 2 in 16.6% of the iterations. This can be compared with the
1-sided P-value of 0.161 when testing whether this parameter is significantly
different from zero (assuming Normality).

4.8 Calculating ranks of schools

We may also be interested in the ranks of the schools rather than their actual
residuals and MCMC allows us to calculate point and interval estimates for
each school’s rank (see |Goldstein & Speigelhalter;, [1996)).

Here we need to run several commands to split and sort the residuals and
then rank the schools and so we have included the required commands in the

macro rank.txt.

To open this macro:

e Select Open Macro from the File menu.
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The macro will then appear as follows:

erase c202
loop ower all iterations
bl0 = 5001
bl 1 bl0
copy all 65 residmals for iteration bl to <200
b2 = 1+(bl-1) *65
b3 = bl%65
b2 b3 2301 <200
rank the 65 schools for iteration bl to c201
c200 c201
stack up the ranks in c202
o202 c201 c202

split the ranks into columns c303-c367
split o202 o302 c203-c267

<l

Go to end | [ Execute [ Find | |

Execute selection | Replace ||

This macro will give chains for the ranks of each school in columns c203-
€267. Run this macro now by clicking on the Execute button. Note that this
macro will take a bit of time to run. It would be useful from this to calculate
a ‘caterpillar’ style plot for the ranks and the following macro rank2.txt
(which can be opened and run after the rank.txt macro) calculates the
median, 2.5% and 97.5% quantiles for each school.
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B3 C\Program Files (x86)\MLwiN v2.31\samples\rank2.txt

=]=]E

erase c368-a373
loop bl 203 267

=ort cbl cbl
endl

loop bl 203 267
aver cbl b2 b3

endl

gene 1 65 o371
rank c373 c372

<[

Join 373 b3 c373

note sort the ranks for each school

note stack 2.5% pts to o368

lpick 126 c203-0267 o303-c367

Join c3D03-c367 c368

note stack medians to c369

lpick 2501 c203-c267 c303-c367

Join c303-c367 c369

note stack means to c373 for cobtalning unigqoe ranks

note stack 97.5% pts to o370

lpick 4876 c203-c267 c303-c367

Join c303-c367 o370

note transform %#pts to differences from mean/median estimate for graphs
calc c374=c373-c368

calc c375=c370-c373

calc c368=c369-c368

cale c370=c370-c369

note generate column of school nombers and rank order

name c369 'median' c368 "lowlim' o370 'oplim®' 371 "schno' o372 'rankno'
name 373 'mean' o374 "llmean' o375 'nlmean’'

Go to endl | Execute |

Find | [

Execute selection

Replace | I

57

Note that this macro will reuse the columns in which the 65 residual chains
were stored earlier. We can then graph the schools by using the Customised
graph window; we first set up the x and y variables as follows:

F3-

Customised graph : display 1, data set 1 E@.

[p1 ~| Apply| Labels | Deldataset | Help | [ autosortonx

ds# | Y

| x

| . |~ Details for for data set number (ds#) 1

WL N ke

o~

T =T t plot what?| plot style | position | error bars|  other

o I median vl x I schno vl
filter [mone1  ~] aroup  [fnonel  ~]
plot type Ip.oim vl

row codes I[none] .l col codes I[“O“e] ,l

Next we set up the limits on the error bars tab as follows:
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3. Customised graph : display 1, data set 1 E@.
D1 ~| Apply | Labels | Deldataset | Help | [ autosortonx

ds # | Y | X |~ Details for for data set number (ds#) 1

1 median schno _ plot what?T plot style T position T error bars other

2 =

3

4 ¥ errors+ | uplim j Y errors- | lowlim j

5

G

7 plot as offsets v

8

?0 Y error ype |error pars

11 "

<] mn >

Then the graph will look as follows (with titles added) once the Apply
button has been pressed:

- Graph display [=][=]pd
o gl $4 f
Baat
17+
0 LI & A L L l A
° " school !

This graph shows the ranks (plus intervals) for all 65 schools, noting that rank
65 here is the highest achieving school and rank 1 the lowest (after adjusting
for intake score). We can see that there is often great overlap between the
relative rankings of the schools and in many cases great uncertainty in the
actual ranks. We can convert the graph into the more common ‘caterpillar’
plot by replacing the ‘y’ variable with ‘mean’, the ‘x’ variable with ‘rankno’.
This sorts the schools according to rank rather than numeric order. The error
bars columns should be replaced with the columns ‘ulmean’ and ‘llmean’.
Note that the mean has been used to calculate ranks (to avoid ties) so the
points plotted are now mean ranks and not median ranks as in the previous
graph. Note also that we have rescaled the axes and changed the symbol
used for the points in this graph.
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4.9 Estimating a function of parameters

We have now seen how to calculate accurate interval estimates for residuals
and for ranks of the schools. There are however other parameters not esti-
mated directly as part of the model that could be of interest. In Chapter 2 of
the MLwiN User’s Guide, for example, the intra-school correlation, p,, was
described. This parameter is a function of the level 1 and level 2 variance
parameters and so can be calculated from these parameters via the simple
formula:
ps = 0,/(0 +0?)

Not only can a point estimate be calculated for this parameter but given
the chains of the variance parameters, the chain of this function can be
constructed and viewed. You should at this point have a Gibbs sampler run
of 5001 iterations. If not, run the Gibbs sampler again using the default
settings except for running for 5,001 iterations. All the parameters that can
be viewed in the Trajectories window are stored in a stacked column (in
this case C1090 is always used) in a similar way to how the residuals were
stored in the last section.

In order to calculate the function of parameters we are interested in we will
have to firstly unstack column ¢1090. This can be done using the Generate
vector and Split column windows from the Data manipulation menu in
a similar way to the residuals example in the previous section. Alternatively
the Command interface window can be used and the following commands
entered:

» code 4 1 5001 c300
» split c1090 c300 c301-c304
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Having split the variables into different columns we can then name the
columns either by using the Names window or again by using the Com-
mand Interface window by typing the NAME command as follows:

» name c301 'betal' c302 'betal' c303 'lev2var' c304
'levivar' c305 'ISC'

We now need to calculate the chain of values for the intra-school correlation
(ISC) and we do this by using the Calculate window, which can be found
in the Data Manipulation menu. The column ‘ISC’ should be calculated
as follows:

£ Calculate |E| a .
c282 - ISC = lev2var / Clevivar + levZvar) A
c293

c2od

c295

c296

c299
c300
betall

s

betal
O EIEEEE
:;‘g"’ﬁr ABSOlute Al 2] sl <] =1
. ACOS
£307 v ALOGH a|ls][e][<=][=][:

ANGUIar '
ANTliogarithm
s =1 =1 <] 6 =]
ATAN v

N B D B D Y
Help Calculate | Clear | missing |

Then after calculating the chain for the intra-school correlation function we
now need to use the Column Diagnostics window from the Basic Statis-
tics menu to display the chain:

3+ Column Diagnostics .
Column ISC =

Apply | Dane | Help |

Having clicked on Apply the diagnostics window should appear as follows:
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MCMC diagnostics (==

B
= =
B =8
H 2
- £
= Accuracy Diagnostics
ﬂ“": Raftery-Lewis (quantile) - Nhat = (4363.3929 )
S when q = (0.025,0.975 ), r = 0.005 and s = 0.95
I~ Brooks-Draper (mean) : Nhat = 186

e ) when k = 2 sisfios and aloha = 0.05
Summary Statistics
Column : ISC  posterior mean = 0.146 (0.000) SD =0.026 mode =0.141
quantiles 1 2.5% = 0.101. 3% =0.107. 50% =0.143, 95% =0.193, 97.5%=0204
5001 actual iterations storing every iteration. Effective Sample Size (ESS) = 2806.

.8 % g .
e B ¢

Update ‘ Diagnosticﬁatlings‘ Help ‘

This window shows that although we are not sampling the derived variable
ISC directly we can still monitor its Markov chain. This has the advantage
that we can now calculate an accurate interval estimate for this function.

Chapter learning outcomes

* How to change MCMC estimation method from Gibbs sampling to
MH sampling for some steps of the algorithm.

* What other MCMC settings there are and what they do.
* How to store residual chains
* How to calculate ranks of schools

* How to calculate estimates and chains for derived variables



62

CHAPTER 4.



Chapter 5

Prior Distributions, Starting

Values and Random Number
Seeds

In this chapter we consider some other features of the MCMC estimation
procedures in MLwiN. We will still consider the variance components model
with one predictor (standlrt) discussed in the last two chapters and will
look at how to modify the prior distributions, starting values and random
number seeds used for this model.

5.1 Prior distributions

In Chapter 1 we described the default prior distributions used in MLwiN. We
also mentioned that these defaults are different (for the variance parameters)
from the priors used in the first version of MLwiN (release 1.0). This is
because these new priors generally give less positive bias when the parameter
estimate based on the mean is used. The old default priors can still be
selected via the MCMOC window available from the Model menu, as can
informative priors.

5.2 Uniform on variance scale priors

The default variance priors used in MLwiN (release 1.0) are now offered as
an alternative to the new default priors. The tmproper diffuse priors used
previously were as follows:

e For random parameters priors are placed on variances and covariance
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matrices p(€2) o< 1 (a constant prior over the positive definite matrices
Q, or a uniform prior for o2 for a single variance)

These priors are functionally equivalent to the following proper priors:

e For single variance parameters, a Uniform prior U(0, ¢) where ¢ is cho-
sen so that (0,c) spans the range in which the likelihood for the pa-
rameter is non-negligible.

e To use these priors select Uniform on variance scale for the de-
fault diffuse priors for variance parameters on the MCMC priors
window available from the Model menu.

Comparing these priors (with the default I'"!(e, ) priors used thus far for
single variances) using the Gibbs sampler on the variance components model
we get the following results (using a monitoring run of 5,000):

Parameter IGLS Gibbs
(T~!(e, ) priors) | (Uniform priors)
Bo 0.002 (0.040 0.005 (0.042) | 0.004 (0.042)
b1 0.563 (0.012) 0.563 (0.012) 0.563 (0.013)

o2, (Mean)

0.092 (0.018)

0.097 (0.021)

0.101 (0.022)

0.092
0.566 (0.013)

0.095

o2, (Mode) -
2 0.566 (0.013)

o2 0.566 (0.013)

So we see that the Uniform prior tends to give larger variance estimates
than the default priors when the number of level 2 units is small. |Browne
(1998) and Browne & Draper| (2006) show this in more detail via simulation
experiments and we will discuss running simulations in MLwiN in greater
detail in Chapter 8.

In this version of MLwiN it is also possible to change the parameters of the
['~! priors via the MCMC/ priors window available from the Model menu.
The defaults are a = 0.001, b = 0.001 but another popular choice is to set
a=1.0 and b= 0.001.

5.3 Using informative priors

MLwiN also allows the user to specify informative priors for any of the pa-
rameters in the model. This could be useful if the user already has some
prior knowledge on the values of the unknown parameters. We will firstly
consider specifying an informative prior for the fixed effect associated with
the intake score (LRT).
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Again we will start with IGLS starting values so run the model using the
IGLS method. Then on the MCMC Priors window:

The following window will appear showing all the parameters in the model
(in this case the level 1 and level 2 covariance matrices contain just a single
variance term):

For the fixed parameters, informative priors are assumed to be Normal and
are chosen by specifying the mean and SD. The priors for a covariance matrix
are assumed to have an inverse Wishart distribution and the specification
is described in the next section. Note that for scalar variances, as in this
example, an informative inverse Gamma distribution will be used. We wish
to add a prior for the slope parameter, ;. Let us assume, for illustration, that
from a previous study we have (after transformations) observed an estimated
coefficient of 1.0 for LRT intake score.

If you click on, for example, i, and then enter an informative prior with
a mean of 1 (remembering the posterior estimate from a ‘diffuse’ prior is
just over half this) and a prior SD of 0.01 (implying highly accurate prior
knowledge), and click on f; again the window will appear as follows:

Prior information for fixed coefficient of standirt

mean |1.u S0

The asterisk that appears next to ; indicates that a prior distribution has
been set for this parameter. (You can get back to the default by clearing the
values and clicking next to the asterisk.) Now:
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After 5000 iterations, if you click on the trajectories window for 3, the
diagnostics plot will appear similar to that below:

B MCMC diagnostics [==lE
s - -
o . 73
B £ ! i
o - ;oo
: . fos
B SR P " r—
wb b
., ES
Y e n:-
CEE 3 1 T 7 T
- Accuracy Diagnostics
i Raftery-Lewis (quantile} : Nhat = (36803866 )
= when q = (0.025,0.975 ). r = 0.005 and s = 0.95
= Brooks-Draper (mean) : Nhat = 14

= ) when k = 2 sigfios and aloha = 0.05
Summary Statistics
param name : g,  posterior mean = 0.841 (0.000) SD =0.008 mode = 0841
quantiles : 2.5% = 0.825, 3% =0.827. 50% =10.841, 95% =0.855, 97.5% =0.838
5000 actual iterations storing every iteration. Effective Sample Size (ESS) = 4219.

Update |Diagnoslic§ellings| Help |

Here we can see that the prior distribution (on the right) is included on the
kernel density plot in black and can thus be compared with the posterior
distribution, which is in blue. In this example the two distributions are
completely separated indicating a conflict between the prior and the data.
The estimate of the parameter is also very different from what we had before
(0.841 as opposed to 0.563) and the variance parameter estimates are also
rather different, which reduces the SD for ;.

Now let us specify less accuracy for the prior by changing the value of SD
to 0.1 and running the model again. This time we obtain values for all
parameters that are very close to those of the default prior assumptions,
because the prior is now highly diffuse in relation to the data as is shown in
the kernel plot in the diagnostics below:

B MCMC diagnostics ==&
=
g
o D o+ &+ B Y A 1) & 1
el e
= ES
1 L
T e 7 1 T 1 o T 1 i £}
= Accuracy Diagnostics
ﬂ Raftery-Lewis (quantile) : Nhat = (3803,3741 )
gl when q = (0.025.0.975 ). r = 0.005 and s = 0.95
s Brooks-Draper (mean) : Nhat = 30

T P T e E P i 3 s o

= when k = 2 siofies and alpha = 0.05
Summary Statistics
paramname : 8,  posterior mean = 0.570 (0.000) SD =0.012 mode =0.569
quantiles 1 2.5% = 0.546, 5% =0.549. 50%=0.570. 95% =0.590, 97.3% =0.595
5000 actual iterations storing every iteration. Effective Sample Size (ESS) = 4423

Update ‘ D\agmnslicﬁettings| Help |

In this example there is a distinct difference in the prior value for £; and
the estimate from this dataset. If however the prior and data are more in
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concordance then including an informative prior will reinforce the data esti-
mate by reducing the standard error of the estimate. Note that changing the
structure of the current model will result in all informative prior information
being erased.

5.4 Specifying an informative prior for a ran-
dom parameter

The procedure for specifying informative priors for random parameters is
somewhat different. Clear the existing prior on the slope coefficient (by
clicking on (; and setting the two prior parameters to zero) and then click
on the level two variance matrix €2,. The Priors window will then look as
follows:

B3 Priors EE.
Lgﬂ }‘31 Qu Qe
Prior information for school(level 2) covariance matrix
estimate | cons |
cons | |
sample size
Done Help

For illustration let us assume we have a prior estimate of the level 2 variance
equal to 0.2 (the RIGLS estimate is 0.092). The sample size indicates the
precision of this estimate. Thus, for example, if you had an estimate from
another study based on 100 schools, you would enter the value 100. Let us do
this, remembering that there are 65 schools in the present study. MLwiN will
now convert this information into an Inverse Gamma prior for the variance
as illustrated in the following Equations window obtained after running the
model for 5,000 iterations. Note that you may need to press the 4+ button
to get prior information in the window.
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£ Equations E@.
normexam_ ~ N(XB, Q)

normexam,; = f3,,cons + 0.562(0.013)standlrt,
Boy = 0.004(0.052) +uy +e,,

[uy] ~NO Q) Q= [016300.018)]
[ew] ~NO. Q) : Q.= [0.566(0.013)]

PRIOR SPECIFICATIONS

p(ﬁo) al

p(f) a1
p(l/g.,) ~ Gamma(51.000,10.000)

p(1/g2,) ~ Gamma(0.001,0.001)
Deviance(MCMC) = 9206.427(4059 of 4059 cases in use)

|ﬂame + | - | Add Term | Estimates Clear | Notation | Responses| Store | Help |Zoom|10'0 j|

Here we see that the estimated value of the level two variance after 5,000
iterations is now 0.163 — fairly close to a weighted average of the estimate
obtained with a diffuse prior and the informative prior estimate (weighted
by the number of level two units the estimates are based on) — and the
other parameter estimates are hardly changed. Currently in MLwiN the
prior density is not shown for random parameters in the kernel plots. Before
going on to the next session we should remove the informative priors and
this is done by bringing up the Informative priors window and typing 0
for the sample size parameter.

5.5 Changing the random number seed and
the parameter starting values

The prior distributions described above actually change the model structure
when fitted using MCMC sampling. The parameters we describe in this
section do NOT change the form of the model but due to the stochastic
nature of the MCMC methods slightly different estimates may result from
modifying them. MCMC sampling involves making random draws from the
conditional posterior distributions of the various parameters in the multilevel
model. To start the MCMC sampler, starting values are required for each
parameter along with a starting value (a positive integer) for the random
number generator known as a seed. This means that given the starting values
of the parameters and the random number seed the sampling is deterministic
and so running the same model with the same starting values and seed on a
different machine will give the same answers.
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Most of the posterior distributions that can be run using MCMC in MLwiN
are known to be uni-modal. If this were not the case then it would be more
sensible to make several runs with different starting values to check that they
all reach similar final estimates. The starting values for the fixed effects and
variance parameters are taken from the values obtained by the last model
run. These values are stored on the worksheet in specific columns in the
MLwiN worksheet. The starting values for the residuals are then produced by
MLwiN calculating the maximum likelihood estimates for these parameters,
conditional on the values of the fixed effects and variance parameters (stored
in columns ¢1098 and c1096 respectively).

We will consider again our 2 level variance components model and run IGLS
on the model. If you then open the Data window as described below you
will see the following window.

e Select View or Edit Data from the Data Manipulation menu.
e Click on the View button.

e Select columns ¢1096 and ¢1098 (use the CTRL button to select
both).

e (Click on OK.

5 Data E@.
goto line ,17 view Help | Font | [# Show value labels
c1096( 2) |c1008( 2) | i‘
1(0.092 0.002
2|0.566 0.663
2 : =

We will now alter these estimates to values that are far less plausible. To
alter a value in the Data window, simply click on a cell in the window and
type the new value. The new values were chosen as follows:

B Data E@.
goto line ,17 view Help | Font | [v Show value labels
c1096( 2) |c1008( 2) | i‘
1|2.000 -2.000
2(4.000 5.000
3 : K

Note that MLwiN uses the starting values of the other parameters to calculate
the starting values of the residuals, and so these new starting values cannot be
altered directly. It is however possible by using the Command interface
window to alter the values of the other parameters directly. To see the
progress of the chains from their starting values we will set the burn-in length
to 0 and the monitoring chain length to 500 in the Estimation Control
window as shown below.
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B Estimation control E
IGLS/RIGLS T MCHMC | IGLS/RIGLS bootstrap

Burn in and iteration control

Bum-in Length | p Monitoring Chain Length | 500 Thinning |1_

Refresh screen every | 5p stared iterations.

Help Done

If we then click on Start, the chains for the first 500 iterations can be seen
in the following Trajectories window:

B Trajectories E@.
Deviance(MCMC) = 9234.032(4059 of 405, = 0.928(1.211) |

FEEEE

T ) 30 s ) [ T ) ) 3 )

o= -0.573(0.672) 62, = 0.604(0.780)

e
ﬁ/‘\—’w
s

2

3 o 3 3 F) 3 o e 3 F

5, = 0.562(0.023) |

ittt sttt o A R A

3 ) P 3 F)

}Zoom‘ 1*}Dﬂ Select Help |viewlast: |500 j |rawdatz ﬂ |

By about 250 iterations all the parameters appear to settle out at roughly
the same estimates as seen when using the IGLS starting values. This means
that if we had set a burn-in length of 500 iterations we would not have even
seen this behaviour! If you now run for another 500 iterations (by changing
the monitoring chain length to 1000 and clicking on the More button)
the trajectories plots of the second 500 iterations will look similar to the
Gibbs chains using the IGLS starting values.

Running from different starting values is useful for checking that all the
parameters in your model have uni-modal posterior distributions. In some
of the new models in this release of MLwiN this may not be guaranteed.
If, however, it is already known that the posterior distributions should be
uni-modal it is best to utilise the ‘good’ starting values obtained by IGLS,
particularly when using MH sampling which may take longer to reach equi-
librium (i.e. the point where it is actually sampling from the correct posterior
distribution).

The random number seed can be set on the MCMC /Random Number
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Seed window available from the Model menu. Changing the random num-
ber seed is another technique that can be used to check that the MCMC
method is sampling correctly from the posterior distribution. Running from
the same starting values but with different random number seeds will give
different estimates but these estimates will hopefully be similar. Note that in
MLwiN the random seed for the MCMC options is different from the random
number seed used by the macro command language that can be set by the
SEED command. The MCMC seed can be set by the MCRS command.
To illustrate this behaviour the following table contains the point estimates
(for sets of 5000 iterations after burnins of 500) obtained for the variance

components model using the Gibbs sampler with random number seeds 1 to
4.

Parameter || Seed 1 | Seed 2 | Seed 3 | Seed 4
5o 0.005 | 0.003 | 0.002 | 0.004
51 0.563 | 0.563 | 0.563 | 0.564
o2y 0.097 | 0.097 | 0.097 | 0.097
o2 0.566 | 0.566 | 0.566 | 0.566

This table clearly shows that there is little change in the parameter values
when we change the random number seed. This means we can have more
confidence in our estimates.

Note that making use of the options in this section is not generally required
to ensure good MCMC performance. We include them only for completeness.

5.6 Improving the speed of MCMC Estima-
tion

One feature of MCMC estimation methods is that they are computationally
intensive, and generally take far longer to run than the likelihood-based IGLS
and RIGLS methods. This fact means that any possible speed up of execution
will be beneficial. There are two ways to speed up the execution of MCMC
estimation methods: first to minimise the number of iterations required to
give accurate estimates, and second to speed up the time for an individual
iteration.

One simple procedure to help minimise the number of iterations is to ensure
that all continuously distributed explanatory variables are centred at their
mean or something close to it. In the example analysed above the read-
ing score predictor has already been standardised to have zero mean. This
will minimise correlations among parameters in the posterior, which should
increase MCMC accuracy.

We are continually trying to speed up the MCMC estimation procedures in
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MLwiN and you should find that the speed of estimation is generally better
than some other general purpose Bayesian modelling software. With the
speed of computer chips also improving at an incredible rate the time taken

by MCMC methods is continually improving.

Although both the Equations and Trajectories windows are informative
to watch while the MCMC methods are running, they will both slow down
the estimation procedure. For example the following table shows some tim-
ings performed on a Pentium 666MHz PC, running the variance components

model for 5,000 iterations after a burn in of 500.

Screen Format Time
No windows 20 seconds
Equations window | 25 seconds
Trajectories window | 34 seconds
Both windows 38 seconds

As can be seen, displaying the windows — particularly the Trajectories

window — slows the estimation down.

Chapter learning outcomes

* How to change the default variance prior distributions.

* How to specify informative prior distributions.

* How to modify both the parameter starting values and random num-

ber seed.

* How to speed up the methods.

CHAPTER 5.




Chapter 6

Random Slopes Regression
Models

In the past three chapters we have considered the variance components model
and looked at how we can apply different MCMC methods and priors to this
model. We have also looked at some of the features of the model such as
residuals and school ranks that can be calculated by the MCMC methods.
We saw that compared to the single level models from Chapter 2 the variance
components model-—which has random intercepts—fits the data better. We
will now continue our exploration of the dataset by considering fitting both
random intercepts and slopes.

In Chapter 2 we saw that it is possible to account for school effects by fitting
an intercept and a fixed term for each school (with the constraint that the
fixed effect associated with school 1 is equal to 0) and that this results in
a model with 66 fixed effects. It is also possible to fit a fixed effect model
that accounts for both different school effects and different effects of intake
score (LRT) for each school. This involves fitting the ‘interaction’ of school
effect with LRT score and we will then have the two constraints that both
the fixed effect associated with school 1 and the intake effect for school 1 are
constrained to be zero. Note of course that this does not mean that school
1 has zero effects. School 1 is just the baseline school with regression line
explained by the common intercept and slope terms, and the other school
effects and LRT effects are then relative to this baseline school. To fit this
model in MLwiN we need to again use the Add Term button on the Equa-
tions window. We first set up the model with individual school effects as
described at the end of Chapter 2 but this time we will remove the effect of
gender. Note that if you are following on from the last chapter you should
also ensure the random number seed is set back to 1.

e In the Equations window click on 3, (girl) and click on the delete
term button.

73
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The window should look as follows:

order m

wariable

Ischool - I ref cat Ischool_‘l A l
Istandlrt - I

Done I LCancel |

Now clicking on the Done button will add the 64 school by intake score
interaction terms.

This will now have set up the model with 130 fixed effects. If you have the
Equations window open you will notice that all the school x LRT terms
have been added to the model.

This will run the model using ordinary least squares and give estimates for
the 130 fixed effects. Note that the school x LRT terms can be thought of
as slope differences when comparing these 64 schools to the base school. If
we were to re-parameterise the model by removing the global intercept and
slope and instead add the intercept and slope indicators for the base school
we will get exactly the same model but this time the parameters will be the
actual intercepts and slopes for each school. We are therefore essentially, in
this model, fitting separate regression lines to each school. To fit this model
in MCMC we need to:

This model has 130 fixed effects and so will take a few minutes to run. If we
were to check the DIC diagnostic for this model we would obtain:

Dbar | D(thetabar) pD DIC
9117.58 8987.00 | 130.59 | 9248.17
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Here we see that the fit (D(thetabar)) is a lot better than the single level
models that were fitted in Chapter 2 but that we now have 131 parameters
and so the DIC value is only slightly better than the model with gender also
included (of course we could fit gender here as well which would improve the
fit further). The model we have just fitted is equivalent to fitting 65 sepa-
rate regressions and so we are here considering each school as a completely
separate entity.

In Chapter 3 we considered fitting the school effects as random terms and we
can extend this idea by also considering the school X LRT effects as random.
Here again we are using the idea that the schools are randomly chosen. We
assume that schools are similar and so, as we have only taken a sample of
pupils from each school, we wish to borrow strength from the other schools
and shrink the LRT effects of each school towards the average LRT effect.

To fit the school effects as random we will first set up the variance components
model from the last chapter. To do this we will clear our model and set up
the variance components model from scratch (refer to Chapter 3 if you are
unsure of how to do this).

Next we need to add in the random effects for the standlrt (slope) variable:

The model we have now set up is often called a random slopes regression
model as we can think of the LRT effects as slopes when we plot our predicted
response variable against the LRT predictor for each school. We will first run
the model using IGLS to obtain starting values before switching to MCMC:

After doing this the Equations window should look as follows:
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B Equations [=]=]
normexam_ ~ N(XB, (3)

normexam; = f3,.cons + g, standlrt,
Boy =-0.012(0.040) + uy, + e,
Py =0.557(0.020) +u .

uy| <N, @) : q,- |0-090(0.018)
uy, 0.018(0.007) 0.015(0.004)

[eog] ~NO. Q) : Q.= [0.554(0.012)]

PRIOR SPECIFICATIONS
p(By o 1
p(B a1
p(Q),) ~ inverse Wishart ,[2*S,.2], S,= [0.090
|:0.018 0.015:|

p(1/52,) ~ Gamma(0.001,0.001)
(4059 of 4059 cases in use)

|ﬂame + | - | Add Term | Estimates Clear | Notation Responses| Store | Help |Zoom|100 j|

We can see that for a model that contains a variance matrix rather than
a simple variance we use an inverse Wishart prior with as few degrees of
freedom as possible. The Wishart prior family is not as convenient as the
Gamma in that we have to include a prior guess for the variance matrix.
Here we have a slightly data determined prior as by default MLwiN will take
the current estimate of 2, (from the IGLS run) as a prior parameter. We
will later compare this approach with some alternatives.

e (Click the Start button to run the model.

The MCMC approach with default priors gives fairly similar estimates to the
maximum likelihood approach. The DIC diagnostic can be calculated for
this model and we find the following:

Dbar | D(thetabar) pD DIC
9122.99 9031.32 | 91.67 | 9214.65

In treating both the intercepts and slopes as random parameters we have
reduced the effective number of parameters from 130.6 to 91.7. The fit of the
random effects model is 44 points worse but the DIC diagnostic (accounting
for the reduced number of parameters) suggests that this is a better model
as its value has been reduced from 9248 to 9215.
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6.1 Prediction intervals for a random slopes
regression model

In Chapter 4 of the User’s Guide to MLwiN details are given on how to use
the Predictions window to construct predicted school lines with confidence
intervals. Although we can construct a predicted line and intervals for the
fixed part of the model easily using MCMC to include the school effects in
the predictions we need to store the school level residuals as we require the
MCMUC chains of the predicted values to produce quantiles and hence give
the prediction intervals.

To set things up we will firstly need to run a model with the residuals stored
as follows:

This will run the random slopes model again, this time storing the residu-
als. We now need to create a point estimate (median) and interval estimate
(quantiles) for the predicted value for each individual. To do this we have
created a macro that generates the required quantities.

The macro will now appear as shown below. This macro basically creates
the chain of predicted values for each individual and takes the quantiles and
median from this chain. Many of the commands are similar to those that we
used in Chapter 4 to look at the chains for the residuals and the intra-school
correlation.
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Note macro creates prediction cuorves with error bands for a random =lopes regression model
erase c2l1-c23
note punt residomals into c201-c265 (intercepts) and c301-c365 (slopes)
code 130 1 5001 c199
split c200 cl99 c201-c330
code 6 1 5001 c&9
note put fixed intercept and =lope in column= o8l and cB2
=plit cl1090 e85 cBl-c8é
loop around all individnals
bl 1 4059
b1l 'school' b2
bl 'standlrt' b3
b1l = 2%b2 + 199
bl2 = 2%b2 + 200

calculate the derived predicted values for individmal bl and punt in c300
c350 = cBl+cbkll + b3 * (cB2+cbll)
c350 c350

pick ont gmantiles and median for individmal bl
125 2350 b21

2500 o350 b22

4875 c350 b23

c2l b21 c21

c22 b22 o022

c23 b23 c23

transform ¢gmantiles into differences
c2l = ¢22 - g21

c23 = c23 - o222

c22 'pred"

c2l "lowlim’

23 'uplim'

Gotoend| [ Execute | Find ||

Execute selecton | _ Replace ||

We can now run the macro by clicking on the Execute button. Note that
this will take a couple of minutes. After the macro has finished to display
our predictions we can use the Customised graph window.

The graph will appear as follows:
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Here we see all 65 school lines plus their intervals on one graph. Due to the
195 lines on the one graph it is difficult to pick out the individual schools.
We can however use a filter column to view just a few schools:

The graphs for the four schools will then appear as follows:
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B3 Graph display EE‘.

—— s chool=30
= school=44
== school=53
= school=59

So in this section we have shown that again when using MCMC methods,
because we have draws from the joint posterior distribution of all unknown
parameters, we can derive the distribution of any function of the parameters
such as a prediction. Before continuing this chapter and looking again at
prior distributions you should change the monitoring chain length back
to 5,000 on the Estimation Control window.

6.2 Alternative priors for variance matrices

The default prior distribution that we have used in this example involves
a slightly informative ‘data-determined’ prior for €2,. Browne| (1998)) and
Browne & Draper| (2000) perform some comparisons between some prior
distributions that can be used as a default for a variance matrix. We will
here, as a sensitivity analysis exercise, consider the effect of three alternative
priors.

6.3 WinBUGS priors (Prior 2)

Spiegelhalter et al. (20000) consider in their ‘birats’ fitting a prior similar
to our default, namely an inverse-Wishart with the smallest possible sample
size and a prior guess that represents the magnitude of the variances. For
example here we may use the values 0.1 for both the variances. To fit this
prior we firstly need to:
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and then, as with when we changed the MCMC starting values, we can alter
the parameter values in ¢1096:

This will bring up the data window and show the starting values for the vari-
ance parameters. We wish to change the first three values (level 2 variance).
Type 0.1,0, and 0.1 in the first three rows and the window should look as
follows:

[¥ Show value labels

C1096( 4) -
0.100
0.000
0.100
0.554

Now we have the priors set up.

The results for this prior are given in the column headed Gibbs (prior 2) at
the end of the chapter.

6.4 Uniform prior

Another alternative would be to fit a Uniform prior i.e. p(£2,) o< 1. To fit
this prior we need to once again fit the model using IGLS. Then we need to
change the default priors from gamma priors to Uniform on variance scale
priors on the MCMC priors window (available from the Model menu) as
shown below:
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Default Diffuse Priors for Variance Parameters
’7(' Gamma priorg & Uniform on variance scale

Infarmative Priars. .. | Done I

Note that this will change the prior for the level 1 variance as well. Fit this
model and the results will be as in the column Gibbs (uniform) in the table
at the end of the chapter.

6.5 Informative prior

Our final alternative is to assume (for illustration) that we had a priori
collected another dataset with 65 schools and here the estimated variance
matrix was identical to the IGLS estimate here. We then wish to use this as
a prior distribution so (after as always running IGLS first) we:

When this is done the Priors window should look as follows:
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e Click the Start button.

The results can be seen in the fourth column labelled Gibbs (prior 4) in the
table below.

6.6 Results

The results for all 4 priors along with the IGLS estimates are given in the
following table (Standard Errors in brackets). We can see that the results for
all priors are similar which is reassuring. The second prior has an increased
slopes variance as the prior guess was quite a bit higher than the IGLS esti-
mate. The Uniform prior (as in Browne & Draper;, 2000) is conservative and
gives variance estimates that are biased high for all the variance parameters.
The informative prior gives almost identical posterior estimates to its prior
estimates, which is to be expected as we have given the prior equal weight to
the data. We also see that the standard errors of the level 2 variances have
reduced and so our estimates have greater precision. This is an advantage
of the Bayesian approach in that when we have ‘good’ prior information we
will get more precise estimates and hence smaller credible intervals.

Parameter IGLS Gibbs

default \ prior 2 ‘ uniform ‘ prior 4

Bo -0.012 -0.006 -0.007 -0.006 -0.008
(0.040) (0.039) (0.039) (0.042) (0.042)

B 0.557 0.558 0.556 0.558 0.558
(0.020) (0.020) (0.023) (0.022) (0.020)

Quoo 0.090 0.096 0.096 0.103 0.091
(0.018) (0.020) (0.020) (0.022) (0.012)

Qo1 0.018 0.019 0.018 0.020 0.018
(0.007) (0.007) (0.008) (0.008) (0.004)

Qunt 0.015 0.015 0.023 0.018 0.015
(0.004) (0.004) (0.005) (0.005) (0.002)

o2 0.554 0.554 0.553 0.554 0.554
(0.012) (0.013) (0.013) (0.013) (0.013)

Chapter learning outcomes

* How to fit different LRT effects for each school in a fixed effects
model.

* How to fit a random slopes regression model.
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* How to compare models via the DIC diagnostic.
* How to create prediction intervals for a model using MCMC.

* A greater understanding of prior distributions.



Chapter 7

Using the WinBUGS Interface
in MLwiN

We have so far looked at fitting Normal response models to continuous uni-
variate data in MLwiN. We could consider fitting further models with ad-
ditional fixed or random terms and these would simply be extensions to the
models fitted thus far. There are, however, other extensions that we could
consider; for example, heteroskedasticity of the response variable, which we
consider in Chapter 9 and alternative distributions for the random effects
that we will consider later in this chapter.

The MCMC features in MLwiN are fairly new and we currently fit only
models of particular types although we are constantly extending the number
of models that can be fitted. If, however, a user wishes to fit a model that
cannot be currently fitted, for example fitting an alternative distribution for
the school level random effects, there are three main options. Firstly wait
for a later version of MLwiN that will fit their model; secondly write their
own code to fit their model; or thirdly try an alternative software package,

for example WinBUGS.

WinBUGS (Spiegelhalter et al., 2000a), freely available from http://www.
mrc-bsu.cam.ac.uk/bugs) in its earlier guise of BUGS was one of the first
Bayesian software packages and is a more general purpose Bayesian estima-
tion engine than the MCMC engine in MLwiN. It works on a different phi-
losophy of fitting models that can be represented by directed acyclic graphs
(DAGs). BUGS has a compiled language which allows the user to specify
their model through statements of two types—logical and distributional—
which between them describe the structure of the DAG and hence the model.
Then BUGS compiles this user code and constructs an MCMC estimation
engine for the user’s model that can be run to give chains of estimates in a
similar way to the MLwiN engine.

In this chapter we will firstly consider once again the variance components
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model and show how to fit this model in WinBUGS. We then go on to
consider a model that MLwiN cannot fit which has t-distributed residuals at
the school level. It should be noted at this point that most multilevel models
are large and so cannot be run using the educational version of WinBUGS
and so you will need to have the release version of WinBUGS.

7.1 Variance components models in WinBUGS

We will consider the tutorial dataset once again. Set up and run the variance
components model with one explanatory variable (standlrt) using the IGLS
method by

On IGLS convergence we get the following estimates:

normexam, ~ N(XB, Q)
normexam, = f3,,cons + 0.563(0.012)standlrt,
Boy =0-002(0.040) +u +e,,

[ug] ~NO Q) Q= [0.09200.018)]

[e,] =N Q0 = Q.= [0.56600.013)]

-2*loglikelihood(IGLS Deviance) = 9357.242(4059 of 4059 cases in use)

- | Add Term | Estimates | Honlinear | Clear | Notation Responses| Store

In Chapter 3 we then considered fitting this model using MCMC in MLwiN
but here we will consider instead using WinBUGS. To get to the BUGS
options in MLwiN we need to do the following:

This will bring up the WinBUGS Options screen that looks as follows:
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B BUGS Options E

Saving Opfions

Save cument model in BUGS format |

* WinBUGS 1.3 " WinBUGS 1.4

Loading Options

Input . out file W

Imput ind file [testid

Start column number 300 =
Input data | Done |

From this screen we can save the BUGS code for the currently set up model
or read in the output files that contain parameter traces from BUGS for use
in MLwiN (see later). For now we will save our current model in BUGS
format:

e Select the WinBUGS 1.4 button.
e Click on the large button at the top of the window.

This will bring up a file save window similar to those for inputting and
saving worksheets. For now we will save the file in the default directory
as tutorial.bug. This will create a file that contains the BUGS model
definition, initial values and data. For users of classic BUGS who are used
to having three separate files, in WinBUGS the file tutorial.bug contains
the information from these three files with comment lines dividing them. In
what follows we use WinBUGS version 1.4.3 and so it is possible that results
will change with other versions.

For background information on using WinBUGS it is strongly suggested that
the user reads some of the user manual and examples documentation that
comes with the package, in particular to become familiar with the WinBUGS
notation. For now to fit our model in WinBUGS, we must start the Win-
BUGS program and read in the file tutorial.bug (from the directory it was
saved in) as a text file. Note that you will have to change the Files of type
box to All files (*.*) to see the file tutorial.bug. Having read in the file a
window headed tutorial.bug will appear containing the information needed
by BUGS for this model.

As mentioned earlier the WinBUGS code is split into 3 sections and we will
consider these here in turn. Firstly a model definition is required and this
consists of a description of the structure of the current problem. The code
for our simple variance components problem is as follows:

# WINBUGS 1.4 code generated from MLwiN program
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#--—-MODEL Definition----------------

model

{

# Level 1 definition

for(i in 1:N) {

normexam[i] ~ dnorm(mul[i],tau)
mu[i]<- betal[l] * cons[il]

+ betal[2] * standlrtl[il

+ u2[school[i]] * cons[i]

}

# Higher level definitions

for (j in 1:n2) {

u2[j] ~ dnorm(0,tau.u2)

}

# Priors for fixed effects

for (k in 1:2) { betalk] ~ dflat() }
# Priors for random terms

tau ~ dgamma(0.001000,0.001000)
sigma2 <- 1/tau

tau.u2 ~ dgamma(0.001000,0.001000)
sigma2.u2 <- 1/tau.u2

}

WinBUGS is a more general modelling package and so there is no standard
order to the model description although when the code is generated from
MLwiN it will generally have a similar structure. We firstly define the rela-
tionship between the response (in this example normexam) and the fixed
and random predictor variables.

Note that the column names from MLwiN are used as the variable names
in WinBUGS. WinBUGS does have some differences in what it allows as a
variable name so if the WinBUGS code will not work it may be that some of
your variable names are illegal, for example a column name like 1995 will be
interpreted as a number in WinBUGS so it is worth renaming such columns
in MLwiN.

So we see here that our response is normally distributed and that we have
two fixed effects, beta[l] and beta|2]| (always defined as beta by the code
generator) and one set of random effects, u2 (always defined as u# where
# is the level/classification indicator). Note that in WinBUGS the fixed
effects, beta, and all other vectors always start with index 1 and not 0 so that
there will probably not be direct correspondence between the MLwiN and
WinBUGS indexing. Next the code defines the random effects u2 as being
Normally distributed before finally giving the priors for the fixed effects and
the variances.

WinBUGS has two types of relationship: distributional relationships that



7.1. VARIANCE COMPONENTS MODELS IN WINBUGS 89

are described by the ~ symbol and deterministic relationships that are de-
scribed by the <= symbol which is also used in the S-plus package. Note that
the normal distribution definition in WinBUGS, dnorm, has two parameters
that are the mean and the precision (NOT the variance), hence the deter-
ministic relationship used to calculate the variance. The prior distributions
are identical to those used in the MCMC options in MLwiN.

Before running a model in WinBUGS we first need to read in the particular
elements of the model using the Specification window available from the
Model menu. After selecting the window containing the model by clicking
on it, clicking on the check model button should give the message ‘model
is syntactically correct” at the bottom of the screen. Next we need to load in
the data for the model. Due to the fact that the data is generally the largest
part of the file generated by MLwiN it is included after the initial values.
For the tutorial.bug example the data section begins as follows:

#----Data File-————————————————————————————————

list(N= 4059, n2 = 65,

school = c(1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,2,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,

Again BUGS borrows its notation from S-plus using the convention c(...)
to represent a vector of observations. Here we see the first two constants,
N and n2 that define the number of level 1 units and level 2 units, followed
by a list of the school identifier for each observation. To load the data into
BUGS we need to highlight the list identifier at the start of the data list
and click on the load data button in the specification window. If this is
successful the message ‘data loaded” will appear at the bottom of the screen.
Next we have to combine the data and model definition by clicking on the
compile button. Again if this operation is successful a message appears at
the bottom of the screen, this time stating that ‘model compiled’.

Finally as BUGS uses MCMC methods all unknown parameters will need
starting values. These are included in the initial values part of the file that
for our example is as follows:

#-—---Initial values file-————--———"——-—"""""---——-

list (beta= c(0.002391,0.563371),

u2 = c( 0.373760,0.502043,0.503889,0.018131,0.240431,0.541395,
0.379002,-0.026173,-0.135181,-0.337021,0.179300,-0.061863,-0.149648,
-0.165592,-0.182922,-0.409984,-0.172780,-0.084464,-0.011510,0.214462,



90 CHAPTER 7.

0.244016,-0.435732,-0.489244,0.209408,-0.230472,-0.023543,0.023121,
-0.610002,0.240626,0.158475,0.033280,-0.006457,0.029590,-0.137882,
0.128634,-0.181341,-0.189077,-0.153068,0.130317,-0.234439,0.211543,
0.092820,-0.089927,-0.247556,-0.109729,-0.352727,-0.042628,-0.045058,
0.042845,-0.302412,-0.051373,0.381929,0.723314,-0.547252,0.503474,
0.009972,0.031894,0.138115,-0.658368,0.225656,-0.039551,-0.054029,
0.535641,0.087692,-0.165764) ,

tau= 1.767625,

tau.u2= 10.854523)

This gives the estimates from the IGLS run for the fixed effects and preci-
sions, and an MLwiN RESI command for the initial values for u2 that are
exactly what the MCMC routine in MLwiN uses as starting values. To use
these values in WinBUGS we need to highlight the list identifier at the start
of the initial values and click on the load inits button on the specification
window. This will then give the final message ‘initial values loaded; model
initialized’. Note that WinBUGS will generate starting values for any pa-
rameters that have not explicitly been given starting values but here we have
given all parameters starting values.

We are now ready to run the Gibbs sampler in the WinBUGS package. Before
we start the estimation engine we have to tell WinBUGS which parameters
we wish to monitor. We will choose the same parameters as MLwiN uses.
From the Inference menu select the Samples options and a window will
appear that allows the user to specify which parameters to monitor. In this
window we will firstly select the fixed effects by typing beta in the node
box. Note that when a correctly typed parameter is input the set button
will become enabled. We will also want to use a burn-in of 500 iterations
so we will also modify the beg value from 1 to 501. After this press the set
button and the parameter will be set for monitoring. We now need to repeat
this procedure with the two variance parameters sigma2 and sigma2.u2.

It should be noted that it is possible in WinBUGS to get dynamic traces
of the parameters like those in the Trajectories window in MLwiN via the
sample window. If we either type beta again in the node box or use the
scroll button at the side of the box to select beta you will see that now all
the buttons become enabled. Clicking the trace button will give 2 empty
trace plots for beta[l] and beta[2] (as shown below), which will become
dynamic when we start updating. Similar traces can be brought up for the
two variance parameters.

=g Dynamic trace ==

fe)

beta[1] beta[2]
1.0F 1.0F

05 0.5f

oo 0.0
T T T T T T T
350 400 450 350 400 450

iteration iteration
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We are now ready to set the estimation engine running and this is done via
the Update window found in the Model menu. We need to specify the
number of updates (including the burn-in) and so we will replace the 1000
here with 5500 as is used in MLwiN. As in MLwiN you can also specify how
often to refresh the screen, whether to use thinning and, if WinBUGS needs
to use Metropolis Hastings sampling, whether to adapt. There is also the
option to use a technique called over-relaxation that improves the mixing
of the MCMC chains but takes longer per iteration. The current version of
WinBUGS (1.3) will choose the MCMC routines it uses for you depending
on the form of the conditional distribution (see section 1.3 of the WinBUGS
manual for details).

Now that we have set the number of iterations press the update button
to start the sampler. After a few minutes (depending on the speed of your
processor and how many traces you are viewing) the update counter will
reach 5500 and the sampling will be finished. WinBUGS has the nice feature
that it will give you a message at the bottom of the screen, for example
‘updates took 88s’, stating how long the sampling took which is useful for
comparing model run times etc. Generally WinBUGS is slower for models
that can also be run in MLwiN but as we will see later it has greater flexibility
in the models it can fit and sometimes the MCMC methods it uses are more
efficient than the Metropolis Hastings methods used in MLwiN for binomial
and Poisson response models.

Once the sampling has finished we can now look at the estimates, plots and
other information again via the sample window. To get summary informa-
tion, select beta in the node box and click on the stats button. A node
statistics window will appear giving the following

node mean sd MC error | 2.5% median | 97.5% start | sample
beta[l] | 0.002979 | 0.03995 | 0.002516 | -0.07465 | 0.004435 | 0.07912 | 501 5000
betal2] | 0.5634 0.01264 | 1.997E-4 | 0.5388 0.5636 0.5882 501 5000

These results are similar to those obtained from MLwiN, and we can also get
similar results for the other parameters as shown below.

node mean sd MC error | 2.5% median | 97.5% | start | sample
sigma2 0.5661 0.0127 1.653E-4 | 0.5416 0.5662 0.5905 | 501 5000
sigma2.u2 | 0.09662 | 0.02019 | 3.256E-4 | 0.06415 | 0.09446 | 0.1426 | 501 5000

We can also get trace plots and kernel density plots via the history and
density buttons respectively. Below we see the trace plot for the parameter
betal[2]
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Currently WinBUGS does not allow the smoothing parameter to be changed
for the kernel plots so that they look rather crude but this will be changed
in later versions. Note here that we could have typed * in the node box to
get statistics or plots for all monitored nodes.

WinBUGS currently produces limited summary statistics and plots itself.
Historically the plots and MCMC diagnostics were provided via a suite of
S-plus functions called CODA (Best et al., |1995)), and WinBUGS also has
the option to produce the input files that CODA requires. MLwiN can also
use these files to input the parameter chains from WinBUGS into columns
in MLwiN.

Here we will consider all parameters by using the * option so select this in
the node box and press the coda button on the sample window. This will
produce two windows that are labelled CODA index which contains the
variable names and CODA for chain 1 which contains the values for the
parameter chains. We will now save these files as text files by clicking on the
respective windows and then choosing Save As from the File menu. We will
need to save the files in plain text (*.txt) format. We will store the CODA
index file as tutorial.ind and the CODA for chain 1 file as tutorial.out
in the same directory as tutorial.bug. Note that these are the extensions
that the classic BUGS used for these files but, as we have selected the plain
text format, WinBUGS will add an additional .txt to the index filename and
so the files are actually saved as tutorial.ind.txt and tutorial.out.txt.

Now back in MLwiN if you want to input the traces return to the BUGS
options window that we used earlier (available from the Model menu).
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B BUGS Options E
Saving Options

Save cument model in BUGS format |

" WinBUGS 1.3 * WinBUGS 1.4

Loading Options

Input . ot file W

Input ind file [rutorialind bt

Start column rurmber Im
Input data | Done |

Here we will need to modify the .out and .in file fields to tutorial.out
and tutorial.ind.txt respectively. Note that if you did not put these files
in the current directory you will have to include their full path names in
the respective boxes. The window should then look as above. Pressing the
Input data button will now load the chains into columns ¢300 to ¢304. To
confirm this bring up the Names window from the Data Manipulation
window and scroll down to ¢300 and you will see the following:

B Names IE"E.
Column Data Categories Window

Name| Description = Toggle Categorical | Copy | Paste ‘ Delete | | | Paste | [~ Used columns ﬂ Help
Name [cn | missing | min | max | categorical | description [ ~
beta[1] 300 5000 0 01503 0.1601 False

beta[2] 301 5000 0 0.5235 0.6046 False

sigma2 302 5000 0 0.5224 0.6141 False

sigmaz.u2 303 5000 0 0.04057 0.2068 False

c304 304 0 0 0 0 False o
~ang T n n P

We can now use the MLwiN MCMC diagnostics on the BUGS output, for
example for the slope parameter:

e Select the Column Diagnostics window from the Basic Statistics
window.

e Select the column labelled beta[2].

The window should then look as follows:

B34 Column Diagnostics .

Colurnn beta[2] >
sopy | pore | hep |

Note that this parameter is the fixed effect for the slope that is labelled 3,
in MLwiN. Clicking on the Apply button will give the following diagnostics
screen, which is very similar to that given by the MLwiN MCMC sampler in
earlier chapters.
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MCMC diagnostics BRI

T Yee @
ey

e wes.
= ES
|t e e e s e SER S AR RS - -
R N T E— + T
= Accuracy Diagnostics
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Summary Statistics
Column : beta[2]  posterior mean = 0.563 (0.000) SD =0.013 mode =0.564
quantiles :2.5% = 0.539. 3% =0.542, 30% =0.564, 5% =0.534, 97.5% =0.588
5000 actual iterations storing every iteration. Effective Sample Size (ESS) = 4197.

Update | Diagnusticﬁellings‘ Help ‘

We can repeat all of the above procedures for the intercept parameter and

the two variances and we will see that we get similar results for all four
parameters with both MLwiN and WinBUGS.

7.2 So why have a WinBUGS interface ?

The example we have just gone through will give similar results using both
software packages and to use WinBUGS we have to move back and forth be-
tween the two packages. Also the estimation engine in WinBUGS is slower,
so you may be asking yourself the above question. The interface was writ-
ten originally as a testing tool to confirm that when new types of models
are programmed into MLwiN we get the same answers as WinBUGS. We
recommend that you check that both packages give similar answers.

7.3 t distributed school residuals

The main advantage of having a WinBUGS interface however, is to allow
models that have not yet been developed in MLwiN to be fitted using Win-
BUGS. We will illustrate this by considering alternative distributions for the
school level residuals in the tutorial example we considered earlier. In the
User’s Guide to MLwiN we look at plots of residuals against normal scores to
confirm that the normal distributional assumption is a good fit to the data.

The normal distribution is a member of the t distribution family. The t dis-
tribution family has an additional degrees of freedom (df) parameter and the
normal distribution is the limiting case when this parameter reaches infinity.
We will here consider replacing the normal distribution at level 2 with a t
distribution where the df parameter has itself got a prior distribution. For
this we will use a uniform prior and allow the df parameter to take values
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in the range 1 to 200. This allows both small values, where the distribution
has very long tails, and large values, which are indistinguishable from the
normal distribution.

To include this prior we will need to edit the model definition in the file
tutorial.bug. The new version is as follows (edits in bold font):

#----MODEL Definition--------—-—-——-"-———-

model

{

# Level 1 definition

for(i in 1:N) {

normexam[i] ~ dnorm(muli],tau)
mul[i]<- beta[1] * cons[i]

+ betal[2] * standlrtl[il

+ u2[school[i]] * cons[i]

}

# Higher level definitioms
for (j in 1:n2) {

u2[j] ~ dt(0,tau.u2,df)

}

# Priors for fixed effects
for (k in 1:2) { betalk] ~ dflat() }
# Priors for random terms
tau ~ dgamma(0.001,0.001)
sigma2 <- 1/tau

tau.u2 ~ dgamma(0.001,0.001)
sigma2.u2 <- 1/tau.u2

df ~ dunif(2,200)

}

We will also need to give a starting value for df in the initial values file and
so we will choose (arbitrarily) df = 10. Our initial values file then looks as
follows:

#----Initial values file-—————--——-"-—-"-—--"—--"--""-"--"-—

list(beta= c(0.002391,0.563371),

u2 = c( 0.373760,0.502043,0.503889,0.018131,0.240431,0.541395,
0.379002,-0.026173,-0.135181,-0.337021,0.179300,-0.061863,-0.149648,
-0.165592,-0.182922,-0.409984,-0.172780,-0.084464,-0.011510,0.214462,
0.244016,-0.435732,-0.489244,0.209408,-0.230472,-0.023543,0.023121,
-0.610002,0.240626,0.158475,0.033280,-0.006457,0.029590,-0.137882,
0.128634,-0.181341,-0.189077,-0.153068,0.130317,-0.234439,0.211543,
0.092820,-0.089927,-0.247556,-0.109729,-0.352727,-0.042628,-0.045058,
0.042845,-0.302412,-0.051373,0.381929,0.723314,-0.547252,0.503474,
0.009972,0.031894,0.138115,-0.658368,0.225656,-0.039551,-0.054029,
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0.535641,0.087692,-0.165764) ,
tau= 1.767625,

tau.u2= 10.854523,

df = 10)

This time we will monitor the same four parameters as before plus the df
parameter which we will set in the sample window. Note that the adapting
box on the update window is ticked because for this model, WinBUGS
1.4 uses a method called slice sampling to update the df parameter. Note
that the tick disappears when adapting has finished. We again run for 5000
iterations after a burn-in of 500 iterations and get the following trace for df:

df
20001
1500
10001
500
0o

T T T
501 2000 4000
iteration

Here we see reasonably good mixing. Earlier versions of WinBUGS (1.3)
didn’t use the slice sampler and then this parameter did not mix but the slice
sampler has improved on this. We can see from the summary statistics below
that on this small sample of 5000 iterations we cannot reject the possibility
of a heavy-tailed distribution.

node | mean | sd MC error | 2.5% | median | 97.5% | start | sample
df 97.83 | 57.75 | 4.409 8.13 | 94.96 194.5 | 501 | 5000

In order to investigate the potential of starting value dependence we started
three chains with identical parameter starting values except for df, which was
set to 2, 10 and 200 respectively for the 3 runs. To do this in WinBUGS is
fairly easy as on the specification window there is a num of chains box that
we edit to 3 (immediately after checking the model is syntactically correct).
Then load the data and compile before loading the 3 sets of initial values.
This simply involves editing the df=10 line of the initial value file before
loading each set. We will increase the burn-in to 2000 by changing the beg
box to 2001 on the sample window when we input the parameters we wish
to monitor. We will also increase the updates to 12000 so that we have a
monitoring run of 10000 iterations after the burn-in. Pressing update, the
three sets of chains will be run concurrently and so this will take longer.

df chainz 1:2
200.0
150.0
100.0
50.0
0.0

2001 5000 T500 10000
fteration

If we look at plots of the 3 sets we see that, all 3 chains are mixing well
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and there is strong overlap suggesting that sensitivity to the starting value
is not a problem. If we look at the summary statistics for the three chains
combined we get:

node

mean

sd

MC error

2.5%

median

97.5%

start

sample

df

101.5

56.12

1.832

9.671

101.2

195.1

2001

30000

This summary information suggests that a very small degrees of freedom (df)
parameter and hence an extremely heavy tailed distribution is not likely but

that a value of df of less than 10 is not out of the question.

As a sensitivity analysis we will instead try fitting a model where the degrees
of freedom is assumed known and has value 8 which suggests a slightly long-
tailed distribution at level 2. [Seltzer| (1993) gives Gibbs sampling algorithms
for exactly this scenario of a known df parameter. We will need to simplify
our model definition as follows:

# WINBUGS 1.4 code generated from MLwiN program

#----MODEL Definition

model

{

# Level 1 definition

for(i in 1:N) {

normexam[i] ~ dnorm(muli],tau)

mul[i] <- betal[l] * cons[i]
+ betal[2] * standlrt[il
+ u2[school[i]] * comns[i]

}

# Higher level definitioms
for (j in 1:n2) {
u2[j] ~ dt(0,tau.u2,df)

}

# Priors for fixed effects

for (k in 1:2) { betalk] ~ dflat() }

# Priors for random terms
tau ~ dgamma(0.001,0.001)
sigma2 <- 1/tau
tau.u2 ~ dgamma(0.001,0.001)
sigma2.u2 <- 1/tau.u2

df <- 8
}

and we will also need to remove the initial values for parameter df as it
is now a constant. Again we will monitor beta, sigma2 and sigma2.u2.
After running for 5000 iterations after a burn-in of 500 we get the following
estimates:
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node mean sd MC error | 2.5% median 97.5% start | sample
beta[l] -0.001065 | 0.04125 | 0.002364 | -0.08322 | -7.715E-4 | 0.07792 | 501 5000
betal[2] 0.5633 0.0124 | 1.979E-4 | 0.5391 0.5636 0.5872 | 501 5000

sigma2.u2 | 0.07657 0.01805 | 4.247E-4 | 0.04746 | 0.0745 0.1171 | 501 5000

sigma?2 0.5662 0.01279 | 1.787E-4 | 0.5421 0.5659 0.5916 | 501 5000

Here we see that the fixed effects and level 1 variance are little changed
in terms of point estimate and standard errors, suggesting the analysis is
robust to different level 2 distributions. The level 2 variance parameter is
not directly comparable as the variance of the t distribution is a function of
both the sigma2.u2 and df parameters.

In fact the variance is 8/6 x 0.07657 = 0.102, which is slightly higher than
for the Normal case.

We will investigate the WinBUGS interface further when we consider binary
response models in Chapter 10 and for several examples in later chapters.
Here we will look at how the different procedures used in WinBUGS for these
models compare with the methods used in MLwiN.

Chapter learning outcomes

* How to create WinBUGS code from the MLwiN package.
* How to run models in WinBUGS.

* How to output chains from WinBUGS back into MLwiN.
* How to fit t distributed residuals in WinBUGS.

*

How to check the sensitivity of the Gaussian assumption at level 2
of the model.



Chapter 8

Running a Simulation Study in
MLwiN

This book describes how to fit various statistical models using the MCMC
methodology available in MLwiN. One of the main questions people have
when faced with a new methodology is what is its advantage over the current
method I am using? An alternative question that is often faced when using
MCMC methods is ‘Which prior should I use for my model?” When we wish
to compare which method or which ‘default’ priors are ‘best’ for our particular
model and dataset we are faced by the problem of not knowing what the
correct estimates should be. There are also issues about in what sense is a
method ‘better’ than another method and depending on your criterion you
may get different conclusions.

One of the best ways to compare different estimation methods is to run a
simulation study. Here we generate simulated datasets where the true values
of the parameters are known and so we have a ‘gold standard’ to compare our
estimates with. MLwiN is especially suited for running simulation studies
as the macro language underlying the package can be used both to generate
simulated datasets and fit models via several estimation methods. In this
chapter we demonstrate how to perform one particular simulation study,
and give macro code that can then be altered by the reader to fit alternative
simulation studies.

8.1 JSP dataset simulation study

Browne, (1998) performed several simulation studies to compare likelihood-
based methods with Bayesian MCMC methods with several alternative ‘de-
fault’ prior distributions. These simulations were extended in |Browne &
Draper| (2000, 2006). Browne used as the basis for his simulations a small
educational dataset from the Junior School Project (JSP) (Mortimore et al.,

99
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1988)) and created many datasets with the same or similar structure to this
actual dataset. We will here consider one of the smallest models that [Browne
looked at which contained 108 pupils spread evenly over 6 schools. In our

example we will simply compare the IGLS maximum likelihood method with
the MCMC method with default (I'(e, €)) priors.

To run a simulation study consists of four basic steps, two of which are
repeated:

1. Set up the structure of the dataset

Repeat the next 2 steps N times.

2. Generate a simulated dataset based on the true parameter values

3. Fit the model to the simulated dataset using all the methods to be
compared.

4. Analyse the results of the N simulations.

We will now deal with the four steps in turn.

8.2 Setting up the structure of the dataset

For the purposes of our simulation we are going to fit a variance components
model with no predictors to a dataset with 108 pupils in 6 schools. Conse-
quently before we start we need to create 3 columns: a pupil id, a school id
and a constant vector for the intercept term. We will also need to create a
response variable although this will be generated for each simulated dataset
so, for now, we will create a dummy constant response.

All of these columns can be created by the Generate Vector window but
as we wish to run our simulations in batch mode we will need to write macro
commands instead. Fortunately virtually all the window buttons that per-
form an action in MLwiN have an associated command in the command
language. For more details on the command language see the Command
manual or the online help where information on a particular command can
be found in the index under ‘Command XXXX’ where XXXX is the name
of the command.

So to start our macro we will do the following:
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The window should now look as follows:

— Type of wectar

i~ Constant vector % Sequence ( Repeated Sequence

Output colume IC-I ;I
Start number I‘I
End rumber I-I 0z

Step value I-I

Help Random numbers ...

Now click on Generate and column ¢l will contain the numbers 1-108 to

represent the pupil identifiers. If we now look at the Command interface
window:

You should now see a lot of commands that MLwiN has performed when
starting up, and the window should look something like the following:

The important command here is the GENErate command that creates the
vector of level 1 identifiers. We now also need to create level 2 identifiers and

a constant vector for both the intercept and the response. This can be done
using the Generate Vector window as follows:
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This will set up the four columns c1-c4 and we can then name these columns
using the Names window. We will name the columns pupil, school, cons
and resp. After naming these four columns the Command interface win-
dow will look as follows:

Output

echo 0

fpath "C:\Program Files (x860\MLwiMN v2.31%386\ \discrete”
prefile “pre”

postiile “post”

GEMErate 1108 1¢1

NAME C1 pupil
MNAME C2school
MNAME C3 “cons’
MNAME C4 “resp’

So here we see that setting up the four columns and naming them uses
8 commands. (We can ignore the WSET commands). We could copy these
commands into a macro so that rather than typing these commands we could
instead just execute the macro. To do this:
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The macro window should now look as follows (note the directory name may
be different on your machine):

GENErate 1 108 1 cl

1 c3

1 c4

‘\pupil'

"\=chool"
HAME C3 '‘\cons'

|\msp|

Go to end | [ Execute | Find | |

Execute selection I Replace ||

Note that any commands the macro window recognizes as valid macro com-
mands it will colour blue. We now need to set up the variance components
model as usual. Former users of MLN will know that there are also commands
that can be used to set up models rather than the Equations window. For
now set up a model in the Equations window that has resp as the response,
2 levels with school as level 2 and pupil as level 1 and one predictor cons
which is a fixed effect and random at both levels 1 and 2. If you are not sure
how to do this then you should re-read Chapter 2. Viewing the Command
interface window we now see the following:

So here we have 6 commands that have set up the model. We can now add
these 6 commands to our macro so that we now have:
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&5+ C\Program Files (x86)\MLwiN v2.31\samples\simu.txt[Modified] [=|[a][X]

GENErate 1 108 1 el S
CODE 6 18 1 2
PUOT 108 1 c3

POUOT 108 1 c4

NAME €1 '\pupil'

HAME C2 "\school'

HAME C3 "\cons'

HAME C4 "\resp"

EESF o4

IDEN 2 c2

IDEN 1 c1

ADDT o3

SETV 2 c3

SETV 1 c3 ~
£ >
Gotoend| [ Execute | Find | |

Execute selection | Replace |

We have not yet saved our macro, which we can tell from the ‘[Modified]’
that appears on the top bar of the window, so now save the macro again by
selecting Save Macro from the File menu. We can now exit MLwiN and
restart. To get back to our position we simply need to:

Select Open Macro from the File menu.

Select simu.

Click on Open.

On the macro window that appears click on Execute.

(Note that in this case a quicker way to open the macro is to select it from
the list of recently used macros at the bottom of the File menu.) So we have
a macro that will set up the basic model structure. Now we will extend this
macro so that it generates simulated datasets.

8.3 Generating simulated datasets based on
true values

In order to perform repeated actions we now need to use several macro
commands that are not commonly used when running MLwiN in interac-
tive mode. These commands are LOOP, ENDLOOP, OBEY, PAUSE,
SEED and JOIN. We will have already seen most of these commands in
the macros we looked at in Chapter 1. The LOOP and ENDLOOP com-
mands allow us to repeat a series of actions several times and the JOIN
command will allow us to join the results of each action onto the end of a
column so that later we can store the results of all our simulations in one
column. The PAUSE 1 command as mentioned in Chapter 1 is an escape
command in that it momentarily stops the macro at a point and updates all
the windows. We can illustrate these commands in action by modifying our
macro to include the following extra commands:
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GENErate 1 108 1 cl
CODE 6 18 1 c2
1 c3
1 c4
"\pupil’
"\ =chool’
"\coons"
"\resp'

LOOP b1 1 100
JOIN cb bl cb
PAUSE 1
ENDLOOP

<[
Gntoendl Execute | Find I I
Execute selection I Replace | I

Before clicking on the Execute button you should now do the following:

This macro, as should be evident when you click on Execute, simply writes
the loop number (stored in box bl) to the end of the column ¢5 and refreshes
the screen after each number. Interesting as this is, we would actually prefer
to do something more useful, at each iteration, than simply write out the
iteration number. As we can see our macro has now become quite long. In
macro writing as with other forms of programming it is useful to introduce
structure into the code to aid readability. Although the current version of
the Macro language does not include the concept of a function (that takes
arguments) we can use the OBEY command to redirect a macro to another
macro which can be thought of as a function with no arguments.

Here we will firstly write a short macro that will generate a simulated re-
sponse based on the true settings for all the parameters. For brevity for the
rest of this chapter we will simply list commands rather than go through the
whole process of describing exactly how to perform the same actions via the
menus and windows. To aid in your understanding you may want to try and
perform the same actions using the windows to confirm you get the same
answers.

Note that MLwiN reserves the columns ¢1096 and c1098 for storing the
parameter estimates for the current model. To generate a response we there-
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fore need to set the three values in ¢1096 and c1098 to the true answers for
the variance parameters and the fixed effects respectively. This is performed
via the EDIT command, which is equivalent to editing the numbers in the
Data window. For example the command

will put the value 10 in the first position of ¢1096 which corresponds to the
level 2 variance estimate. For the level 1 variance we use the true value 40
and for the intercept we use the value 30.

Now given the true values we need to generate a random response from the
random part of the model and add this to the fixed part of the model. Here
we use the following command

This is a special command that takes the fixed effects and variance estimates,
generates residuals at each level and by adding these to the fixed effects
constructs a random response vector.

So to include these four commands in a macro do the following:

The macro should look as follows:

edit 1 cl1096 10

edit 2 cl096 40

edit 1 cl098 30

simm 'resp'

<[]

Gntneru:ll Execute | Find I I
Execute selection I Replace II

We can now execute this macro and then run the model.
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As we have not changed the estimation settings MLwiN will have run the
model using our generated response using the IGLS method. If we look at
the estimates in the Equations window we should have something like the
following;:

5. Equations IEHE‘.
resp,~ N(XB, ©)

resp, = ff,,cons
fop =28.711(1.100) +uuy + e,
[ug] ~NO: Q) Q= [5.049(4.202)]

[eog] “NO. Q) s Q.= [39.771(5.569)]

-2*loglikelihood(IGLS Deviarnce) = T11.406(108 of 108 cases in use)

|ﬂame + | - AddIerm|§stimales| Clear | Notation Responses | Store | Help |Zoom| 100 j|

Note that we have not yet added a SEED command so you may get different
estimates due to having a different random response vector. We now need to
link up our macro for generating random responses via the OBEY command.
You now need to alter the simu macro so that it looks as follows:

& C\Program Files (x86)\MLwiN v2.3 1\samples\simu.txt[Modified] [=|[2]5]

GENErate 1 108 1 cl1
CODE 6 18 1 <2
POT 108 1 <3

PUT 108 1 c4
NAME C1 '\pupil®’
HAME C2 '\ school'
NAME C3 '\ cons'
NAME C4 '\ resp'
RESP o4

IDEN 2 c2

IDEN 1 cl1

ADDT 3

SETV 2 c3

SETV 1 c3

ERAS o5

BATCH 1

SEED 1

LOOP b1 1 100
JOIN 5 bl a5
PATUSE 1

ENDLOOP

< >

Goto end [ [ Execute | Find | |

Execute selection | Replace |

Here we have added two commands: SEED 1 that sets the random number
seed before the simulations begin and BATCH 1 that tells MLwiN we are
running the macro in batch mode and so when we run the IGLS method (see
later) the macro will run to convergence rather than just for 1 iteration. Note
that the OBEY command includes the path name and so you may need to
modify this on your machine.

So we now have a macro that when run will generate 100 response vectors,
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we now need to add a macro that will run the methods and store the results
in columns. This macro we will call runmodel and all results will be output
to columns c¢l1-cl15 so we will erase these columns before we start. We
therefore need to make the following final modifications to macro simu:

& C:\Program Files (x86)\MLwiN v2.31\samples\simu.txt{Modified] [=]=]B]

GENErate 1 108 1 cl
CODE 6 18 1 ec2

PFUT 108 1 e3

FUT 108 1 c4

NAME C1 '‘\pupil'
HAME C2 '\=school’
HAME C3 '\ cons'
HAME C4 '\resp'
RESPF c4

IDEN 2 o2

IDEN 1 el

ADDT 3

SETV 2 o3

SETV 1 o3

ERAS c5

BATCH 1

SEED 1

LOOF b1 1 100
OBEY "genresp.txt"
OBEY "runmodel.txt"
JOIN e5 bl o5
PATUSE 1

ENDLOOP

£ >
Go to end | [ Execute | Find | |

Execute selection | Replace|

8.4 Fitting the model to the simulated datasets

We now need to write a macro that will run both the IGLS method and the
MCMC method. To discover the commands that IGLS and MCMC uses you
can run both methods and look at the commands output although there will
be many commands, in particular for MCMC. This is because the MCMC
command is called each time the screen is refreshed and also the software uses
the IGLS estimates and the RESI command to set up good starting values
for the residuals. To save you typing the commands yourself the macro can
be loaded:

e Select Open Macro from the File menu.

e Select runmodel from the list of files and click on Open.

The macro opened should look as follows:
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& C:\Program Files (x86)\MLwiN v2.3T\samples\runmodel.tct [=|[ov]f3]

note macro for rumning IGLS and MCMC for a model
note IGLS

start

join 21098 cl05%6 cll ecl11

join <1099 21097 cl12 cl12

note MCMC

misr O

mers 1

rlev 2

rfan

roowv 2

ront o400 o399

resi

misr 1

mcme O 500 1 5.8 50 10 c400 2399 1 1 1 11 1
erase c400 c39%9 1050 <1051

meme 1 10001 1 <1090 cl1091 1003 cl004 1 1
pupn cl003 cl1004

join 21098 cl096 cl3 cl13

join cl1l09% cl057 cild4 cl4d

obey gunantiles.txt

< ¥
Gotoend| [ Execute | Find |

|
Execute selection | Replace |

Here we first run the IGLS method and store the estimates in ¢11 and their
variances in ¢12. Then we run the MCMC method using the residuals and
estimates from IGLS as starting values and run for 10,001 iterations after a
burnin of 500. Note in their simulations Browne & Draper| ran for 50,000
iterations, and so it is easy to change the macro to do this, although here
for speed we use a shorter main run. We store the estimates in ¢13 and
their variances in c14. For the Bayesian 95% credible intervals we need to
calculate the quantiles of the posterior distributions from the chains of values
and for this we have another short macro as shown below:

B+ Ch\Program Files (x86\MLwiN v2.31\samples\quantiles.txt |E||E|.

note macro returns the 2.5% and 97.5% gmantile estimates
code 3 1 10001 c20
split cl090 c20 c21-c23
sort o2l c21

sort c22 c22

sort o223 o23

pick 251 c2l1 b21

pick 9751 c21 b22

pick 251 c22 b23

pick 9751 c22 b24

pick 251 c23 b25

pick 9751 c23 b2e

join b21-b26 cl15 cl5

4 >
Go to &nd| [ Execute | Find | |
|

—

Execute selection | Replace

To calculate the 2.5% percentile point we need to find the value where 2.5%
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of the other values in the chain are lower and 97.5% are higher hence we use
a chain of 10,001 iterations rather than 10,000 for ease of calculation. We
firstly separate the three chains using the SPLIt command and then sort
each of them and pick out the correct values storing them stacked in column
cl5.

We can now run our first macro simu.txt to perform our simulation. In order
to watch the progress it will be worth opening the Data window and viewing
the columns where the output will appear. Note that we have used the JOIN
command in such a way that the estimates for each dataset will appear at
the top of each column. Note also that if you wish to view the output it is
important to ensure that the Macro window is not above the Data window.
Finally, note that because we have used commands like ‘OBEY genresp.txt’
we will need to change the current directory to the directory where these files
are located. (We could alternatively have used the full pathname instead of
just genresp etc. and then we would not have needed to change directory).

Running the 100 simulations may take a little time. For each simulation the
column c11 will have three estimates added to it and so as an indicator of
progress this column will be of length 300 when the simulations are complete.
Upon the macro finishing the window should look as follows:

view | Help | Font | ¥ Show value labels

c11{ 300) | c12( 400) |c13(300) [c14( 400)
30872 2818 30717 5500
14.874 95.302 30951 1924 685
36.644 -1.463 37453 0.804
30348 26.329 30154 28791
19.560 3731 40577 7.353
50.904 167.231 52032 3327.950
31.170 2823 31131 1688

All five output columns contain information for the 100 simulations stacked
up.

Here ¢11 and ¢13 have the three sets of estimates stored for the IGLS and
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MCMC methods respectively. Columns ¢12 and ¢14 contain the variances of
the three estimates plus the covariances between the two variance estimates.
Column c15 contains the MCMC 95% credible interval end points for the 3
parameters. We now need to transform these five columns into some sensible
summary measures.

8.5 Analysing the simulation results

In order to summarise the results of 100 simulations we will follow the exam-
ple of Browne & Draper| (2006) and consider the bias and interval coverage
properties of the two methods. For this we have written another macro anal-
yse.txt. This macro, which is shown in part below, involves finding, as point
estimates, the average of the 100 simulations for each method. For interval
estimates, for the IGLS method we need to calculate the endpoints of 95%
confidence intervals, and for this we use central Gaussian (mean 4+ 1.96xsd)
intervals. See |Browne & Draper| (2006) for information on alternative inter-
vals to be used with the IGLS method. The MCMC credible intervals have
already been calculated. Next we have the simple task of counting the num-
ber of simulations where the true value is between the interval end points for
each interval.

B3 C\Program Files (x86)\MLwiN v2.31\samples\analyse.txt E@.

note macro analyses the resnlts of the simm.txt macro and punts resunlts in cd40 & cd4l ~
erase cd40-c4l

code 3 1 100 c20

code 4 1 100 c19

split cll c20 c21-c23

split o012 cl9% c24-027

note calculate IGLS point estimates

aver c21 b20 b2l b22 b23

join c40 b21 b23 c40

aver c22 b20 b2l b22 b23

join c40 b21 b23 c40

aver 223 b20 b2l b22 b23

join cd40 b21 b23 cdl

note calculate IGLS interval coverage

cale o31 = c21 - 1.96%sgrt(c24)

caln 032 = 0?1 + 1 9fksort(n?4)

£ >

Goto end | | Execute | Find ||

Execute selection | Replace |

The above macro involves separating the output columns via the SPLIt com-
mand, and then calculating the required summary statistics via the CALC
and AVER commands. The results are put in c40 for IGLS and c41 for the
MCMC method as shown below:
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(i

=l=]E

Data

goto line |4 view Help Font | ¥ Show value labels

c40( 9)

[ca1(9) | ﬁl

29.940
0.146
8.242
0.682
40.526
0.581
0.770
0.730
0.940

wl|oo|~|m|mn] |||

29.844
0.145
16.915
1.423
41.780
0.603
0.860
0.880

CHAPTER 8.

0.960 ﬂ

These results show the point estimates with standard errors for the three
parameters and the percentage of intervals that cover the true parameter
value for each parameter.

These results are similar to those in [Browne & Draper| (2006). Both methods
show very little bias for the intercept (true value = 30) and the MCMC
procedure only has a slight bias for the level 1 variance (true value = 40,
MCMC mean estimate = 41.78). The level 2 variance however has both
methods giving biased estimates. The true value is 10 and IGLS gives an
average estimate of 8.25 (a 17.5% negative bias) whilst MCMC gives an
average estimate of 16.91 (a 69.1% positive bias). As Browne & Draper show
the median estimate using the I'(g,¢) prior has much better bias properties
(a 0.6% negative bias in their simulations) and this macro could be easily
modified to also calculate the medians for each simulation.

In terms of interval coverage the MCMC method gives much better coverage
for both the intercept and the level 2 variance. The level 1 variance has good
coverage under both methods. Note however that if we were to look at the
interval widths we will find, like Browne & Draper, that the MCMC methods
have much larger intervals. Of course running only 100 simulations is not
really enough to compare the methods properly and more simulations would
be preferred. It would be easy to alter the above macros to run for 1000
simulations with the MCMC method main run length increased to 50,000
like Browne & Draper| but this will take longer to run. It would also be easy
to monitor the median for the MCMC method and the interval widths for
both methods.

The simulations in |Browne & Draper| originally took a few months to run
but given the advances in speed of processors running ALL the simulations
in their paper would today be much quicker.

Chapter learning outcomes

* How to run simulation experiments in MLwiN.
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* How to use many new Macro commands.

* How to compare estimation methods for a particular model.
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Chapter 9

Modelling Complex Variance at
Level 1 / Heteroscedasticity

One level normal response models assume that all responses are (conditional
on predictor values) independent observations from a Gaussian distribution
with an unknown mean structure and constant variance. The interest in
fitting one level models such as regressions and other linear models lies in
improving the description (in terms of fit to existing data and predictive
power) of the unknown mean function. In this book so far we have extended
these one level models to the multilevel modelling framework while main-
taining a constant level 1 variance.

The primary goal of multilevel modelling is to adjust inferences on parameter
estimates to account for non-independence between observations. The vari-
ance components models described in Chapters 3—-5 do this by adjusting for
correlation between responses taken from the same ‘higher level unit’. This
means that we assume that two responses taken from the same ‘higher level
unit’, for example school, are more likely to be similar than two responses
chosen at random.

Although variance components models adjust for correlation between re-
sponses in a cluster they still assume a constant variance across responses,
which they split into components at the various levels of the model. This con-
stant variance assumption may not be true and the variance of the responses
may, like the mean of the responses, be a function of predictor variables.
When the variance is treated as a function of the predictor variables this is
known as ‘heteroscedasticity’ or complex variation. In this chapter we will
look at fitting models that account for this complex variation using MCMC
methods. Browne et al.| (2002) consider exactly this problem and give further
details about the exact algorithms that we use later.

To illustrate ‘heteroscedasticity’ we can consider the tutorial dataset again.
Before fitting any models to the dataset we could consider the values of the

115
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response for different subsets (partitions) of the dataset. This partitioning
of the dataset may then suggest predictors to fit in the model. To look at
partitions of the dataset we can use the Tabulate window in MLwiN:

The screen should then look as follows:

Output Mode—
" Counts
i+ Means

Variate column Inormexam 'I [~ Storein
Calumns Igirl ;I Ischool ﬂ
[~ Rows Ischool 'I
[~ where values in m
are between I— i) I—

0 1 | TOTALS
N 1623 | 2436 4059
MEANS | -0.140 | 0.0933 | -0.000114
SDs 1.03 | 0.970 0.992

Here we have split the dataset into boys (0) and girls (1). It is noticeable
that the two subsets differ both in terms of mean and standard deviation
and hence variance (although the difference in standard deviation is pretty
small). We saw in Chapter 2 that girls did significantly better than boys
but there we assumed a constant variance for the two groups. In Chapter
2 our main predictor of interest is the intake score, standlrt (c5). This
variable is continuous so in order to tabulate the response we will need to
create partitions of the dataset based on ranges of intake variable. Here we
aim to split the dataset into seven roughly equal partitions. To do this we
create a column, named intakecat, which labels the partitions 0 (lowest
intake scores) to 6 (highest intake scores). Enter the following commands at
the Command Interface window:
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» Calc cii (c5>(-1)) + (c5>(-0.5)) + (c5>(-0.1)) +
(c5>0.3) + (c5>0.7) + (c5>1.1)

» Name cl11 'intakecat'

Now if we return to the Tabulate window we can display the means for these
seven partitions as follows:

e Select intakecat from the pulldown list to the right of Columns.
e Select Means as the Output Mode.
e Press the Tabulate button.

The output for this tabulate command is as follows:

0 1 2 3 4 5 6 | TOTALS
N 612 594 619 710 547 | 428 | 549 4059
MEANS | -0.887 | -0.499 | -0.191 | 0.0439 | 0.278 | 0.571 | 0.963 | -0.000114
SDs 0.855 | 0.774 | 0.806 | 0.811 | 0.812 | 0.824 | 0.838 0.817

Here, as in Browne et al.| (2002)), the partitions 0 to 6 refer to intake scores
in the ranges less than —1, —1 to —0.5, —0.5 to —0.1, —0.1 to 0.3, 0.3
to 0.7, 0.7 to 1.1, and greater than 1.1 respectively. We can see that the
means for the partitions increase with intake score and this corresponds to
the positive coefficient found for the intake fixed effect in Chapter 1. We can,
however, also see that the standard deviation (and therefore the variance)
of the partitions is not constant and is also, with the exception of the first
category, increasing. This pattern with larger variances at both extreme
categories suggests that perhaps assuming a quadratic relationship between
intake score and the variance would be sensible. We will next explain the
modifications required to the MCMC algorithms to fit non-constant variance
functions before returning to the tutorial example. Readers not interested
in the algorithmic details can skip the next section whilst those who wish to
know more can read Browne et al.| (2002).

9.1 MCMC algorithm for a 1 level Normal
model with complex variation

We will here consider fitting the linear regression model from Chapters 1
and 3 but with the additional assumption that the variance is a quadratic
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function of the reading test predictor. The model can be written

yi = Bo + Prry + e
€; ~ N(07 O'gi) Where O-zi = Xg;QeXei = QeO,O —+ leiQeO,l + 1]%2-96171

Here although we think of the variance as a quadratic function, we maintain
the matrix formulation €2, used by the IGLS method. The vector X,; contains
the predictors used in the level 1 variance for individual 7, in this case the
constant predictor (xy = 1 for all individuals) and the intake score (z1). Note
that if we wish to fit a simpler linear variance function we can constrain 2¢; ;
to equal zero.

To fit the model in a Bayesian framework we need to add prior distributions
for the unknown parameters, Sy, 51, and .. We will use the default priors
from MLwiN, p(8y) o< 1, p(B1) o< 1 and p(€2e;x) o< 1 for all j, k subject to the
constraint that ¢ > 0 for all 7. This prior is equivalent to a uniform prior
on all matrices €2, that satisfy the constraint and is the only prior available
for these parameters in MLwiN.

The algorithm now consists of two steps. Firstly the fixed effects vector
B = (Bo, B1)T is updated using Gibbs sampling from its bi-variate Normal
conditional posterior distribution:

~ ~

p(6|y703i) ~ Ny(B, D), where

The second step then involves updating the three parameters that make up
the level 1 variance matrix 2,. We cannot update these terms using Gibbs
sampling and so instead we will use Metropolis Hastings sampling. We will
update each parameter in turn and will describe here the step to update
.01 as the other steps are similar. As in the Metropolis macro in Chapter 1
we need to use a proposal distribution but this time we will use a truncated
Normal proposal in order to satisfy the constraints that the variance function
must be positive for all observations.

We can write for every observation 1,

02, = 221001 — 001, Where 01 = —Qeoo — 73;Qe11
Now for the condition ¢ > 0 Vi to hold after we update Q.1 we need
to calculate the truncation points where the condition ceases to hold. This
will result, in this case, in two sets of constraints that produce the two
truncation points for our proposal distribution (note that there will be only
one truncation point for the other two parameters as they are multiplied by
terms that are strictly positive). The constraints can be written as follows:
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m, = min ( O’I‘V’i,xu < O) > (e01 > max (2 O’IVz,xu > O>

i Ty Ty

So the Metropolis Hastings step at iteration ¢ generates a proposed value {27 |

from a Normal distribution with mean QSQJ and proposal variance 33071, that

satisfies the above constraints and so hence we effectively are drawing from
a truncated Normal distribution. Note that, as described in [Browne et al.
(2002), the value s2,, can be set by the MLwiN adaptive scheme. Then the
update step is as follows:

1, RY

Q(f;rll) =,,, with probability min
e0, e0,1» t
p(szgo),llyaﬁ)

(920,1 |y, ﬁ)]

Qiﬁ)ﬁl) = QS))J, otherwise.

) (mu_QZ(m) - P <ml_Q:0,1>
R— 5§0¢1 530,1

(t) (t)
my—§2, m—Q,

O L) - L et
Se0,1 Se0,1

The steps for the other two parameters, 2.9 and €2 ; have similar forms to
the above. Now that we have described the two steps the MCMC algorithm
as usual consists of repeated application of the steps in turn. We will now
explain how to set up this model in MLwiN using the tutorial dataset.

Here

which is the Hastings ratio.

9.2 Setting up the model in MLwiN

We will start by setting up the first model from Chapter 2, which has fixed
effects defined for cons and standlrt and cons defined as random at level
1. If you are unsure of how to set up this model refer to Chapter 2. Next we
need to include the complex variation terms at level 1.

e Select the standlrt predictor in the Equations window.
e From the X variable window that appears click on (i)student.
e (Click on the Done button.

The Equations window should now look as follows:
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normexam, ~ N(XB, )

normexam; = f3 cons + j3;standlrt;
Bo: = Po T €y

Fr=pr ey

Cog| ~N(0, Q) : Q.=

ew_

(4059 of 4059 cases in use)

Add Term | Estimates | Honlinear Notation | Responses

We will now need to run the IGLS method and then change to MCMC.

The MCMC methods window will then look as shown below. Note that
MLwiN realizes that we need to use MH sampling for the level 1 variance
matrix and so changes method automatically.

— Estimation Method
Fixed Effects
& Gibbs ~ Univariate MH ¢ Multivariate MH |

Random Effects (Resid 1
* Gibbs " Univariate MH € Multivariate MH

Higher Level Variance Matrices

Updated by Gibbs zampling.

Level 1 Variance
Updated by Univariate MH Sampling. Use lag formulation I-‘

— Metropolis-Hastings settings
Scale factor for proposal vanances I ha / block. dimension.
|Use adaptive method Ird

Desired acceptance rate(%) I 50 Degired tolerance( %) I 10
MH Cycles per Gibbs iteration I 1

Reset | Done | Help |

You may have noticed that the notation we have used earlier in this chap-
ter for the level 1 variance matrix is different to that which you see in the
Equations window. We can change this:
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and we will get the following :

normexam, ~ N(XB, Q)

normexam, = f,cons, + #, standlrt,
Bu=poT e

Bu=PTey

e ]
€ Qo1 Qg

1i

(4059 of 4059 cases in use)

- | Add Term | Estimates | Honlinear | Clear Notation | Responses| Store

Now we need to run our model with complex variation.

Note that the greater complexity in fitting a complex variance function at
level 1 tends to slow computation down and so it will take longer to run
this model. Upon running for 5,000 iterations if we open the Trajectories
window we see the following:

Help |view last: | 500 j raw data j

Here we can tell that the variance parameters are being updated by Metropo-
lis Hastings sampling by the fact that their chains have a more block-like
appearance. Also we can see that the chain for parameter 2.;; goes nega-
tive so it is more appropriate to use this alternative notation as this term
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is clearly NOT a variance. We can compare the fit of this model with the
simple variance model via the DIC diagnostic:

The diagnostic is given below and compared with the diagnostic for the model
with a constant variance fitted in Chapter 2.

Dbar | D(thetabar) | pD DIC
9764.55 9759.62 | 4.93 | 9769.49
9763.54 9760.51 | 3.02 | 9766.56

Here we see that the DIC correctly estimates the 5 parameters in the model
and gives a very marginal improvement in fit (9759.6 versus 9760.5). However
due to the two additional parameters the DIC value for this model is higher
than for the simpler model, suggesting in this case that there is no advantage
in fitting the more complex variance function. This is backed up by both the
linear and quadratic variance terms being similar to or smaller than their
standard errors.

The variance function can still however be calculated by using the Variance
function window.

Note that the variance function screen should look as follows:

var(e X, te,x,)= Qea,axmz T2001%0X 1 T Qarr® 152

select resu

<[] >

level |1student | cak:| uame| Help |2°°"‘|1mj Copy |
variance output to :I 12 j |1.Cl SE of variance output to : I[nvnne] vl

Now we can plot the function we have calculated:
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The graph of the function will appear as follows:

Here we see that this graph mimics the variances of the partitions of the
dataset by the categorical intake score that we calculated earlier.

9.3 Complex variance functions in multilevel
models

We have in fact already considered a multilevel model that contains complex
variation. When we considered the random slopes regression model in Chap-
ter 6 we interpreted this model graphically in terms of non-parallel regression
lines for each school. We could however also look at this model in terms of
the (total) variance at the school and pupil level depending on the intake
score.

If we set up the random slopes model and run it using the default MCMC
settings (see Chapter 6 for details on setting up this model) we should get
the following:
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normexam, ~ N(XB, ()
normexam, = 3,cons, + 3, standlrt,
Bo: ==-0.006(0.039) + u{). .0 T

By = 0.558(0.020) + 4§, 010

U chooty| ~N(0, oP) : @ = |0.096(0.020)
U, oot 0.019(0.007) 0.015(0.004)

[em] ~N@O, Q) : Q.= [0.554(0.013)]

PRIOR SPECIFICATIONS
p(ﬂ 0) al

p(ﬂl) a l
p(QP) ~ inverse Wishart ,[2*S 2], S,= | 0.090
0.018 0.015

p(1/Q.90) ~ Gamma(0.001,0.001)
Deviance(MCMC) =9122.987(4059 of 4059 cases in use)

- | Add Term | Estimates | Honlinear | Clear Notation | Responses  Store

Note that as we have clicked on the Notation button earlier some of the
other terms will have a different notational form. This notation was designed
for cross-classified models that will be described later in Chapter 15. Click
on Notation again and tick the box for multiple subscripts to see standard
notation for a 2-level model. Now we can calculate and plot both the level 1
and level 2 variance functions against the intake score by using the Variance
function window as follows:

This will set up the level 1 function in column c12 and the level 2 function
in column c13. If you have been following this chapter from the start then
the level 1 variance function will already be plotted and the Customised
graph window should be as follows:
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|v autosort on x

— Details for for data set ber (ds#) 1
plot what?| plot style | position | error bars|  other

a
7]
1

¥ Ic'lZ vl x Isinndlrt vl

filter m group | monel  ~|
plot type Im
row codes Im col codes I [none] vl

=R I R R U

We now need to specify the level 2 variance function so the following is
required:

The graph window will now have two lines in it as shown below:

Here the level 1 variance function is the flat (constant) line at 0.554 while the
level 2 variance exhibits a quadratic relationship with intake score. Although
we did not find any significant evidence of heteroscedasticity in the one level
model earlier we can now test if there is any in our two level model. To
include the quadratic variance relationship again we need to do the following
(after setting estimation method to IGLS):
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We can now run this model using MCMC by performing the following:

After a short while the model will run and the Equations window (after
zooming to factor 75 to ensure window all fits on screen) will look as follows:

normexam,; ~ N(XB, O)

normexam,; = f3,,cons + S, standlrt,
Boy =-0.010(0.038) +uy + e,
Bry =0.558(0.021) +u, +e

“NO, Q) : Q.= [0.097(0.020) l
0.020(0.007) 0.015(0.005)

~N(0, Q) : Q.=

[0.553(0.015)
-0.014(0.006) 0.003(0.009)

p(Q,) ~ inverse Wishart ,[2*S 2], S = [0.091
0.019 0.014

p(Gio) ol
p(Gglo)Gf. 1

ploe) o 1
Deviance(MCMC) =9120.635(4059 of 4059 cases in use)

- | Add Term | Estimates | Honlinear | Clear | Notation | Responses Store

Here we see that the linear variance coefficient at level 1 (2 x —0.014) is nega-
tive whilst the quadratic coefficient (0.003) is positive but very small. We can
compare the DIC diagnostic for this model with that of the simple random
slopes regression model fitted in Chapter 6 by selecting the MCMC/DIC
diagnostic option on the Model window.
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Dbar | D(thetabar) pD DIC
9120.64 9028.19 | 92.44 | 9213.08 | (quadratic variance function at level 1)
9122.99 9031.32 | 91.67 | 9214.65 | (constant variance at level 1)

Here we see that fitting the model with the complex variance function results
in a slight improvement in DIC. The quadratic term here is very small and
if the variance function is plotted it looks approximately linear. Therefore
it would be interesting to see the effect of explicitly fitting just a linear
relationship.

The blue 0.003 will be replaced by a grey 0 to indicate a structural zero in
the equations window. We now need to run this reduced model.

If we now compare the DIC for this model we see

Dbar | D(thetabar) | pD DIC
9119.41 9027.74 | 91.66 | 9211.07 | (linear variance function at level 1)
9120.64 9028.19 | 92.44 | 9213.08 | (quadratic variance function at level 1)

So the simpler linear variance function is prefered to the quadratic function.

9.4 Relationship with gender

At the start of this chapter we considered partitioning the dataset into boys
and girls and saw that gender seems to affect both the mean response and
the variance of the response. If we continue from the current model which
has a linear variance function we can now add gender as a fixed effect and
allow the level 1 variance to have terms for gender and gender by intake score.
This can be interpreted as fitting two different linear relationships at level 1,
one for boys and one for girls. Note that, although we are going to add all
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the terms at once, generally you would want to add each in turn testing as
you go. To set up the model we need to do the following:

This will have set up the model and run it using IGLS and the Equations
window should be as below:

normexam, ~ N(XB, Q)

normexam, = f3,,cons + f standlrt, +0.175(0.032) girl,
Bog =-0-112(0.043) +u y +e,,

By =0.554(0.020) +u

~N@©, ) : Q,=

[0.086(0.017)
0.020(0.007) 0.015(0.004)

[0.584(0.021)
-0.034(0.010) 0
-0.029(0.013) 0.032(0.013) 0

We will now run the model using MCMC.

After running the model we can once more check the DIC diagnostic value
(via the Model menu).

Dbar

D(thetabar) pD

DIC

9083.92

8990.26 | 93.66 | 9177.57

CHAPTER 9.
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Here we see that the DIC diagnostic has reduced significantly. If we had
added terms in stages we would have seen that the majority of the reduction
was due to adding in gender as a fixed effect but there is also a significant
reduction due to the more complex variance structure.

The variance at level 1 is now

azi = Qo0 + 2standlrt; Qe 1 + 2girl; Qe 2 + 2standlrt, girl, Qe o

So we have two separate linear relationships for boys and girls, which can be
calculated by the Variance function window (along with the updated level 2
variance function)

The graph window will still be displaying the correct columns for the vari-
ances but as we need to separate out the girls’ and boys’ lines at level 1 we
need to update the Customized graph window as follows:

The graph will then appear as follows:
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Note that you could label or colour the various lines and rescale the graph to
include the origin but this is left as an exercise for the reader. The top two
graphs are the level 1 variance functions with the boys having the steeper
negative slope. This graph is showing that the choice of school (level 2
variance) is more important for the higher intake pupils than for the lower
intake pupils, and that intake score has a much greater effect on the variance
of responses for boys than girls. Note that in these complex variance function
models the simple intra-school correlation measure described in Chapter 4
does not exist. However for a given gender and intake score we can calculate
an equivalent measure, and as in Chapter 4 we can calculate the chain and
hence confidence intervals for this measure.

9.5 Alternative log precision formulation

Spiegelhalter et al.| (20000)) consider the problem of heteroscedasticity in mul-
tilevel models in their schools example. One of the problems of the approach
we have described in this chapter is the restrictions on prior distributions for
fitting this model. Spiegelhalter et al.| (2000b)) get around fitting the variance
at level 1 as a function of predictors, by instead fitting the log of the precision
at level 1 as a function of predictors. This means that, as the log of the pre-
cision can take values anywhere on the real line, there are no constraints to
worry about. We can consider fitting the above model using this formulation
and so we will have

1Og(1/0§z) = QeO,O + QStandlI'tiQe(]J + 2gir1iQeO,2 + 2Stand11"tigil”liQ€172

To fit such a model in MLwiN we need only tell the software that we want
to fit this formulation via the MCMC Methods window.

Change estimation to IGLS.

Click on the Start button to run the model.

Change estimation to MCMC.

Select MCMC/MCMC Methods window from the Model menu.

Click on the Use log formulation tickbox under Level 1 variance.

It should be noted at this point that currently the Equations window does
not show this change in the model. For prior distributions MLwiN only
allows uniform priors for all elements of ()., although now that the parameter
constraints have been removed it is possible to use informative Normal priors

via WinBUGS and the WinBUGS interface.

We will now run the model by clicking on the Start button. Note that the
log formulation is slower to run. Upon completion we will get the following
estimates:
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normexam, ~ N(XB, Q)

normexam, = f5,,cons + g, standlrt; +0.176(0.032) girl,
Bog =-0-110(0.045) +u,, + e,

By =0.556(0.020) +u

<N, Q) : Q= |0-093(0.019)
0.021(0.007) 0.016(0.005)

[0.543(0.036)
0.055(0.019) 0
0.050(0.023) -0.052(0.025) 0

PRIOR SPECIFICATIONS
P(Bo) a 1
p(B) a 1
p(p)a 1
p(Q,) ~ inverse Wishart ,[2*S 2], S,= |0.086
0.020 0.015

P(Gio) al
p(Gglo) [} 1
p(ngu) [v3 1

plon)a 1
Deviance(MCMC) = 9085.006(4059 of 4059 cases in use)

Name - | Add Term Honli Clear

We can once again construct the graphs for these variance functions via the
variance functions window. We will however have to convert these values
from inverse precisions to variances.
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The Graph display window will now have changed to show the variances
in this new model as follows:

1. Graph display EE.

0281

0181

Here the relationship at level 1 is still nearly linear. If we look at the DIC
diagnostic we see that there is no advantage in using the log-precision formu-
lation and in this case the standard variance function formulation has lower

DIC value.

Dbar | D(thetabar) pD DIC
9085.01 8991.09 | 93.92 | 9178.93 | (log-precision formulation)
9083.92 8990.26 | 93.66 | 9177.57 | (variance formulation)

Although the log formulation has the advantage of the ability to specify
informative priors for level 1 variance terms (note this is available in Win-
BUGS only) it suffers from the disadvantage that individual coefficients of the
variance function do not have a simple interpretation and the real variance
relationship is only accessible via a graph as shown above.

Chapter learning outcomes

* How to account for heteroscedasticity in Normal response models.
* How to graphically interpret variance functions.
* How to compare the fit of models via the DIC diagnostic.

* How to fit alternative log-precision functions.
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Modelling Binary Responses

In this book we have so far considered fitting models where our response is a
continuous variable. Of course there are many other possible response types,
for example interest often lies in binary, proportion or count data. In this
chapter we consider binary data. There are many possible scenarios where
binary or 0/1 data occur: in education, exam score responses may often be
in the form of a pass or fail; in health care, responses are often whether a
treatment is successful or not; in political data, whether people vote for a
particular party or not.

In this chapter we will consider an example dataset from the 1988 Bangladesh
Fertility Survey. This dataset consists of 1934 women who are grouped in
60 districts and the response of interest is whether these women were us-
ing contraception at the time of the survey. As predictor variables we will
consider effects for the age of the women, the number of children they have
and the district they come from. We will also be interested in whether the
between-district variation differs for urban and rural areas.

The dataset can be found in the file bangl.ws. The reader unfamiliar with

the IGLS methods for fitting binary response models is referred to the User’s
Guide to MLwiN.

e Select Open Sample Worksheet from the File menu.
e Select bangl.ws from the list of worksheets.

e Select Open.

The Names window will then look as follows:

133
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B3 Names IEHE‘.
Column Data Categories Window
Mame| Description = Toggle Categorical | Copy Paste | Delete | ‘ | Paste | [ Used columns ﬂ Help
Name |C|| | n | missing | min | max | categorical ‘ description ~
woman 1 1934 0 1 1934 False ldentifying code for each woman (level 1 unit).

district 2 1934 0 1 61 False ldentifying code for each district (level 2 unit).

use 3 1934 0 0 1 False Contraceptive use status at time of survey; {0=HNot using, 1=Using).

Ic 4 1934 0 0 3 True Humber of living children at time of survey {0=None, 1=0ne child, 2=Two children, 3=Thre
age 5 1934 0 1356 19.44 False Age of woman at time of survey (in years), centred on sample mean of 30 years.

urban [ 1934 0 0 1 False Type of region of residence (0=Rural, 1=Urban).

educ T 1934 0 1 4 False Woman's level of education {1=None, 2=Lower primary, 3=Upper primary, 4=Secondary &
hindu 8 1934 0 0 1 False Woman's religion (0=Muslim, 1=Hindu).

d_illit 9 1934 0 0 0.91 False Proportion of women in district who are literate.

d_pray 10 1934 0 01 078 False Proportion of Muslim women in district who pray every day (a measure of religiosity).

cons 11 1934 0 1 1 False Constant (=1)

denomb 12 1934 0 1 1 False Denominator (=1) w
< m >

Here woman identifies the individual women, district the district they live
in and use whether they use contraception (1) or not (0). The predictors
we will consider are age which is the woman’s age in years centred around
the average age, lc which is the number of living children and urban which
categorises the area (which is a sub-area of the districts) in which they live
as either urban (1) or rural (0). The other possible predictors that can
be investigated by the reader are educ which categorises education level of
the women from none (1) to at least secondary education (4), hindu which
categorises religion into Hindu or Muslim (other religions were excluded), and
two district level predictors d_illit and d_pray which give the proportion of
illiterate women and the proportion of women who pray every day, for each
district.

10.1 Simple logistic regression model

We will start by considering a simple logistic regression model accounting for
the age of the women only. Logistic regression models are more complicated
to fit than Normal models using the IGLS estimation method in MLwiN as
the methods use Taylor series expansions to approximate the model at each
iteration. This means that the estimates they produce are quasi-likelihood
estimates rather than maximum likelihood. For users familiar with earlier
versions of MLwiN the use of two constant columns here labeled cons and
bcons to allow for the transformations performed by the approximation in
discrete response modelling is now automated. Binomial response models
also need a special (denominator) column that contains the counts of the
number of trials each Binomial is based on. For 0/1 data this will be another
columns of ones but for proportion data this will contain the number of units
on which each proportion is based.

To set up the basic logistic regression model we need to do the following:

e Select Equations from the Model menu.

e (lick on the Clear button to remove any existing model in the work-
sheet
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This will set up the response variable and its type, and the hierarchical
structure of the dataset. The window will look as follows:

use, ~ Binomial(r,. r,)

logit(z,) = fs o

(1934 of 1934 cases in use)

We now need to set up the denominator column and our predictor variables:

The window now looks as follows:

use, ~ Binomial(denomb@, )r@.)

logit(z;) = pocons + fiage;

(1934 of 1934 cases in use)

There are several possible quasi-likelihood methods available in MLwiN but,
as we are only using them for starting values and to set up the model, we
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will use the default methods:

The model should now run in 3 iterations. We now want to run the same
model using MCMC.

The window will then appear as shown below. Here we see that for non-
Normal responses MLwiN will not allow Gibbs sampling. We will discuss
this at the end of the chapter when we compare MLwiN with WinBUGS on
binary response models.

— Estimation Method
|, Fixed Effects

¢ Univariate MH ¢ Multivariate MH |

Random Effects (Residuals)
[ & Univariate MH ¢ Multivariate MH

Higher Level Variance Matrices
Updated by Gibbz zampling.

Level 1 Variance

Level 1 Wariance fized in non-Mormal models.

— Metropolis-Hastings settings
Scale factar for proposal variances | ha / black dimension.
|Jse adaptive method v

Desired acceptance rate(%) I 50 Desired tolerance( ) I 10
MH Cycles per Gibbs iteration I 1

Rezet | Done | Help |

If we now run the model using MCMC:

we will get the following results (after clicking twice on the Estimates but-
ton):
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B3 Equations |E||E|.

use, ~ Binomial(denomb,, 7.)
logit( ;) =-0.437(0.047)cons + 0.006(0.005)age,.

var(useg| gg) = %.(l - g{f)f'denomb{f

Deviance(MCMC) = 2591.282(1934 of 1934 cases in use)

‘ﬂame + - Add'_l'erm|§stimates|Nonlinear Clear Notation | Responses| Store ‘

Here we see that the intercept term is —0.437, which, as age is centred,
corresponds to the average woman. In order to convert this into a probability
we need to transform it onto the probability scale. This can be achieved by
the anti-logit operation in the Command interface window. Typing the
command CALC B1=ALOG (-0.437) produces a probability of using
contraception of 0.392. Note you may have to click the Output button to
see this in the Output window. The age coefficient is small and of the same
magnitude as its standard error, suggesting that there is no real effect of age.
It should be noted that unlike the quasi-likelihood methods, we can now find
a deviance for our models and use the DIC diagnostic.

The deviance formula for a Binomial model is :

D=-2 Z [yi log(ps) + (1 — y;) log(1 — p;)]

where p; is the predicted value for observation i. To calculate p; we will
need to use the inverse distribution function that corresponds to the link
function, so for the logit we will need to calculate the antilogit for each fitted
value as described above for the average woman. This is all performed in the
background when the DIC diagnostic is calculated.

e Select MCMC/DIC diagnostic from the Model menu.

The output can be seen below along with that for the simpler model (which
we will not fit) with just a constant probability of usage.

Dbar | D(thetabar) | pD DIC
2591.28 2589.29 | 1.99 | 2593.27 | (Model with age)
2591.90 2590.91 | 0.99 | 2592.88 | (Model without age)

We can see here that, as with the Normal case, the DIC diagnostic picks
up almost exactly the correct degrees of freedom. The DIC diagnostic also
confirms that the model without age is only marginally better as we sus-
pected from the coefficients and standard errors. Note that for Binomial
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models there are two possible parameterisations for D(thetabar), the mean
parameterization which uses the average value of p; from the chain, and the
canonical parameterization which uses the average values of the individual j;
that form p;. In MLwiN we always use the canonical parameterisation but it
should be noted that the different parameterizations will often give different
DIC values.

In all the models fitted thus far we have been using the default monitoring
run length of 5,000 iterations. This is not to be encouraged and we should
always check we have run the MCMC algorithm for long enough particularly
for non-Normal models where Metropolis sampling is the default for some
parameters.

The diagnostics for the age effect will then appear as follows:

Accuracy Diagnostics
Raftery Lewis (quantlle) - Nhat = (14531.13162 )
when q = (0.025.0.975 ), r = 0.005 and s = 0.95
Brooks-Draper (mean) : Nhat = 185964
when k =2 siofies and aloha = 0.05

Summary Statistics
param name : g,  posterior mean = 0.006 (0.000) SD =0.005 mode =0.006
quantiles :2.5% =-0.004, 5% =-0.002, 50% =0.006, 95% =0.015, 97.5%=0.016
5000 actual fterations storing every iteration. Effective Sample Size (ESS) = 1166.

Update Diagnostic Settings Help

Here we can see that the kernel plot shows a large probability of a value
less than zero. The Raftery-Lewis diagnostic suggests that we should run
for roughly three times our current run length. Note that as we are more
interested in whether this effect is zero or not than quoting this parameter
to two significant figures we will ignore the Brooks-Draper diagnostic.

We can now run this model for 15,000 iterations to see if this changes our
estimates:
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If you now look at the DIC diagnostic and the MCMC diagnostics window
we see that neither of them have changed much at all. This confirms the
results from the shorter run of 5,000 iterations.

Although we have found that age is not significant we will, for now, leave
it in the model while adding our next predictor, number of living children
(Ic). We will add this into the model via the Add Term button. This can
be done (after changing estimation method to IGLS) as follows:

Now we need to run the model using MCMC after using the IGLS method:

After estimation has finished the Equations window will (after pressing the
+ button) look as follows:

use, ~ Bi.nomial(denomb?, ;;-?)
logit(7,) =-1.266(0.115)cons +-0.022(0.007)age, + 1.031(0.143)onekid,, +
1.185(0.166)twokids, + 1.118(0.165)three-+kids,

var(use | z,) = 7,1 - 7;)/denomb,

PRIOR SPECIFICATIONS

P(ﬂo) a l
p(B) a1
p(B) a 1
p(Bs) a 1

p(ﬁ4) al
Deviance(MCMC) =2519.976(1934 of 1934 cases in use)

Interestingly when the number of children a woman has is added to the model,



140 CHAPTER 10.

the age coefficient now becomes significant, and of opposite sign. This is due
to the fact that the number of children is correlated with age.

The DIC diagnostic as shown below is greatly reduced in this model with 5
parameters.

Dbar | D(thetabar) | pD DIC
2519.98 2515.10 | 4.88 | 2524.85
2591.28 2589.29 | 1.99 | 2593.28 | (without number of children)

10.2 Random effects logistic regression model

So far we have concentrated on the fixed effects simple logistic regression
models analogous to, for the Normal responses, the linear regression models
in Chapter 1. As with Normal responses we can also add random effects to
our model to account for different probabilities of contraception use for the
different districts in which the women live.

To add random effects we use the same procedure as with the Normal models.

Here we have run this model using the IGLS method and the results should
look as follows:

use, ~ Binomial(denomb?, ;g-?.)

logit(z;) = Bycons +-0.024(0.008)age,; + 1.020(0.153 Jonekid,; +
1.218(0.169)twokids, +1.195(0.173 )three+kids;

Boy =-1.369(0.139) +u,,

[0] ~NO. Q) : Q= [0:2460.075)]

var(use ;| 7;) = m(1 - 7y)/denomb,

(1934 of 1934 cases in use)

- | Add Term | Estimates | Nonlinear | Clear | MNotation Responses| Store
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To now run this model using MCMC:

After 5,000 iterations we get the following estimates

use,; ~ Bi.nomial(denombiﬁ ;g-?.)
logit(z,) = Bycons +-0.025(0.007)age,;, + 1.081(0.145)onekid ; +
1.297(0.155)tw0kids? + 1.270(0.157)ihree+kids?

oy =-1.461(0.129) + uy,
[,] ~NO Q) Q= [o3090.101)]
var(use|zy) = (1 - z)/denomb,

PRIOR SPECIFICATIONS

p(ﬁ'o) al
p(ﬂl) al

p(1/52,) ~ Gamma(0.001,0.001)
Deviance(MCMC) = 2395.915(1934 of 1934 cases in use)

Name | + | - | Add Term | Esti Clear

We can see here that both the fixed effects and the level 2 variance estimate
from MCMC are bigger (in magnitude) than the quasi-likelihood estimates.
The 1st order MQL method, which is the default method that we have used,
is known to give estimates that are biased downwards. We can investigate
the level 2 variance in more detail by viewing its MCMC diagnostics.

This will bring up the MCMC diagnostics for the level 2 variance parameter
as shown below. Here we see that the kernel plot has a long right-hand tail as
expected and consequently the mode, which is the equivalent to the estimate
obtained using quasi-likelihood methods, is smaller than the mean. It has
an estimated value 0.279, which compares with the value 0.246 from the 1st
order MQL method.
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MCMC diagnostics E@.

A

£ T Ty B Y o = o w
‘Storert apits Berameter vaiue

e PR O
ranE el

o )

e g % g .
|
|
[ B

o I . L= )
¥ i : 7 7 ?
=

= Accuracy Diagnostics
g ! Raftery-Lewis (quantile) : Nhat = (12420,18783 )
= when q = (0.025.0.975 ),r = 0.005 and s = 0.95
"" Brooks-Draper (mean) : Nhat = 7297

e when k = 2 siofigs and aloha = 0.05
Summary Statistics
param name : g3 o Dposterior mean = 0309 (0.003) SD =0101 mode = 0279
quantiles : 2.5% = 0.161, 5% =0.177, 50% =0293, 93% =0491, 97.5% =0.551
5000 actual iterations storing every iteration Effective Sample Size (ESS) =474

Update | D|agnus|lc§etlmgs| Help |

If we look at the DIC diagnostic for the random effects model we get the
following:

Dbar | D(thetabar) pD DIC
2395.92 2354.50 | 41.41 | 2437.33 | (with random effects)
2519.98 2515.10 | 4.88 | 2524.85 | (without random effects)

So even though we have five fixed effects and sixty random effects due to
districts, these sixty district effects are represented by only effectively 36.4
(41.4—5) parameters. The DIC diagnostic is reduced by 87.5, so this random
effects model is a great improvement, suggesting that there is significantly
different contraception usage between the sixty districts.

We can also see from the MCMC diagnostics that the Raftery-Lewis diag-
nostic suggests that we haven’t run the sampler for long enough. Note that
if the sampler was run for an extra 15,000 iterations, (which takes a few
minutes) this will produce a modal estimate 0.281 which is very similar to
the answer after 5,000 iterations.

10.3 Random coefficients for area type

In the dataset, although we have already split up the country of Bangladesh
into 60 districts, within these districts there are both urban and rural areas.
We have an indicator urban that defines whether an individual woman lives
in a rural (0) or urban (1) area. We can firstly fit this term as a fixed effect
in our model and fit our model using MCMC and 5000 iterations.

e Change Estimation method to IGLS.
e Click on the Add Term button on the Equations window.
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Now run the model:

We can now see that urban has a fixed coefficient of 0.736 (0.123), which
suggests that this is a strong predictor and that women in urban areas are
more likely to use contraception than women in rural areas. This is backed up
by the reduction in DIC diagnostic to 2408.15 (a drop of 29), which suggests
that this is a better model.

Just like fitting random coefficients in a Normal response model, we can now
see if the effect of being in an urban area is different for the various districts.

The model we have now fitted will upon convergence be as follows:
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B Eguations EE‘.
use, ~ Binomial(denomb,, 7.)

logit(;;y) = fBgcons + -0.027(0.008)agey + 1.157(0.157)0nekid{, + 1.376(0.174)M'0kidsg + 1.384(0.180)ﬂ1ree+kidsg + ﬂjfurbang
Py =-1.724(0.159) +uy,

By =0.805(0.189) +u

ug| <N, Q) : g, |04180.137)
u -0.432(0.176) 0.738(0.303)

5f
var(use,|r,) = z,(1 - 7,)/denomb,

PRIOR SPECIFICATIONS
p(By) a
p(B) a
P(ﬁz) o
p(53) a
p(B) a
p(Bs)a 1
p(Q,) ~ inverse Wishart ,[2#8 2], S = |0.323

|:—0.338 0.564:|

—_ e e

Deviance(MCMC) = 2328.933(1934 of 1934 cases in use)

|uame + | - | AddTerm Estimates Monlinear | Clear | Notation Responses| Store ‘ Help ‘Zoom 100 ~

Here we see that the variance between districts is different for urban areas
and rural areas with the rural areas having a variance of 0.418 and the urban
areas having a reduced variance of 0.418 — 2 x 0.432 + 0.738 = 0.292. In
terms of model fit we are now fitting 6 fixed effects and 2 x 60 random effects
and so if we look at the DIC diagnostic for this model we get:

Dbar | D(thetabar) pD DIC
2328.93 2272.31 | 56.62 | 2385.56 | (with urban random effects)
2369.36 2330.58 | 38.79 | 2408.15 | (without urban random effects)

Here once again we see that adding the extra terms increases the effective
number of parameters but reduces the DIC diagnostic suggesting that this is
a better model.

10.4 Probit regression

The logit link function is only one of the possible link functions that we can
use with Binomial data. It is commonly used in medical applications as it
has a log-odds interpretation. By this we mean that the exponential of any
coefficient of a variable with a fixed effect () may be interpreted as an odds
ratio, representing the multiplicative effect of a one unit increase in x on
the odds of the outcome (if x is continuous) or the odds relative to those
for the reference category (if  is a dummy variable). For example the odds
of using contraception for a woman with one child (using our last model)

are el'1%7 = 3.18 times the odds of using contraception for women with no
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children assuming all other factors are constant. This is particularly used in
medical applications where the response is mortality or infection, and so we
can then work out the relative odds of death or infection for two different
subsets of the data.

Another popular link function is the probit link, which is the inverse cumu-
lative density function of the Normal distribution. This link is often used for
economics applications although, as with the logit, it can be used in many
application areas. One important advantage of the probit both in terms of
MCMC algorithms and interpretation is that we can think of our response as
a threshold from an underlying (unknown) continuous response. This inter-
pretation of a binary response can be used with any link function, but when
used with the probit link the unknown continuous response is then Normally
distributed.

To illustrate this threshold idea, consider an exam that is marked out of 100.
(Note that marks out of 100 are not continuous data but are often treated
as Normally distributed and are a better approximation to continuity than
a pass/fail response.) Then a pass mark may be set at 50 and our response
will be whether an individual student passes (gets 50 or above) or fails (gets
below 50). So our observed response is the pass/fail indicator but this is
really a surrogate for the more informative (unknown) response, which is the
actual mark. The hope is that predictors related to the mark out of 100
will also have a similar relationship to the pass/fail response. Of course in
certain situations, for example mortality, it is difficult to think of a continuous
predictor which is underlying the 0/1 response (it is hard to rate people as
being more dead than each other) but we can still use the threshold idea.

The threshold idea goes back a long way in the statistics literature but has
been used recently in conjunction with the Gibbs Sampler by |Albert & Chib
(1993)) using a data augmentation algorithm (Tanner & Wong, [1987)).

The idea then proceeds as follows: Let us assume we have a binary vari-
able y; collected for several individuals 7, that is a thresholded version of
an (unknown) continuous Normally distributed variable yf. Now if we knew
the value of ¥ then we could fit the standard Gibbs sampling algorithm for
Normal response models. So we add an extra step into the Gibbs sampling
algorithm and generate y; at each iteration from its conditional posterior dis-
tribution which is a truncated Normal distribution with mean (in the single
level case) XB and variance 1. The truncation point is zero and if y; is 0, y;
has to be negative and if y; is 1, ¥/ has to be positive.

Then with the augmented dataset of i generated, the other parameters can
be updated as in the Normal models discussed in earlier chapters. It should
be noted that this model can also be updated using Metropolis sampling as
with the logistic regression model but the Gibbs sampling algorithm is faster
and produces less correlated chains (as shown later). |Albert & Chib) (1993)
also give an approximate Gibbs algorithm for the logistic regression model
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that uses a t distribution with 8 degrees of freedom as an approximation to
the logistic distribution but this has not been implemented in MLwiN.

10.5 Running a probit regression in MLwilN

We will now fit the last model with random coefficients for urban using a
probit link rather than a logit link. To do this we need to do the following:

By default MLwiN picks univariate Metropolis Hastings for all non-Normal
response models. We will therefore need to change estimation method to
Gibbs Sampling.

The window will then look as shown below. Note that MLwiN has realised
that it is possible to use Gibbs sampling for this model.

— Estimation Method
Fixed Effects
|_(" Gibbs ¢ Univariate MH (" Multivariate MH |

Random Effects (Resid 1
" Gibbs ¢ Univariate MH ¢ Multivariate MH

Higher Level Variance Matrices
Updated by Gibbs zampling.
Level 1 Variance

I:Level 1 Wariance fiked in non-Marmal models.

— Metropolis-Hastings settings
Scale factor for propozal vanances |58 / block. dimension.
|Jse adaptive method v

Desired acceptance rate(%] |5g Desired tolerance(%) |-| i
MH Cycles per Gibbs iteration |-|

Reszet | Done | Help |

If we now click on the Reset button then MLwiN will choose Gibbs sampling
(alternatively simply click on the two Gibbs buttons).
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If we now run the model by clicking on the Start button, you will notice
that we get the message ‘Burning In... . This is because we are running
Gibbs sampling and there is therefore no need to run an adapting period.
The following table gives point estimates and effective sample sizes for runs

of 5,000 iterations using both Gibbs and Metropolis sampling for this model.

Parameter | Gibbs ESS (Gibbs) | Metropolis | ESS(MH)
Bo -1.039 (0.099) | 683 -1.048 (0.099) | 60
B 20.016 (0.005) | 1888 20.016 (0.005) | 275
Ba 0.683 (0.097) | 1770 0.692 (0.100) | 199
B3 0.823 (0.106) | 1734 0.830 (0.108) | 176
By 0.819 (0.111) | 1584 0.829 (0.108) | 93
Bs 0501 (0.109) | 580 0.505 (0.109) | 96
Quoo 0.155 (0.050) | 769 0.159 (0.051) | 182
Qoo 20.160 (0.067) | 518 20.171 (0.066) | 141
Qs 0.267 (0.118) | 414 0.281 (0.111) | 124
Time 92s 107s

From the table we can see that the Gibbs sampler is not only faster but
also produces larger effective samples due to less correlation in the chains it
produces. We have however roughly the same estimates for both methods.

If we look at the DIC diagnostic for the probit model we see the following;:

Dbar | D(thetabar) pD DIC
2328.19 2271.86 | 56.33 | 2384.53 | (probit)
2328.93 2272.31 | 56.62 | 2385.56 | (logit)

Here there is very little to choose between the two link functions. It is
also possible to use a third link function, the complementary log-log link,
with Bernoulli models but this will not be considered here. Note that the
Gibbs sampler cannot be used with the probit link when the response is a
proportion.

10.6 Comparison with WinBUGS

Binomial response models can be fitted by other MCMC samplers, for exam-
ple In earlier versions WinBUGS used the Adaptive Rejection (AR) sampling
algorithm (Gilks & Wild} [1992)). It is often interesting to compare the perfor-
mance of the various samplers, both in terms of their speed and the autocor-
relation in the chains they produce. In the above probit regression example
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we saw that the data augmentation Gibbs sampler approach was better both
in terms of run length and chain correlation than the Metropolis algorithm.
This is not however the case when we compare the Metropolis algorithm with
the AR algorithm for logistic regression models, as the Metropolis algorithm
is usually quicker and so we have to balance greater speed against higher
autocorrelation.

We will illustrate this on a simple random slopes logistic regression model.
We will clear the current probit regression and set up a model with just an
intercept, age as a fixed effect and random effects for the districts.

The model when set up will look as follows:
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use,, ~ Binomial(denomb?, ,'g'?.)
logit(z;) = Bocons + g, age;
By =potly

[uuj] ~N(O, Q) : Q,= [criu]

var(use,|7,) = 1,(1 - 7,)/denomb,

(1934 of 1934 cases in use)

- | Add Term | Estimates | Nonlinear | Clear

We will firstly run IGLS and set up the model for WinBUGS.

We will assume that you have read Chapter 7 and so are familiar with the
basic functionality of WinBUGS. We now need to start the WinBUGS pro-
gram and load the file bang.bug as a text file from the directory it has been
saved. Note that again we will need to change the Files of type box to
All files (*.*) to see the file bang.bug. When the file is loaded the model
definition will look as follows:

#WINBUGS 1.4 code generated from MLwiN program
#----MODEL Definition---------—----—-

model

{

# Level 1 definition

for(i in 1:N) {

use[i] ~ dbin(p[i],denom[i])
logit(p[i]) <- beta[l] * cons[i]
+ betal[2] * agelil

+ u2[district[i]] * cons[i]

}
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# Higher level definitions

for (j in 1:n2) {

u2[j] ~ dnorm(0,tau.u2)

}

# Priors for fixed effects

for (k in 1:2) { betalk] ~ dflat() }
# Priors for random terms

tau.u2 ~ dgamma(0.001000,0.001000)
sigma2.u2 <- 1/tau.u2

}

Here we see that our response variable use is defined as Binomially dis-
tributed and is related to the predictor variables via the logit link function.
We will need to repeat the set up procedure that we used in Chapter 7 for
the Normal response model:

This will have set up our model and we can now pick our parameters to store.
Before we do this we will introduce an interesting feature of WinBUGS not
mentioned in Chapter 7. If we wish to find out which methods WinBUGS is
using to fit the various components of the model we have defined we can use
the Node Info tool available from the Info menu.

If we then type our node name, for example beta, into the node box on this
window we can then hit the method button and get the method used in the
log window, depending on your defaults you may get:

betal[1l] UpdaterGLM.LogitUpdater

This can be translated to mean that both the fixed effects are being up-
dated using a multivariate Metropolis update using the method developed
by Gamerman (Gamerman, [1997). As an aside and in case you do not see the
above method WinBUGS currently offers an alternative rejection sampling
method. In what follows we will use the Gamerman method but to change
to single site you would need to do the following (if you do these instruc-
tions you will need to switch back to the Gamerman method to get the same
estimates later) :
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Upon asking for methods for beta you would then see

beta[1] UpdaterRejection.Logit
beta[2] UpdaterRejection.Logit

Finally in version 1.3 of WinBUGS the default estimation method was dif-
ferent again and you would see:

beta[1l] UpdaterDFreeARS.StdUpdater
beta[2] UpdaterDFreeARS.StdUpdater

This can be translated to mean that both the fixed effects are being updated
by the standard Adaptive Rejection sampler (Gilks & Wild, [1992)).

If on the other hand we type the node name tau.u2 into the node box and
hit the method button we will get in either version:

tau.u2 UpdaterGamma.Updater

This is because the precision parameter, tau.u2, is being updated using
Gibbs sampling from a Gamma full conditional distribution.

We now need to tell WinBUGS which parameters we wish to store.

We have now set up the burn-in of 500 iterations to give a similar burn-in
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to MLwiN. We have also stated the parameters we wish to store. To run the
updates we need to use the update window:

We now need to wait a few minutes for WinBUGS to run. On a Pentium
1.8GHz machine the updates take 79 seconds. In order to measure the effi-
ciency of the sampler we will import the chains back into MLwiN and look
at the effective sample size (ESS) measure. To do this we need to do the
following;:

Having saved the two files for the fixed effects we can return to MLwiN and
use the BUGS Options window (available from the Model menu) we used
earlier to input the data.

This will store beta[l] in column ¢300 and beta[2] in column ¢301 and
rename the columns accordingly. We can now look at the diagnostics for the
two parameters via the Column diagnostics window:

Column lm
appy | Done | Hen |
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The diagnostics will then appear as shown below. Here we see that the
effective sample size for §; is 1099 for this sample of size 5,000 due to the
autocorrelation in the chain. We can repeat this procedure for 3, and also we
can save the chains for o2 and find its effective sample size. The information
for all these parameters will be summarized in the table at the end of this
section. Note here that the subscript numbering starts from 1 whilst in
MLwiN it starts from zero.

Accuracy Diagnostics
Raftery-Lewis (quantile) : Nhat = (114728350 )
when q = (0.025,0.975 ), r=0.005 and s = 0.95
Brooks-Draper (mean) : Nhat = 3442

when k = 2 sigfiss and alpha = 0.05

Summary Statistics
Column : beta[1]  posterior mean = -0.342 (0.003) SD =0.084 mode =-0.542
quantiles :2.5% =-0.710, 5% =-0.680, 50%=-0.542, 95% =-0.403, 97.3% =-0.373
5000 actual iterations storing every iteration. Effective Sample Size (ESS) = 1099.

Update Diagnostic: Settings Help

We can now run the same model using Metropolis sampling in MLwiN. The
model should currently be set up and MCMC should already be selected and
so all we need to do is start the estimation. MLwiN does not by default give
a timing estimate so you will need to time estimation via a stopwatch. It is
best to close all windows to optimise the speed of execution

For this example the estimation took 12 seconds on a 1.8GHz Pentium. We
can now get effective sample sizes and other information from the MCMC
diagnostics window.
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The diagnostics for gy using Metropolis sampling will then be displayed as
shown below. Here we have higher autocorrelation and so we see that the
effective sample size is only 185.

B MCMC diagnostics [=]a]pe
- z
Z =
Ep i W" WAP A |
° = = = = &zl‘ﬁ* mmmmm - = = parameter ualue = = =
E‘ifh E' l
o “: —
i 3 3 3 3 I + 3 ] & i E E 1 [— 3 ¥
= Accuracy Diagnostics
o Raftery-Lewis (quantile) : Nhat = (27767.22359 )
5: when q=(0.025.0.975 ). r = 0.005 and s = 0.95
= . - Brooks-Draper (mean) - Nhat = 22589
ST T 7 et ™™™ whenk=2 sigfies and aloha = 0.05
Summary Statistics
paramname: g, posterior mean = -0.540 (0.005) SD =0.08% mode =-0.331
quantiles : 2.5% = -0.724, 5% =-0.692. 30% =-0.537, 95% =-0.399, 97.3% =-0.371
5000 actual iterations storing every iteration. Effective Sample Size (ESS) = 185.
Update ‘ Diagnostic Settings | Help |

The results from the two methods can be seen in the following table. The
worst mixing parameter is the intercept (fy) and to get an effective sample
size of 5000 will take 8 + (5000/1099)x 71 seconds = 5 minutes 31 seconds
using the Gamerman algorithm while Metropolis will take 3 4+ (5000/185) x
9 = 4 minutes 6 seconds. This means that even though the Gamerman
algorithm produces a less correlated chain, Metropolis is sufficiently quicker
to give an effective sample of 5,000 in less time.

Parameter | Gamerman | ESS | Metropolis | ESS(MH)
Bo -0.542 (0.084) | 1099 | -0.540 (0.089) 185
B 0.009 (0.005) | 4929 | 0.009 (0.005) 1209
o2 0.265 (0.084) | 1221 | 0.273 (0.092) 433
Time
Adaptation 8s 3s
and burn-in
Chain T1s 9s
Total 79s 12s

So we see that here it appears that Metropolis sampling in MLwiN is better
for this random effects logistic regression model. Browne & Draper| (2000)
showed similar results for a couple of random effects logistic regression mod-
els. It is however not guaranteed that this will be true for all models. The
Poisson models discussed in the next chapter seem to give highly correlated
chains using Metropolis or rejection sampling and they may be models that
it makes more sense to fit using the Gamerman algorithm in WinBUGS.

You may want to test the other models fitted in this chapter using WinBUGS,
and so we have one word of warning regarding variable names. MLwiN allows
virtually any string to represent a column and hence a variable name, for



10.6. COMPARISON WITH WINBUGS 155

example we have a variable in this chapter called three+kids. WinBUGS
however would interpret this literally as two variables called three and kids
and would therefore give an error as these variables are not defined in the
data section of the code. The WinBUGS interface code therefore strips out
such characters so it is worth checking exactly what the variables have been
called in your code. It is also therefore sensible to avoid variables that include

any of the following symbols: +,-.*,/,%,(,),] and |].

Chapter learning outcomes

* How to fit models to binary responses.

How to fit multilevel random effects linear models.

*

*

How to fit multiple random effects in a logistic model.

*

How to fit probit regression models using the Gibbs sampler.
* How to fit binary response models in WinBUGS.

* How to compare estimation methods.
*

How to time an estimation run in MLwiN.
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Chapter 11

Poisson Response Modelling

In the last chapter we considered the modelling of binary outcome data. In
that case for every individual our response is coded either as a zero or a
one, where the meaning of the two states is dependent on the application.
For example we may have pass or fail in education applications or presence
or absence of a disease in medical applications. Often when large datasets
are collected, the response variable (zero or one) may be available at the
lowest (individual) level but all other information is collected at a higher
level for example at an area level. Then rather than fit a Bernoulli model for
the individual responses we may instead either fit a Binomial model for the
proportions in each area or a Poisson model for the counts in each area.

In this chapter we will consider fitting models to count data and we will
look at a particular example from the public health literature of counts of
malignant melanoma mortality in the European community from 1971 to
1980 relating them to exposure to ultra-violet radiation (UVB). This dataset
has been investigated more thoroughly in Langford et al.| (1998]).

The dataset can be found in the MLwiN directory and is called mmmec.ws.

e Select Open Sample Worksheet from the File menu.

e Select mmmec.ws and click on Open.

The summary of the data will then be displayed as follows:

B Names EE.
Column Data Categories Window
Name| Description = Toggle Categorical | Copy Paste | Delete | View ‘Copy| Paste | Regenerate | | [ Used columns ﬂ Help
Name | Cn | n | missing | min | max | categorical ‘ description | ~
nation 1 354 0 1 9 True Country identifier - a categorical variable with labelled categories
region 2 354 0 1 79 False Region {within country) identifier
county 3 354 0 1 355 False County {within region) identifier
obs 4 354 0 0 33 False Number of male deaths due to malignant melanoma between 1971 and 1980
exp 5 354 0 0.69 258.86 False Expected number of deaths - proportional to the county population
cons ] 354 0 1 1 False Constant (= 1)
uvbi 7 354 0 -8.9002 13.359 False County-level measurement of UV B radiation {(centred on the mean) v
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The data have been collected at a county level and the response variable, obs,
consists of the observed count of male deaths from malignant melanoma over
the ten-year period. There are 354 counties from which the counts have
been taken and these counties are taken from 78 regions in 9 countries in the
European Community giving us a 3-level structure. We have one predictor
also recorded at the county level and this is uvbi, which is the (centred)
measure of UVB dose that reaches the earth’s surface in each county.

Although the data collected are counts of the number of deaths in each
county, counties vary in terms of size and number of years in which the
data were collected. Therefore if we do not account for these differences in
some way any effects we see in our model may actually be picking up the
differences in person-years of exposure between the different counties rather
than the effects of interest. Commonly therefore in Poisson modelling, the
expected counts (exp in our worksheet) for each region are calculated. These
assume that every individual has the same underlying mortality rate and so
the values of exp are directly proportional to the person-years of exposure.

As with the Binomial model we need to include a link function to translate
the count data to the whole real line. As count data is not restricted to the
range 0-1 we do not use the logit link but instead use the log link which will
translate the positive counts to values on the whole real line. As we wish to
consider (relative) rates rather than counts we need to use a function of the
form:

log(m;/ exp;) = f(predictors) where y; ~ Poisson(;)

Here y; is the observed count, which is assumed to be Poisson distributed

with mean parameter m;. Note that we can rewrite this equation as:
log(m;) = log(exp,;) + f(predictors)
The first term on the right is an offset, a known quantity which is to be

included in the equation, and so in MLwiN we can now create the log of the
expected counts by doing the following:

e Open the Command interface window from the Data Manipu-
lation menu and enter the following commands:

» calc c9 = loge('exp')
» name c9 'logexp'
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11.1 Simple Poisson regression model

Now that we have created our offset term we are ready to fit our first Poisson
model. We will first fit a single level model that accounts for our main
predictor of interest, UV exposure. The model can be set up as follows:

The above commands have set up the response variable, its distribution and
the hierarchical structure of the dataset. Note that even though we will
firstly fit a single level model we still define the whole three level structure.
We now need to set up the offset and predictor variables:

Note that the last three commands set up the default quasi-likelihood method
that we will use to get starting values. We can now run the model using
MCMC after, as usual, first running IGLS.
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After running the adapting period the 50,000 iterations should run in a couple
of minutes. We have increased the monitoring length here because, as we will
see later, the models we fit to this dataset produce parameter chains with
high autocorrelations. We will talk briefly at the end of this chapter about
other MCMC methods that aim to avoid this problem and we will return to
this issue in chapters 23 and 25.

After the 50,000 iterations have completed the Equations window should

look as follows (Note that you may have to press the Estimates and +
buttons on the Equations window to get exactly this display):

obs,; ~ Poisson(r,;,)
log(7;) =logexp . +-0.070(0.011)cons +-0.057(0.003 Juvbi

var(obs | 1) = 1

Deviance(MCMC) = 3449.499(354 of 354 cases in use)

i Clear

Rather surprisingly we see that increased UV exposure is associated with a
reduction of incidence of melanoma. We will try to explain this by account-
ing for the hierarchical structure in the data later. The DIC diagnostic is
available for Poisson models. Here the deviance takes the following form:

D=2 Z (i log % — yi+e%),  where 6; = log(exp;) + f(predictors)

If we were to look at the DIC diagnostic available from the MCMC entry
in the Model menu we will then see:

Dbar | D(thetabar) | pD DIC
3449.50 3447.55 | 1.95 | 3451.45
3953.36 3952.35 | 1.01 | 3954.37 | (Without UVBI for comparison)

Here we see that the diagnostic picks up the fact that there are 2 parameters
in the model. We also see that adding UV exposure greatly reduces the
DIC value suggesting this is a much better model than assuming a common
mortality.
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We can also look at the diagnostics for the UV effect:

The diagnostics will then appear as follows:

Accuracy Diagnostics
Raftery-Lewis (quantile) : Nhat = (13420,15262 )
when q=10.025,0.875 ), r =0.005 and s = 0.95
Brooks-Draper (mean) : Nhat = 587

when k =2 siofies and aloha = 0.05
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Summary Statistics
param name : g,  posterior mean = -0.057 (0.000) 5D =0.003 mode =-0.057
quantiles :2.5% = -0.062, 5% =-0.061, 50%=-0.057, 95% =-0.053. 97.5% =-0.052

50000 actual terations storing every iteration. Effective Sample Size (ESS) = 9124,
Update Diagnostic Settings

Help

We can see that in this simple model the autocorrelations are fairly small and
we did not really need to run for 50,000, although we will for later models. We
will now look at including some of the geographical structure in the model.

11.2 Adding in region level random effects

The single-level Poisson regression model assumes that the mortality rate is
only dependent on the UV exposure of the county and that this relationship
is the same for all regions. We can extend a Poisson model to a random
effects Poisson model in the same way as for Normal and Binomial response
models, by allowing a random effect for each higher level unit, in this case
region:
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e Click on the Start button.

When the estimation has finished we get the following estimates:

B Equations [=][=]B=
obs ;. ~ Poisson(z;)

log(z,;) =logexp + Bycons +-0.035(0.010)uvbi,,

Boy =-0.145(0.052) +u

[g] ~NO Q5 = [0179(0.034) ]
Var(olbsgkbfgk) = Tijic

Deviance(MCMC) = 2041.479(354 of 354 cases in use)

|uame + | - | Add Term | Estimates  Nonlinear = Clear | MNotation | Responses| Store |ﬂe|p |Zoom‘100 ﬂ|

Here we see that there is a large variation between the regions and that this
variation has reduced the negative effect of UV exposure from —0.057 to
—0.034 but that the effect is still significant. If we were to calculate the DIC
diagnostic for this model we will get:

Dbar | D(thetabar) pD DIC
2041.48 1971.09 | 70.39 | 2111.87

This is a huge reduction in DIC showing that this model is a much better
fit to the data. The 78 regions are represented by 70.39 effective parameters
showing that the region terms are important in the model. Looking again at
the diagnostic plots for the uvbi predictor we see:

5 MCMC diagnostics SIEIES
=1
&
== == == &"pam?gm == =
Q)u
o n: -
: 5 : : ! - 7 1
: Accuracy Diagnostics
= ! Raftery-Lewis (quantile) : Nhat = (53095,58988 )
?: when q = (0.025.0.975 ). r = 0.005 and s = 0.95
= Brooks-Draper (mean) : Nhat = 134493
T T e ™ hen k=2 siofios and zloha = 0.05
Summary Statistics
param name : g,  posterior mean = -0.035 (0.000) SD =0.010 mode =-0.035
quantiles : 2.5% = -0.034, 5% =-0.051. 50%=-0.035, 95%=-0.018. 97.5%=-0.015
50000 actual iterations storing every iteration. Effective Sample Size (ESS) = 384.
Update | Diagnastic Settings ‘ Help |

Here the autocorrelations in the chains are much higher so we this time
do need to run for 50,000 iterations. (In fact the Raftery-Lewis diagnostic
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suggests running for slightly longer.) This is, however, not a problem as
50,000 iterations only takes a couple of minutes to run.

Of course our data structure has an additional level of stratification in that

each region is in one of nine countries. We will next consider how to fit these
in the model.

11.3 Including nation effects in the model

We will consider two ways of fitting the effects for the nine EU nations into
our model. Firstly we will consider fitting nation as random effects in our
model. This will mean that our predicted mortality rates will be comprised
of a fixed effect for UV exposure and random effects for both the region and
nation in which the county lies.

After estimation, if we firstly look at the DIC diagnostic for this new model
we get:

Dbar | D(thetabar) pD DIC
2039.98 1978.83 | 61.15 | 2101.13
2041.48 1971.09 | 70.39 | 2111.87 | (without nation effects)

So at first glance our new model has a reduction of DIC diagnostic of about
10 points so is a better model. However if we look at the constituent parts
we see that the new model has a worse fit (measured by D(thetabar)) even
though it has more parameters! You may be wondering then why the DIC
diagnostic thinks that we have a better model. This is because although we
have nominally more parameters, the random effects associated with region
are less important when the nation effects are taken into account and so the
effective number of parameters (pD) drops.

Looking at the Equations window we see that the variance between coun-
tries is four times the magnitude of the variance between regions but has a
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large standard error. This may be due to the fact that we only have nine
countries in our dataset. It may therefore be more sensible to fit the nation
effects as fixed rather than random effects. To do this we will use the Add
term button on the Equations window:

Generally we add dummy variables and use one category, for example Bel-
gium, as a baseline. Here however we have removed the intercept and so can
estimate effects for all nine countries. The two model formulations are just
reparameterisations of each other and it happens that the parameterisation
with no intercept gives less correlated MCMC chains. We now need to fit
this model so:

After 50,000 iterations the Equations window will look as follows:

obs?k ~ Poisson( ;rﬂ)

log(7;;) =logexp +-0.025(0.012)uvbiy +-0.142(0.151)Belgium, +0.439(0.081)W.Germany, +
0.660(0.150)Denmark, +-0.556(0.059)France, + -0.164(0.098)UK, +-0.079(0.091)ltaly, +
-0.652(0.190)Ireland, +-0.051(0.313)Luxembourg, + 0.014(0.134)Netherlands, + u ocons

[46:] ~N©, Q) : Q,= [0.052(0.012)]

var(obs | 7,) = 7y

Here we see that West Germany and Denmark have the highest melanoma
mortality rates whilst Ireland and France have the lowest. A comparison of
the DIC diagnostic between the fixed and random effects models gives:
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Dbar

D(thetabar)

pD | DIC

2039.49

1977.81 | 61.68 | 2101.17

2039.98

1978.83 | 61.15 | 2101.13
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(fixed)
(random)

This shows that there is no advantage in treating the nine countries as ran-
dom effects as opposed to fixed. Note that although we have run for 50,000
iterations some of the parameter chains suggest, through the Raftery-Lewis
diagnostic, that we need to run for longer.

11.4 Interaction with UV exposure

We can extend our model further by removing the restriction that the effect
of UV exposure is constant across countries after accounting for country and
region differences. We can remove the UV term and instead fit separate UV
terms for each country. To do this we need to do the following:

The window should now look as follows:

order I 1 - l
waniable

Ination vl
Iuvbi vl

Daone |

ref cat [Mone]

LCancel |
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After 50,000 iterations we will get the following point estimates:

B Equations (===

obs,; ~ Poisson(z,,)

log(z;;,) =logexp g+ 0.762(0.676)Belgium, +0.494(0.111)W.Germany, + 0.499(0.635)Denmark, +
-0.591(0.054)France, + 0.630(0.208)UK,, + 0.287(0.104)Italy, + -0.126(1.081)lreland, +
19.097(8.529)Luzembourg, + -0.484(1.068)Netherlands, + 0.286(0.229)Belgium.uvbig,,.( +
-0.010(0.031)W.Germany.uvbiy, + -0.050(0.111)Denmark.uvbiy, + 0.012(0.018)France.uvbiy, +
0.145(0.043)UK uvbi, +-0.088(0.016)ltaly-uvbi,, +0.082(0.218)Ireland uvbi,, +
8.327(3.72?)Luxembourg.uvbi¥.k + -0.14?(0.25S)Neﬂlerlands.uvbiyk + 1 g cons

fic

[ge] ~NO Q)+ = [0.0370.009)]
var(obs | 7;:) = 7

Deviance(MCMC) = 2026.424(354 of 354 cases in use)

| Hame | + | - |Add'|_'erm|.__ timat i Clear i Resp Store | Help ‘Zoom|1i}0j |

So we now see that France still has a significantly lower mortality rate than
average, and Germany a significantly higher mortality rate (at average UVB
exposure for the dataset). Both the UK and Italy have significantly higher
rates than average (at average UVB exposure for the dataset) when the effect
of UV exposure is allowed to vary between countries. The UK has a signifi-
cant positive effect of UV exposure while Italy has a significant negative effect
of UV exposure. There may be many reasons for these findings, for example
Italy only has values of UV exposure greater than 2 and so this will imply
that for the majority of Italians melanoma mortality is lower than average,
and the significant interaction will suggest higher rates of melanoma in the
north of Italy than the south. The UK by contrast always has negative values
of exposure (remember this variable has been centred) and so the positive
coefficient of the exposure in the UK suggests higher rates of melanoma in
the south of the UK. One (of many) possible reason for this may be that the
south is more affluent and so people there can afford more holidays in sunny
places. This is of course speculative and would require matching this dataset
with some economic data to back up this hypothesis. It is worth noting here
that these interpretations rely on the fact that our offsets are the logs of the
expected counts for each region and other forms of offset for example the logs
of population size at risk will result in different interpretations.

We can compare this model with the last model via the DIC diagnostic.

Dbar | D(thetabar) pD DIC
2026.42 1964.58 | 61.84 | 2088.26
2039.49 1977.81 | 61.68 | 2101.17 | (no interaction)

Here we see that the DIC diagnostic is again reduced, showing that fitting
separate UV effects for each country was a good idea.
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11.5 Problems with univariate updating Metropo-
lis procedures

One note of caution should be made here. If we look at the diagnostic traces
for the parameters, for example f;, the effect for Belgium, (do this via the
Trajectories window) we will get the following:

- MCMC diagnostics (==l

ool gty

. B ECE g
I &
|

EEEEZER .

Accuracy Diagnostics
Raftery-Lewis (quantile) : Nhat = (159431.281813 )
when q = (0.025,0.975 ). r = 0.005 and s = 0.95
e Brooks-Draper (mean) : Nhat = 76991512

= ) ) when k = 2 sigfiss and aloha = 0.03
Summary Statistics
paramname: g,  posterior mean = 0.762 (0.100) SD =0.676 mode =0.379
quantiles :2.5% =-0.437, 5% =-0.285, 50% =0.715, 95% =10526, 97.5%=2229
50000 actual iterations storing every iteration. Effective Sample Size (ESS} = 40.

Update ‘ Diagnusl\cﬁaltings| Help |

As we can see from the ACF graph this trace is very highly correlated and
there is no way that we can be confident of the estimates that the MCMC
method has produced. All the Poisson models in this chapter can also be fit-
ted in WinBUGS, which will use the Gamerman method described in the last
chapter instead of the Metropolis sampler used here. Although generally the
Gamerman method produces less correlated chains, for this model the chains

produced are also highly correlated. For brevity we omit the WinBUGS
analysis here.

A reason for the high autocorrelations is that the parameters in the model
are themselves highly correlated. We will revisit this example in chapter 23
to see if we can reparameterise the model to improve the mixing.

We ran the same model for 500,000 iterations using a thinning factor of 10
and got the following estimates:
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.- Equations EE.

obs,; ~ Poisson(r,,)

log( ;) =logexp; + 0.733(0.759)Belgium, +0.480(0.123)W.Germany,. + 0.351(0.844)Denmark, +
-0.593(0.055)France, + 0.611(0.208)UK, +0.282(0.105)ltaly, +-0.435(1.322)lreland, +
14.601(14.599)Luxembourg, + -0.352(0.884)Netherlands, + 0.275(0.25 6)Belgium.uvbi¥.k +
-0.013(0.033)W.Germany.uvbi, + -0.076(0.149)Denmark.uvbi,, + 0.013(0.018)France.uvbi,, +
0.141(0.043)UK.uvbi, +-0.087(0.016)Ttaly-uvbi, +0.020(0.267)Ireland uvbi,, +
6.370(6.368)Luxembourg.uvbilj.k +-0.114(0.2 lZ)Neﬂlerlands.uvbi{r.k + 1y cons

[1ge] ~NO Q)+ Q= [0.0370.009)]
Var((’bsgik|ﬁ'yk) = Tk

Deviance(MCMC) = 2027.905(354 of 354 cases in use)

|uame + | -  AddTerm |Estimates i Clear ion | R Stare | Help ‘Zoom|1ﬂﬂj |

These estimates are fairly similar to those found in the User’s Guide to
MLwiN using quasi-likelihood methods, which is reassuring. If we look in
particular at the parameter trace for 3; we see:

B MCMC diagnostics E@.
_x =
£ &
E- =
g e
E z
- =
[ 3 E I I S S
i n
w
-
2.
-
& —
P a— : H
=

i

Accuracy Diagnostics
Raftery-Lewis (quantile) : Nhat = (456460,629530 )
when q = (0.025.0.975 ). r = 0.005 and s = 0.95

Brooks-Draper (mean) : Nhat = 15944400
S0 0 == 7" " " | whenk =2 siofies and aloha = 0.05
Summary Statistics

paramname : @,  posterior mean = 0.733 (0.014) SD =0.75% mode =0.722
quantiles : 2.5% = -0.66%, 3% =-0.460, 50% =0.724, 95%=2.026, 97.5% =2.299
500000 actual fterations storing every 10 th. Effective Sample Size (ESS) = 233.

L

§

Update | Diagnnslicﬁallings‘ Help |

which is a great improvement. The DIC diagnostic is also affected by running
the chain for longer here we see:

Dbar | D(thetabar) pD DIC
2027.91 1964.83 | 63.07 | 2090.98 | (after 500,000)
2026.42 1964.58 | 61.84 | 2088.26 | (after 50,000)

so our model with interactions is marginally worse than we thought after
50,000 iterations.
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Chapter learning outcomes

* How to fit Poisson response models.

* How to fit an offset term in MLwiN.

* How to fit main effects and interactions in Poisson models.
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Chapter 12

Unordered Categorical
Responses

In Chapter 10, we considered fitting models to datasets where the response
variable took two possible states, which were classed numerically as 0 and 1.
In the example we looked at the two states were whether or not a woman
uses contraception in a dataset of Bangladeshi women who took part in the
1988 Fertility survey. The case of binary responses is in fact the simplest
case of two possible families of models that we can use when we have 2 or
more possible states or categories for a variable.

In this chapter we will consider the case of unordered categories and in Chap-
ter 13 we will look at the alternative extension of binary responses to ordered
categorical models. Generally whether a response should be fitted as ordered
or unordered is obvious from its definition, however there are some grey areas.
For example in voting datasets where there are more than 2 possible parties
that voters can vote for we would typically treat the parties as unordered
categories. However an alternative in the UK would be to consider three
(ordered) categories: Conservative, Labour and Other where Other is
assumed to lie between the first two.

In this chapter we are going to consider another subset of the Bangladeshi
Fertility survey of 1988 where we know not only whether the individual
women used contraception but for the women who did we know the method
they used. This subset of the dataset is found in the worksheet bang.ws.
This dataset has also been investigated in the latest version of the User’s
Guide to MLwiN and here we will generally consider using MCMC for the
same models.

e Select Open Sample Worksheet from the File menu.
e Select bang.ws from the list of worksheets.

e Select Open.
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The Names window will then look as follows:

Column Data G i Window

Ilnme|f‘ pti ‘ Toaggle Ci i || View Copy|Pa51¢| Deletell View |Cuw|Paste|Reenerale|||_U59ﬂ°°|"m"5 Q| Help ‘
Name [cn  [n | missing | min | max | categorical | ipti ~
woman 1 2867 0 1 2867 False Identifying code for each woman (level 1 unit)
district 2 2867 0 1 61 False Identifying code for each district (level 2 unit)
use 3 2867 0 0 1 False Contraceptive use status at a time of survey (1= using contraception, 0 = not using contrace
used 4 2867 0 1 4 True Contraceptive use status and method {1 = Sterilization, 2 = Modern reversible method, 3=Tr
lc 5 2867 0 0 3 True Number of living children at time of survey {0 = None, 1 =1 child, 2 = 2 children, 3 = 3 or more
age 6 2867 0 14 19 False Age of woman at time of survey (in years), centred on the sample mean of 30 years
urban T 2867 0 0 1 False Type of region of residence {1 = Urban, 0 = Rural)
educ 8 2867 0 1 4 True Womans level of education {1 = None, 2 = Lower primary, 3 = Upper primary, 4 = Secondary+
nindu 9 2867 O [] 1 False Womans religion (1 = Hindu, 0 = Muslim)
da_lit 10 2867 0 o 0.3 False Proportion of women in district who are literate
d_pray 11 2867 0 01 078 False Proportion of Muslim women in district who pray every day (a measure of religiosity)
CONns 12 2867 0 1 1 False constant vector (=1) “

< [T ¥

In this subset of the dataset we have in the column use whether or not a
woman uses contraception and then in the column use4 a categorisation of
the type of contraception used. The categories for the variable are

1. Sterilization of the woman or her partner.
2. Modern reversible methods.
3. Traditional methods.

4. Not using contraception.

We will be treating the four categories as unordered although there is a
vague ordering in terms of effectiveness of preventing pregnancy of the four
categories. This subset of the Bangladeshi dataset shares the majority of its
predictor variables with the subset used in Chapter 10 and we will here only
consider a few of these variables in our modelling.

To motivate multinomial modelling we will firstly look at the distribution of
the use4 variable via the Tabulate window.

This will run the TABUlate command and give the following results:

1 2 3 4 TOTALS
N | 302 | 555 | 282 | 1728 | 2867
% | 10.5 [ 19.4 | 9.8 | 60.3 | 100.0
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Here we see that 60.3% of the women do not use contraception, whilst of
those that do roughly half use modern reversible methods.

12.1 Fitting a first single-level multinomial
model

The simplest multinomial model we can fit would simply encapsulate the
information in the above tabulation. If we let the probability of an individual
i having response r be WZ(T) = Pr(y; = r), then following on from the binary
response case we assume that one of the categories is the reference category
(0 in the binary model). Then in the multinomial logistic model we construct
a model that compares each of the categories with the baseline category. For
example with t categories and category t as the baseline:

(r)
log (Wl(t)> = (X;B)", r=1,...,t—1

;

We therefore have ¢ — 1 equations each of which is equivalent to a binary
response model comparing the probabilities of each category with the base
category. Here X () is a set of predictor variables that may be common for
each equation or may be different. The corresponding coefficients 3" are
unique coefficients for the rth equation. Although the 3" are themselves not
particularly meaningful to interpret, it is often preferable to calculate (for
given predictor values, X;) the predicted probabilities for the ¢ categories.
These are constructed as follows:

A t—1
. exp((X:B)") _ (1) _ (k)
T = — - , r=1,..,t-1, = —1—27@
14+ > exp((X;B)*) k=1
k=1

We will now construct a simple model that will recover the probabilities that
the TABUlate command gave us.

We will firstly need to set up the category names for the use4 variable.

e Select Names from the Data Manipulation menu.

e Click on use4 from the list and then the View button in the cate-
gories section.

e For the categories 1 through to 4 type in turn ster, mod, trad and
none.

The window should look as follows:
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We will next click on the OK button and then set up the model in the
Equations window as follows:

Next we need to define the denominator and the intercepts for each category:

The Equations window should now look (after pressing the + button twice)
as follows:

resp, ~ Multinomial(cons, r,)
log(zy;/ ms) = Bocons.stery
log(ry / 74) = Bycons.mod,
log(rzy/ 7,) = pycons.trad,

cov(yg yg.) =- g%;;qfconsj R x?.(l - ;g-gi)fconsj ts=r1;
(8601 of 8601 cases in use)

Here we see the three equations that relate the four categories. When se-
lecting multinomial modelling, MLwiN performs many data manipulation
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operations behind the scenes to construct an expanded response variable
and to expand the predictors accordingly. This is a similar process to the
expansion in multivariate models that we will describe in Chapter 18.

The Data window looks as follows:

resp( 8601)

0.000 ster I 1.000
0.000 mod g 0.000
0.000 trad i 0.000
1.000 ster i 1.000
0.000 mod i 0.000
0.000 trad i 0.000
0.000 ster 2 1.000
0.000 mod . 0.000
0.000 trad . 0.000

Here we see that for each observation in the original dataset we have 3 records
in the new dataset, one for each category (excluding the base category). The
resp column transforms the response from a number between 1 and 4 to
three binary indicators. The resp_indicator column simply identifies each
indicator with a category. The woman _long column identifies the individual
woman for each record and the remaining 3 columns give the three intercept
terms.

If we now wish to fit this first model using MCMC we need to do the following:

The model will now be run using MCMC and after a few minutes we should
get the following estimates (after pressing the estimates button twice):
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resp,; ~ Mll].titl{}mial(l:{)ﬂsf ;_:,-‘.).)

log(7y;/ 1) =-1.745(0.064)cons.ster,;
log( Ty / ;1-41.) =-1.138(0.051 )cons.mod?.
Iog(,—g-sj / ;g'dj) =-1.81 5(0.062)cons-h'ad?.

cov(y%r yq.) =- ;g-%';;q{'consj S ;;-%,(1 - ,g-v)fconsj is=1;
Deviance(MCMC) = 6242.869(8601 of 8601 cases in use)

- | Add Term | Estimates | Nonlinear | Clear | Notation Responses

Here we see that the three intercepts are all negative which shows that all
these three categories are less likely than the base category. To convert to
the underlying probabilities we can use the equations earlier and the CALC
command in the Command Interface window available from the Data
Manipulation menu. For the probability of using sterilisation predicted by
the model we have:

which gives 0.10534. Similarly for the modern and traditional methods we
have

which give 0.19329 and 0.098217 respectively. So we see that the model
returns exactly (apart from rounding errors) the probabilities that we got
through the TABUlate command earlier. Of course this model is the sim-
plest we could fit and now we can add more predictors and levels to the
model.

We will firstly however consider the DIC diagnostic, which we can also use
for multinomial models. For multinomial models the deviance formula is
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t

D=2 3 1w = )

i j=1

where /() is an indicator function which returns 1 if the condition is satisfied
i.e. if individual ¢ uses method j. 7%1.(’ ) is the estimated probability of being
in category j for individual 7. This means that the MCMC engine in MLwiN

calculates the estimated probabilities as part of the DIC diagnostic command.

The output can be seen below:

Dbar | D(thetabar) | pD DIC
6242.87 6239.80 | 3.07 | 6245.94

Here we can again see that the DIC picks up the correct degrees of freedom.
We can now consider adding in predictor variables and see if they produce a
better model via the DIC diagnostic.

12.2 Adding predictor variables

In Chapter 10 we discovered that, for the subset of the Bangladeshi dataset
used there, the number of living children a woman had increased her chances
of using contraception. If we now consider this predictor in the multinomial
example, we can look at the effect of the number of children on each of the
three types of contraceptive use.

As there are four categories of number of living children and four categories
of contraceptive use, the above commands will add (4 —1) x (4—1) = 9 fixed
effect parameters. To run the model using MCMC we now need to do the
following:
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After a few minutes the model runs and gives the following estimates:

resp, ~ Multinomial(cons}_, ;[v.)

log(zy;/ 4) =-3.972(0.275)cons.ster,; + 2.278(0.314)lc].ster, +
2.741(0.307)le2 ster; + 2.664(0.287)le3plus ster;,

log( ;;-QJ.I' 71'4,—) = -1.477(0.093)cons.m0d?. + 0.751(0.135)lcl.m0d§ +
0.695(0.150)lc2.mod,; + 0.211(0.126)lc3plus.mod,;

log( ;;-Jj/ 71'4;) = -2.584(0.148)cons.u'ad§.. + 0.735(0.222)lc1.lrad§ +
1.052(0.208)lc2.irad§_. + 1.095(0.170)lc3plus.irad?.

coV(yyy,J—) =- ;rs_,,;'cqfconsj ISET] E;r(l - ;g-g.)f'consj ts=r1;
Deviance(MCMC) = 6039.556(8601 of 8601 cases in use)

Name | + | - | Add Term | Esti Clear Help ZDDI'I4 |Dﬂj

Here we see that for all three types of contraception there is greater proba-
bility of usage if the woman has had some children although the pattern is
not the same for all methods. For the modern (reversible) method there is
greater probability of usage (as opposed to non-usage) in women with 1 or
2 living children and less probability for women with 3 or more children and
the least probability in women with no children. In contrast the probability
of using traditional methods increases with the number of living children.

The User’s Guide to MLwiN gives a macro for calculating the probabilities
for this particular model which essentially involves using a similar formula
that we used for the last model, so for example to calculate the conditional
probability of a woman with no living children using traditional methods we
have the following calculation

which gives a probability of 0.0571. In contrast for a woman with 2 children
the calculation is as follows:

which gives a probability of 0.110.
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As shown in the User’s Guide to MLwiN the TABUlate command can be
used to construct the counts and probabilities of each of the 16 categories in
a 2 way table of contraceptive use and number of living children. Then by
considering the particular row corresponding to the number of living children
we can construct the probabilities given by the model.

12.3 Interval estimates for conditional prob-
abilities

One of the advantages of MCMC methods is that as they are simulation-based
approaches we can construct interval estimates from the chains of values. We
can also, as we saw in Chapter 4, calculate interval estimates for any derived
parameters as well, for example the above conditional probabilities. MLwiN
stores the chains of parameter estimates stacked in column c1090 and so we
firstly need to split this column into 13 columns, 1 for each of the 12 fixed
effects plus one which contains a level 1 random effect that is constrained
to 1 at each iteration. Then the above calculations are carried out on the
columns rather than the point estimates. The following commands can be
typed in the Command interface window:

This will put chains of values for the two probabilities in columns ¢314 and
c315 and we can look at them using the Column Diagnostics window
available from the Basic Statistics menu as follows for the first probability
(of using traditional methods given the woman has no children):
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MCMC diagnostics [=/=]E

s T g @
ke g lde sl

P i

T

Accuracy Diagnostics

Raftery-Lewis (quantile) : Nhat = (37608,25797 )
when q = (0.025.0.975 ), r = 0.005 and s = 0.95
Brooks-Draper (mean) : Nhat = 25231
when k = 2 siofics and aloha = 0.05

Summary Statistics
Column : probl  posterior mean = 0.057 (0.001) 8D =0.008 mode =0.058
quantiles :2.5% = 0.043, 5% =0.045, 50% =0.057, 95% =0.070, 97.5% =0.072
5000 actual iterations storing every iteration. Effective Sample Size (ESS) = 140.

Update | D\agnosticﬁetlings| Help |

So here we have a 95% credible interval for the probability of between 0.043
and 0.072. Similarly for the probability of using traditional methods given
the woman has 2 children we get an interval of (0.084,0.140) as shown below:

£ MCMC diagnostics (==
o =
= =
e =
E =
£ =
RS e s Eo T NG T

“ Z

o i

B SR o T SRR T R e R B ECC =) —

¢ ek * & L R 3 ? 7 ? R & 3 ? =

s Accuracy Diagnostics
) Raftery-Lewis (quantile) : Nhat = (9497,7675 )
% when q = (0.025,0.975 ), r = 0.005 and s = 0.95

e Brooks-Draper (mean) : Nhat = 121

T A A e T )
= when k = 2 sigfiss and aloha = 0.05
Summary Statistics

Column : prob?  posterior mean = 0.111 (0.000) SD =0.014 mode =0.108

quantiles :2.5% = 0.084. 5% =0.089. 50% =0.110, 95% =0.136. 97.5% =0.140

5000 actual iterations storing every iteration Effective Sample Size (ESS) = 1296.

Update | Diaghostic Settings | Help |

Finally if we now look at the DIC diagnostic we get the following:

Dbar | D(thetabar) pD DIC
6039.56 6027.92 | 11.64 | 6051.20 | (current model)
6242.87 6239.80 | 3.07 | 6245.94 | (without living children predictors)

Here we see that the DIC diagnostic picks up (approximately) that we have
added 9 parameters (11.64 — 3.07) and the DIC value has reduced by nearly
200 suggesting this is a much better model. We could of course now consider
some of the other predictors as we did in Chapter 10 but here we will move
on to consider adding random effects.
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12.4 Adding district level random effects

The Bangladeshi dataset contains two levels with women nested within dis-
tricts and so far we have assumed that the probability of using the various
types of contraception will be constant across districts. As we have 60 dis-
tricts we will treat the differences between districts as random effects. As
there are 3 contraceptive methods this will result in 3 sets of random effects.

In the User’s Guide to MLwiN it was pointed out that the estimates from 1st
order MQL estimation were often severely biased for multilevel multinomial
models so here we will move straight to 2nd order PQL estimation to get
starting values for MCMC.

After 11 iterations the model will converge to give the following estimates:
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respy, ~ Multinomial(consﬂc, ”"iﬁc)

log( 7z / 7a3) = Boscons.stery, +2.225(0.336)lcl.stery, +2.827(0.329)lc2.stery, + 2.796(0.313 )lc3plus.stery,
Poe =-4.230(0.319) + v,

log(;rm / ’r-i.r?c) = ﬁlkcons.mod.y.k + 0.777(0.143)101.m0dgk + 0.807(0.150)1:2.m0d?.k + 0.339(0.130)103plus.m0d?.k
B =-1.749(0.133) + v ;.

log(;;mc / Edfk) = ﬁchons.u'ad?k + 0.748(0.226)1&:1.11’311% + 1.152(0.219)102.Irad.y.k + 1.193(0.184)lr.:3plus.lr:ad{.’,.',c
P =-2.724(0.179) + v,

Vo 0.544(0.135)
Vi ~N(. Q) : Q= |031580.100) 0.395(0.107)
Vor 0.253(0.099) 0.142(0.079) 0.331(0.112)

cov(ysﬂc, J’,;k) == T fcons, 1s=1; ;r?k(l - ;;;Jk)/cons;k Is=1;
(8601 of 8601 cases in use)

If we now change estimation method to MCMC and press the Start button
we can compare methods:

resp,; ~ Multinomial(consﬁ.c, ;;y.k)

log( 7y / map) = Boscons.stery, +2.226(0.310)lclster,; +2.797(0.309)lc2.ster; + 2.740(0.297)1e3plus.ster;
Bow =-4.149(0.296) + v,

log(, o / Ffa;k) =5 kcons.mod.yk + 0.’."85(0.143)1{;1.mod‘.ﬁc + 0.772(0.158)1c2.modﬁ + 0.293(0.132)1c3plus.m0d?k
B =-1.693(0.125) + v,

log(. T3 / Kaﬁc) = ﬁchons.iradiﬁc +0.799(0.226)lcl .tradl.ﬁc + 1.155(0.215)1c2.1rad.¥7c + 1.201(0.178)lc3p1us.1rad?k
Fox =-2.708(0.180) + v,

Vo 0.607(0.183)
v | “NO Q) 5 Q= [035300.121) 0.437(0.120)
Vo 0.297(0.123) 0.167(0.094) 0.391(0.139)

cov(yyk,ygk) = Tyl /cons, ts#T; ;r?k(l - ;;;Jk)/cons;k is=1;
Deviance(MCMC) = 5729.624(8601 of 8601 cases in use)

Name | + - | AddTerm | Esti Clear Store | Help | Zoom[100 -

Here we see that as is often the case the MCMC estimation method gives
larger (in magnitude) estimates. If we now look at the chain for the first
variance, 02, we can investigate this further.

The MCMC diagnostics appear as follows:
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B MCMC diagnostics IEHE.
;: x
£ H
=
oy 2
SRR TR T B AR T TR Bl o I I = P
€ 2.
G e —— o -
! L : . : : L T ?
- Accuracy Diagnostics
i Raftery-Lewis (quantile) : Nhat = (15120,10744 )
= when q = (0.025,0.975 ),r = 0.005 and s = 0.95
- n , n n : ; ; ; . Brooks-Draper (mean) : Nhat = 20494
= when k = 2 sigfies and aloha = 0.03

Summary Statistics
param name 559 posterior mean = 0.607 (0.005) SD =0.183 mode =0.559
quantiles 1 2.5% =0.312, 5% =0.350, 50% =0.586, 95%=0.940, 97.5%=1.028
5000 actual iterations storing every iteration. Effective Sample Size (ESS) = 359.

Update | Diagnosticﬁettings| Help |

Here we see that in fact the posterior mode estimate of 0.607 agrees favourably
with the 2nd order PQL estimate of 0.544 suggesting that the differences
here are mainly due to the fact that we were originally comparing mean with
mode (ML) estimates. It is also noticeable that we should in fact have run
for longer than the 5,000 iterations. In fact some of the fixed effect traces
suggest a much longer run.

Considering the model we have fitted in more detail we can firstly use the
DIC diagnostic to compare this model with the last model. To do this we
select MCMC /DIC diagnostic from the Model menu, which gives:

Dbar | D(thetabar) pD DIC
5729.62 5624.77 | 104.85 | 5834.47 | (Model with random effects)
6039.56 6027.92 | 11.64 | 6051.20 | (Model without random effects)

Here we see that the DIC diagnostic has again been reduced, this time by over
200 suggesting that the random effects model is significantly better. The 180
random effects that we have added have contributed 106.41 — 11.95 = 94.46
effective parameters.

Looking at the parameter estimates we see that the three covariances are
positive and we can look at the correlations between the sets of random
effects as follows:

e Select Estimate Tables from the Model menu.
e Select Level 3: district_long from the drop-down list.

e Select C and unselect S, E, S and P at the top right of the window.

You should now have the following correlation matrix.
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(5. Estimates E@.
+ | - | |Level 3: district_Ic | * |§|£|§|£|7C|ﬂ Help
cons.ster cons.mod cons.trad
cons.ster Corr: 1.000
cons.maod Caorr: 0.686 Corr: 1.000
cons.trad Corr: 0.609 Corr: 0.405 Corr: 1.000

Here we see that there are fairly strong correlations between the three sets
of random effects. This means that generally in districts with higher steril-
isation probabilities, there are also higher probabilities of modern and tra-
ditional methods as well. More succinctly the main differentiation between
districts is that there are some districts with high contraceptive use and oth-
ers with low contraceptive use. However, the type of use does not exhibit
a particularly strong pattern such as, for example, higher probabilities of
traditional methods in districts with lower rates of usage of the other two
methods.

Care must be taken when interpreting these correlations as the numbers in
the base category will affect all three random effects simultaneously and so
it is to be expected that there will be some positive correlation.

In the User’s Guide to MLwiN the residuals produced by this model along
with plots are considered. Similar plots can be produced for the residual
estimates produced by the MCMC methods and we will leave these as an
exercise for the user.

Chapter learning outcomes

* How to fit models to unordered categorical responses

* How to extend such models to include random effects

* How to calculate point and interval estimates of conditional proba-
bilities

* How to compare MCMC estimates with IGLS estimates



Chapter 13

Ordered Categorical Responses

In the last chapter we considered datasets where the response is one of a selec-
tion of possible alternatives, where the alternatives do not have a particular
ordering. In this chapter we will consider the case where the alternatives do
have a natural ordering and so we can build this ordering into our model.
It is of course possible to use the models in the last chapter with ordered
data as in some way they can be considered a special case of categorical data
and the general multinomial models in the last chapter will fit any types of
categorical data.

Ordered categorical responses occur in many fields. In education, exam
marks are often graded on a scale, for example A, B, C, D, E, and U with A
representing the best marks and U representing the worst marks (failures).
Other examples are survey questionnaires where individuals have to give
their level of agreement with a statement, typically ranging from ‘Strongly
Agree’ through to ‘Strongly disagree’ and finally in health where a person’s
illness/fitness may be classified on a scale.

Another possibility for fitting ordered categorical data is to treat the response
variable as continuous and fit Normal response models. This will make more
sense the greater the number of categories we have and in fact in education
such modelling is often performed on exam marks or grade scores. In the
example we will consider in this chapter our response is the mark in an A
level (taken at age 18) chemistry exam and we will compare and contrast
the approaches of treating this response as continuous and as an ordered
response.

13.1 A level chemistry dataset

The data that we analyse is taken from a larger dataset that contains all
the A level exam results taken in England for the period 1994-1997 (Yang &

185
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Woodhouse, 2001) . The subset of the dataset used here is all the chemistry
exam results for one examinations board in the year 1997.

e Select Open sample worksheet from the File menu.
e Select alevchem.ws from the list of worksheets.

e Select Open.

The Names window will then appear as we see below:

=% Names (==
Column Data Categories Window
Mame| Description | Toggle Categorical | Copy | Paste ‘ Delete | ‘ ‘ Pﬂste| | [~ Used columns ﬂ Help
Name |Cn | n | missing | min | max | categorical | description ‘ ~
lea 1 2166 0 203 938 False Local Education Authority identifier.
estab 2 2166 0 4001 8603 False Establishment (institution) identifier.
pupil 3 2166 0 1650 194809 False Pupil identifier.
a-point 4 2166 0 1 6 True Alevel point score
gcsetot 5 2166 0 22 92 False Total point score for GCSE exams taken two years earlier.
gcse-no 6 2166 0 5 12 False Number of GCSE exams taken.
cons T 2166 0 1 1 False Constant (=1)
gender 8 2166 0 0 1 True Pupil's gender (1 if female, 0 if male). w

Here we see that there are in fact three levels to the data with 2166 pupils
(pupil) nested within 219 schools (estab) nested within 70 LEAs (lea) al-
though we will only consider the first two levels here. The response variable
is a-point which ranges from 1 (grade F) to 6 (grade A). There are three
predictor variables, gcse-tot and gcse-no give the total points and number
of GCSE exams sat at age 16 and finally the sex, gender, of each child with
a value of 1 representing a girl and 0 a boy. It should be noted that the
GCSE system has 8 grades rather than 6 and these range from A* worth 8
points then A worth 7 points through to G worth 1 point. The extra grade
A* was introduced for the first time in 1994.

Perhaps one of the first things we can do with the dataset is to construct the
average GCSE scores as these would be preferable to the two predictors, total
GCSE score and total number of GCSEs. This can be achieved by typing
the following commands in the Command interface window (available from
the Data Manipulation menu):

» CALC c9=c5/c6

Here unlike in the User’s Guide to MLwiN we do not Normalise our response
or predictor variables. The A level score response can only take 6 possible val-
ues and so the Normalising transform will only have limited effect. As shown
below (by selecting histogram from the Customised graph window) al-
though the GCSE scores are slightly skewed to the left for interpretation we
maintain the raw scores.
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£3.- Graph display |E||E|.
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We will however centre the predictor around a GCSE average score of 6
(note the actual average score is 6.15). This will make the intercept more
meaningful as it will now represent the prediction for a child with an average
GCSE score of 6. We will also consider quadratic and cubic coefficients of
the predictor by typing the following commands in the Command interface
window.

» CALC c9=c9-6
» CALC c10=c972
» CALC c11=c973
» NAME c9 'gcseav' cl0 'gcse™2' cll 'gcse™3!

For our response variable we are simply assuming that an F is worth 1 point,
and an A is worth 6 points. This would seem rather arbitrary but will lead on
to ordered response models which essentially remove this linear incremental
approach. The alternative approach of using Normalised scores basically
gives an alternative mark to each grade from F to A based on their frequency
of occurring and an underlying Normal distribution assumption. Here the
scores would be —1.287 for an F, —0.629 for an E, —0.245 for a D, 0.150 for
a C, 0.639 for a B and 1.38 for an A. We can see that the gaps between the
extremes (A/B and E/F) are larger. We will come back to this when we fit
the ordered response models.

13.2 Normal response models

To firstly set up a Normal response model we need to do the following:
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After running for 5,000 iterations the Equations window will look as follows:

a-point, ~ N(XB, )

a-point, = g, cons

Bo; =3.519(0.038) +e,,

[eo] ~NO QI 5 Q.= [3.092(0.094)]

Deviance(MCMC) = 8589.826(2166 of 2166 cases in use)

Here we see that on average students get 3.519 (somewhere between a Grade
C and D) in their A level chemistry exam but there is a large variability in
scores (3.092). If we look at the DIC diagnostic (available via the MCMC
submenu of the Model menu) we get the following value which we will use
for comparison later:

Dbar | D(thetabar) | pD DIC
8589.83 8587.82 | 2.01 | 8591.84

We will now add in the three powers of the GCSE predictor and the gender
predictor.




13.2. NORMAL RESPONSE MODELS 189

The Equations window will then look as follows:

a-point, ~ N(XB, Q)

a-point; = 3ycons +1.563(0.052)geseav; +0.192(0.026)gese”2; +
-0.074(0.019)gese™3, + -0.483(0.054)female,

B = 3-322(0.042) + e,

[eo] ~NO: Q5 Q.7 [1.469(0.045)

Deviance(MCMC) = 6977.852(2166 of 2166 cases in use)

We firstly see that all these predictors are significant and that in combination
they have reduced the unexplained variation from 3.092 to 1.469 that is
over half the unknown variation has been explained. The DIC diagnostic as
expected gives a much improved DIC value:

Dbar | D(thetabar) | pD DIC
6977.85 6971.86 | 5.99 | 6983.84
8589.83 8587.82 | 2.01 | 8591.84 | (intercept only model)

We can plot the relationship by calculating predictions via the predictions
window and the Customised graph window as follows:
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The predictions graph will look as follows:

(s Graph display EE.

Here we have two parallel curves with the girls doing on average about half
a grade worse than the boys (—0.483). The tail behaviour is rather unusual
with the average predicted A level grade increasing once the average GCSE
goes below 4 (—2 on the graph). This is due to four individuals who had
low GCSE averages but achieved good A level chemistry grades (2 C’s and
2 D’s). If we however consider the range of GCSE averages greater than
4.5 (—1.5 on the graph and 95% of the pupils) we see a linear relationship.
We will now look at treating the response variable as an ordered categorical
response rather than as a continuous measure.

13.3 Ordered multinomial modelling

In the last chapter we considered unordered categorical models and saw how
effectively such a model is a direct extension of the binary response model
where we look at the relative probability of each category as compared to
one base category and ensure that the probabilities of being in each category
will sum to 1 for each individual. To exploit the ordering of the categories
we do not model the probabilities of the individual categories but instead
model the cumulative probabilities, for example the probability of getting a
C grade or better, or as in our example the alternative probability of getting
a D grade or worse.

To fit such a model we will therefore have to construct a set of indicator
variables for each response. So if y; is the response for individual ¢ then we
will define yfs) to be an indicator that takes value 1 if y; is less than or equal
to category s and 0 otherwise.
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(s

Then we will fit separate equations for each y, ) as follows:

E( (S) th), s=1,...,t—1

Here we assume there are t categories and that category t is the base category.
In the example that follows we will assume that A is the base category and
that we consider the less than a chosen category relationship but in practice
we could have alternatively chosen F as the base category and used a greater
than relationship.

Now we need to define a link function to relate the probabilities 72-(8) to the
predictor variables. A common choice of model is the proportional odds

model which corresponds to fitting a logit link. We can write this as
logit(,”) = o) + (X5);

Here we see that we allow an additive effect for each category but assume
a common effect for all other predictor variables. This is one major dif-
ference between the ordered and unordered models but does make sense.
In unordered models predictors might influence selecting different categories
but in the ordered case the predictors can only have an effect of increas-
ing/decreasing the chance of achieving a higher category.

We will now consider setting up a basic multinomial model. We firstly need
to create the categorical response variable.

We will now set up the first categorical model in the Equations window.
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The Equations window will now look as follows (after pressing the + button
twice):

resp, ~ Ordered Multi.nomial(nj, ,-g-g.)

NWEEG T AT Iy pyT ayt Ayt Iy py T Ay T Ayt Ayt Iy
VO ST S PR PR S i

COV(}’S! yg.) =y5J(1 - yq);’nj s<=r
(10830 of 10830 cases in use)

You will notice in the above window that the model now has two levels and

a new response has been created in column resp. We can finish setting up
the first model as follows:

The Equations window will now look as follows:
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resp, ~ Ordered Multi.nomial(consﬁ ;g;;)

WEAG T AT Iy pyT Ayt Ayt ay py T Ay Tyt ay T ooy
ryT Ayt Ayt ay Tyt g pg= 1

logit(ylj) = ﬁocons.({=F)§

logit(y,) = gcons.(<=E);

logii(ysj) = ﬂzcons.(<=D)?

logit(y,) = p;cons.(<=C),
logit(ys) = p,cons.(<=B),;

cov(y,y,) =p(1 -p)/cons, s<=r
(10830 of 10830 cases in use)

- | Add Term | Estimates | MNonlinear | Clear

We can examine the new columns created via the Data window.

The Data window will then appear as follows. Here we can see that the
original response for each individual has been converted into 5 indicator
variables stacked in the column resp. Here for example the first pupil (pupil
1650) achieved a D and this is converted into the pattern of 5 indicators
(0, 0,1, 1, 1). The resp_indicator column gives information on what each
indicator indicates and is used as the level 1 identifier. The original pupil
column has been replicated to produce the level 2 indicators, pupil_long.
The 5 indicators each have an associated intercept, which are picked up by
the 5 new constant columns.

view | Help | Font | ¥ Show value labels

| resp_indicator( 1( pupil_lona( 1083(| cons (==F) 10831| cons.(<=E)( 1083| =
(==F)
(==E)
(==D)
(==C)
(==B)
(==F}
(==E)
(==D)
(==C)

We will now run the model using MCMC estimation.
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Upon finishing the 5,000 iterations the Equations window will appear as
follows (after pressing the Estimates button twice):

resp,, ~ Ordered Multinomial(cons,, 7,)

Yy
YyT Ayt Ayt ay Tyt Ay yg= 1
logit(}rlj) = -1.403(0.052}c0ns.(€=F)§
logit(y) = -0.702(0.044)cons.(<=E),

logit(ysj) = -0.099(0.043}c0ns.({=D)?.

Ty pyT Ay Ay pyT Ay Ayt Iy T Ayt oyt oyt ay

logit(ydj) = 0.597(0.04T}cons.(<1=(3)§
logit(ys;) = 1.607(0.060)cons.(<=B),;

cov(y, ) =pll -g)/cons, s<=r
Deviance(MCMC) = 7726.391(10830 of 10830 cases in use)

- | Add Term | Estimates | Nonlinear | Clear Notation | Responses| Store

We can use these coefficients to calculate the probabilities of achieving each
of the 6 grades. For example the estimated probability of getting a grade F is
the anti-logit of —1.403, which equals 0.197. Similarly the probability of get-
ting a grade E is the anti-logit of —0.703 minus the probability of getting an
F,ie. 0.331 —0.197 = 0.134. For this simple model we could of course have
calculated these probabilities by simply working out empirically the propor-
tion of pupils in the dataset who got each grade. The modelling approach
comes into its own when we add predictors. However firstly we will calcu-
late the DIC diagnostic for this first model for comparison later. Selecting
MCMC/DIC diagnostic from the Model menu gives the following:

Dbar | D(thetabar) | pD DIC
7726.39 7721.42 | 4.97 | 7731.36
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13.4 Adding predictor variables

In the Normal response modelling section our next step was to include pre-
dictors into the model. To do this we do the following:

After 5,000 iterations we get the following results:

resp, ~ Ordered Multinomial(cons_,, )rg.)

YT A pyT Ayt Ay pyT Ayt Ay s py T Ay T Ayt Ayt Ay

Y= Ay T Ay T Ay T Ayt s pg=1

logit(y,) = -1.873(0.087)cons.(<=F), + h,

logit(},) = -0.828(0.074)cons.(<=E), + &,

logit( ;) = 0.138(0.069)cons.(<=D), + &,

logit(7,) = 1.303(0.07T)cons.(<=C) , + &,

logit( ;) = 2.994(0.102)cons.(<=B), + i,

hj =-2.073(0.096)gcseav. 12345}. +-0.462(0.050)gese”2. 12345}. +
-0.053(0.035)gcse"3.12345-,, + 0.759(0.086)female.12345j

cov(yy yq,) =}r5;(1 - }r‘j)/consj s<=r
Deviance(MCMC) = 6100.011(10830 of 10830 cases in use)

Here we see that all the predictors have negative coefficients. This is because
we are predicting the probability of getting less than or equal to particular
grades and so as the ability of the pupil increases they are less likely to get
below a particular threshold. The coefficients suggest that we do not need
to fit a cubic term here and if we remove it and compare the DIC diagnostic
we see the following:
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Dbar | D(thetabar) | pD DIC
6100.01 6090.94 | 9.07 | 6109.09 | (with cubic term)
6100.97 6092.71 | 8.26 | 6109.23 | (without cubic term)

It should be noted, as shown in the User’s Guide to MLwiN, that we could
in fact fit separate effects of each predictor for each grade boundary but as
shown there fitting a single common predictor effect is acceptable. We will
now consider fitting a multilevel multinomial model, where the probabilities
of getting the different grades depend on the school the students belong to.

13.5 Multilevel ordered response modelling

As with all the other response types that we have considered in this book it
is perfectly plausible for there to be random variation between higher level
units and ordered response models are no exception.

We will need to define the column that contains the higher level units but
firstly we need to remove the cubic term from the model (if we have not
already done so)

We now need to decide how to add in the effect of the different schools.
If we were to add random effects for each grade boundary then we would
effectively be ignoring the ordering and would have an equivalent model to
the unordered responses. We therefore wish to have one effect for each school
that changes each grade boundary. To obtain this we do the following:
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This will have created a variable cons.12345 which is a common intercept
term. We do not want to fit this as a fixed effect but instead want to fit it as
random at the establishment (school) level. To do this we do the following:

Upon completion of the iterations we get the following estimates:

resp ; ~ Ordered 1\«1[ultumt}t|:|1al(f.:mls:r , ;rﬂ)
Vi = Tyie Yo~ Ty T Ty Vi~ Ty T Tope T Tape

Vi = Ty T Ao T Ay T Waps Vs ™ My T Ao T Ay T Tape T Tsps Vo ™ 1
Iogit(}rlik) = -1.956((}.1ll}i'i)cmls.(~~<=F}wc + k}k

logit(ym) = -0.803(0.096)::0115.({:]5)?1{ + hﬁc

Iogit(yjjk) = 0.263(0.097}c0ns.(<1=D)?k + h_;k

Iogit(}rdjk) = 1.5?..7-’(0.105}(:10[15.(*t:=C}Wc + h}k

Iogit(}rjik) =3.326(0.131 }t:mls.(*:i:B}Wc + h;k

h}k = -2.272(0.067)gcseav.12345}?5 + -0.451(0.047}gcse—"2.12345}k +

0.762(0.093)female.12345-,k +vgcons. 12345

[vs] ~NO Q)27 [o6000.125)]

cov(ys;k, ygk) Z}v?k(l - }i;k)"' cons; S=<=r
Deviance(MCMC) = 5825.961(10830 of 10830 cases in use)

Estimates | Honlinear | Clear

Here we see that there is some variability between the various establishments
and fitting this model accounts for this variability. Looking at the DIC
diagnostic we see that adding the 219 random effects has given rise to 110
additional ‘effective’ parameters. The DIC has also reduced by over 150
suggesting a much better fit to the data.

Dbar | D(thetabar) pD DIC
5825.96 5707.91 | 118.05 | 5944.01 | (with random effects)
6100.97 6092.71 8.26 | 6109.23 | (without random effects)
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We can continue to fit more complex models for example we may think that
the effect of GCSE score is different for each school, which would result in a
random slopes model. To fit such a model we do the following:

After running for 5,000 iterations we get the following estimates:

resp,; ~ Ordered Mult:momml(consﬁ.c, )r,-,m)
Ve = Ty Yo~ Ty T Mo Vi~ Ty T Mo T Ty

Ve = Ty T Ao T Aapet Aps Yope = T T Ao T ype T A Ay Y= 1

logit(y, _;1;) =-1.948(0.103)cons.(==F )@.k + h!k

logit( ;) = -0.782(0.094)cons.(<=E); + hy

logit(}rs!k) = 0.290(0.095}cons.({=D)?k + kﬁc

logit(}qu) = 1.555(0.102}(:0[15.({:0)%& + k}k

logit(}rj',k) = 3.365(0.133}cons.(<:=B)?k + kﬂc

hy, = ps,geseav.12345, +-0.439(0.052)gese”2.12345, +
0.751(0.095)female. 12345;?: +vg.cons. 12345

B =-2.305(0.086) + v 5,

|:ij] ~N(0. Q) : Q,= |:0.134(0.0?6) :|

v -0.007(0.068) 0.577(0.131)

Sk

cov(ysjk,y,_,k) :}’5,,15(1 - }gﬂc)fcons!k s<=r1
Deviance(MCMC) = 5794.818(10830 of 10830 cases in use)

- | Add Term | Estimates | Monlinear | Clear | MNotation | Responses

If we compare this model with the model that does not include random effects
for GCSE score via the DIC diagnostic we get the following:



13.5. MULTILEVEL ORDERED RESPONSE MODELLING

Dbar | D(thetabar) pD DIC
5794.82 5649.08 | 145.74 | 5940.56
5825.69 2707.91 | 118.05 | 5944.01
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(with random slopes)
(without random slopes)

So the addition of random GCSE effects only makes a marginal improvement.
It should be noted that throughout this chapter we have only been running
for 5,000 monitoring iterations for each model. If we look at the chain for
the variance of the random GCSE effects via the Trajectories window we

will see the following:

MCMC diagnostics

kg |dg

B'

_MMMW}WWM 1!‘/_\v;
. =

-

& E

Raftery-Lewis (quantile) : Nhat = (102200.38244 )
when q=(0.025,0.975 ), r =0.005 and s = 0.95
Brooks-Draper (mean) : Nhat = 43966

when k = 2 sigfigs and aloha = 0.05

Accuracy Diagnostics

param name - g ;

Summary Statistics

posterior mean = 0.134 (0.008) SD =0.076 mede =0.0%0
quantiles :2.5% = 0.025. 5% =0.030, 30% =0.123. 95% =0273, 97.5% =0.307
5000 actual iterations storing every iteration. Effective Sample Size (ESS) = 25.

Update ‘ D\agmoslicgett\ngs| Help |

Here we see that clearly more iterations are required. We will therefore run

for 50,000 iterations instead.

e Click on the Estimation Control button.

e Change the Monitoring chain length to 50000.

e Press the More button.

The MCMC diagnostics after 50,000 iterations (which will take several min-

utes) are as follows:
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MCMC diagnostics BIEIES

a;
& : r
s

FEYY g 0

e [re Lo

. ¢ PR g
-1
|

Accuracy Diagnostics
Raftery-Lewis (quantile) : Nhat = (4171521650 )
when q = (0.025,0.975 ), r = 0.005 and s = 0.95
Brooks-Draper (mean) : Nhat = 4973493
when k = 2 sigfios and aloha = 0.05

Summary Statistics

param name : o;; posterior mean = 0.100 (0.003) SD =0.069 mode = 0.060
quantiles :2.5% = 0.017, 5% =10.021, 50% =0.083, 95%=0235, 97.3%=0.271
50000 actual iterations storing every iteration. Effective Sample Size (ES8) = 171,

Update | D\agnnshcﬁethngs| Help |

Here we see that we have now run for sufficiently long enough to satisfy the
diagnostics and in fact the parameter estimate has changed very little. If we
look at the DIC diagnostic we see the following:

Dbar | D(thetabar) pD DIC
5799.36 5658.88 | 140.48 | 5939.83 | (after 50,000 iterations)
5794.82 5649.08 | 145.74 | 5940.56 | (after 5,000 iterations)

Here the additional run length has confirmed a reasonably similar value for
the DIC diagnostic.

We could now extend our modelling as in the User’s Guide to MLwiN and
consider the effect of making gender random at the establishment level but
we leave this to the reader. As described in the last chapter an advantage
of using a simulation based technique like MCMC is that we can create
chains for derived parameters and this can also be done in ordered response
models to create interval estimates for conditional probabilities of achieving
particular grades. Again we leave this as an exercise for the interested reader.

Chapter learning outcomes

* How to fit models to ordered categorical responses
* How to extend such models to include random effects

* The differences between ordered and unordered categorical response
models



Chapter 14

Adjusting for Measurement
Errors in Predictor Variables

Statistical modelling attempts to fit models that describe the relationship be-
tween an observed response variable and several observed predictor variables.
We have so far considered how to fit models where the response variable is
continuous, a binary indicator or a count. All these models assume that there
is variation between the observed data and a predicted model, and that this
variation is due to additional unobserved predictor variables. When choosing
statistical models we try to find a balance between the fit and complexity of a
model. If we were to continue adding in predictors we could achieve a perfect
fit to the dataset, but adding in ‘non-significant’ predictors will reduce the
predictive power of our model for observations outside of the dataset.

Apart from variation due to unknown predictors, there may also be variation
or errors in the predictors that we fit in our model. For example if we
consider the tutorial dataset that was first introduced in Chapter 1 and focus
on the London Reading Test (LRT) predictor that was used as a proxy for
intake ability, then errors could occur in this predictor in many ways. Firstly
obvious measurement errors could occur, for example the teacher could mark
a paper wrongly or the researcher who created the dataset could type the
data incorrectly into the computer. Secondly, less obvious errors could occur
if we consider the variable as a proxy for intake ability, for example a child
may do better on the test, as his favourite types of questions occur, while
another child may be ill on the day of the test and hence do worse.

Measurement errors can occur in many forms. If the predictor is (pseudo)
continuous like LRT score then we can assume that the measurement error is
also continuous and these types of measurement error can currently be fitted
in MLwiN. If however the predictor was a categorical variable for example
an exam grade or the sex of the pupil then errors in these variables can be
thought of as misclassifications, for example a boy is misclassified as a girl,
and currently methods for dealing with these types of error have not been

201
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implemented in MLwiN.

14.1 Effects of measurement error on predic-
tors

To illustrate the effect of measurement error on a predictor we will look at
fitting a simple linear regression model to the tutorial dataset and then
introducing errors into the LRT predictor.

You should now have set normexam as the response, school as the level 2
identifier, student as the level 1 identifier, cons as a fixed effect and random
at level 1 and finally standlrt as a fixed effect (see Chapter 1 if you need
more details). For speed we will here use the IGLS method so run the model
by pressing the Start button. Upon convergence the model will look as
follows:

normexam, ~ N(XB, )
normexam; = fy,cons +0.595(0.013)standlrt,
Bo =-0-001(0.013) + e,

[e0,] ~NO: Q) = Q.= [0.648(0.019)]

-2*loglikelihood(IGLS Deviance) = 9760.509(4059 of 4059 cases in use)

- | Add Term | Estimates | Honlinear | Clear | Notation | Responses| Store

Here (as normexam has variance 1) the predictor standlrt has explained
100 — 64.8 = 35.2% of the variation in the response variable normexam.
We will assume that the standlrt we have fitted is the ‘true’ predictor and
now we will generate some random (Normal) errors. This we can do via
the Generate random number window although below we will use the
Command interface window. Firstly however we wish to look at how
much variation there is in the ‘true’ predictor.
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This will give the following output:

N Missing | Mean s.d.
| standlrt | 4059 | 0 0.0018103 | 0.99322

So here we see that the (standardized) variable has a variance of approxi-
mately 1. We will now consider adding a measurement error to this variable
that has variance 0.2. Note that in the measurement error literature the
term reliability is often used with respect to measurement errors (see
lhouse et al., [1996) and here we will have a reliability of (1/(1+0.2))x100%
= 83.3%.

To generate the errors we will type the following commands in the Com-
mand interface window:

Here we set the random number seed to 1 so that you get the same set of
simulated errors as the book. We then store the errors in column ¢11 and the
resulting observed predictor values in column c¢12. It will be firstly of interest
to fit a linear regression of the errors against the normexam variable.

Upon convergence the estimates will be as follows:
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normexam, ~ N(XB, Q)

normexam; = fy,cons +0.027(0.035)errors;
Bo; =0.000(0.016) + e,

[e0,] ~NO Q) Q= [0.997(0.022)]

-2*loglikelihood(IGLS Deviance) = 11508.742(4059 of 4059 cases in use)

- | Add Term | Estimates | Honlinear | Clear | Notation | Responses| Store

So here we see a non-significant positive relationship between the errors and
the exam score, which explains 0.3% of the variation. Of course the errors
are random and so a different set of random errors may produce a negative
relationship. We now look at the relationship between normexam and the
observed (i.e. with errors) LRT scores:

Upon convergence we will get the following:

normexamng(XB, Q)
normexam = f3,,cons + 0.505(0.012)obslrt,
Bo; = 0.003(0.013) +e,,

[e0,] ~NO Q) Q= [0.699(0.016)]

-2*loglikelihood(IGLS Deviance) = 10063.715(4059 of 4059 cases in use)

- | Add Term | Estimates | Honlinear | Clear Hotation | Responses| Store

So in adding the measurement errors to the predictor we have reduced its
predictive power and hence its coefficient is smaller and the residual variance
has increased. We could think of this regression as a weighted average of
the earlier regressions between the exam score with true LRT score and the
exam score with errors. Here the weights will be approximately equal to the
precisions (1/variance) of the estimates, although due to the intercepts being
estimated and not fixed at zero this will not hold exactly.

In order now to adjust for the measurement errors we need to add some extra
statements to the model. The MCMC methods used in MLwiN to adjust for
measurement error involve extra steps in which we generate the true values
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at each iteration. To set up the MCMC measurement error model we do the
following.

The window should then look as follows:

Apply measurement ermor to

cong I

obslt I t. Emrar variance I 0z

Done

If we now look at the Equations window (and press 4+ to get the prior
information) we will get a window as follows:

normexam, ~ N(XB, ()

normexam; = f,.cons + 0.505(0.012}0bslrl;,.
Bo; =0.003(0.013) +e

[e0g] ~NO Q0 = Q= [0.699(0.016)]

obslrlg. ~ N(obslrl;, 0.200) : obslrl;. ~N(8,. ¢21 )

PRIOR SPECIFICATIONS

(B a 1

p(B)a 1

p(1/52,) ~ Gamma(0.001,0.001)

p(6) o 1 :p(1/g,) ~ Gamma(0.001,0.001)
(4059 of 4059 cases in use)

- | Add Term | Estimates | Honlinear | Clear Notation | Responses| Store

Here we are fitting what is known as a ‘classical’ Bayesian measurement error
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model. Basically this includes two additional model statements: firstly that
the observed values are Normally distributed around the true values, and
secondly that the true values have a Normal distribution with an unknown
mean and variance. The first statement by itself would simply have the effect
of introducing more random measurement errors to the model, and therefore
it is the second statement of a distribution for the true values that fully
specifies the measurement error model.

If we now click on the Start button to run the model we will see after 5,000
iterations the following results:

B Equations (==l
normexam_ ~ N(XB, (3)

normexam; = f3,.cons + 0.608(0.015)0bslr‘[}
Bo: =0.004(0.013) +e .

[eq,] ~NO Q= Q.= [0638(0.015)]

obslrt) ~ N(obslrt), 0.200) : obslrt, ~ N(g,,¢;)
PRIOR SPECIFICATIONS
P(ﬁo) al

P(ﬁ1) a l
p(1/52,) ~ Gamma(0.001,0.001)

p(6)a 1 :p(l/g)) ~ Gamma(0.001,0.001)
Deviance(MCMC) = 9692.786(4059 of 4059 cases in use)

|ﬂame + | - | Add Term | Estimates Clear | Notation Responses | Store | Help |Zoom|10’0 j|

We can see that the measurement error model has had the desired effects
in that the coefficient for the LRT variable has increased and the residual
variance has reduced. As this is a simulated dataset (and the errors had a
positive relationship with the response) it should be noted that we will not
obtain exactly the estimates from fitting the true predictor. However if we
run many simulations then, on average, we will get the same predictor values
(see Browne et al., 20016 for a multilevel example of this). It should also
be noted that the standard error of our coefficient is bigger than when we fit
the true predictor and this is due to the measurement error variance. This
means that measurement error models will remove the bias in the parameters
and allow valid inferences. Measurement error modelling is therefore useful
in the main as a tool for sensitivity analysis.

To consider the effect of various measurement errors and hence reliabilities
we generated several more sets of errors (all from seed 1). The table below
gives the estimates before and after adjusting for measurement error.
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M.Error | Reliability | £y ol B after o2 after
variance with error | with error | adjustment | adjustment
0.1 90.9% 0.549(0.012)| 0.673(0.015)| 0.605(0.014)| 0.641(0.015)
0.2 83.3% 0.505(0.013)| 0.699(0.016)| 0.608(0.015)| 0.638(0.015)
0.5 66.7% 0.404(0.011)| 0.757(0.017)| 0.612(0.018)| 0.633(0.018)
0.7 58.8% 0.357(0.011)] 0.784(0.017)| 0.614(0.021)| 0.632(0.019)
1.0 50.0% 0.303(0.010)| 0.816(0.018)| 0.614(0.025)| 0.630(0.022)

Interestingly the bias induced (for this dataset) in the point estimates in-
creases as the errors increase, and this is due to the slight positive correlation
between the errors and the response. The standard errors for the parameters
also increase as we are less sure of our estimates the more measurement error

we have.

14.2 Measurement error modelling in multi-

level models

Browne et al.| (2001b)) consider the effects of measurement errors in a Normal

response random slopes regression model. We will now consider this model
and firstly set up the model with the true predictor standlrt.

You should now have fitted (using MCMC) the random slopes regression
model that we fitted in Chapter 6 and the estimates should be as shown
below:
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normexam, ~ N(XB, O)

normexam, = f,.cons + g, standlrt,
Boy =-0-006(0.039) +u, +e,
Py =0.558(0.020) +u

|:u0j:| “NO, Q) : O, [0.096(0.020) l

u, 0.019(0.007) 0.015(0.004)

[eog,.] ~N(O0. Q) : Q.= [0_554(0.013)]

PRIOR SPECIFICATIONS
0.018 0.015

p(Q),) ~ inverse Wishart ,[2%S,.2], S,= [0.090 ]

p(1/52,) ~ Gamma(0.001,0.001)
Deviance(MCMC) = 9122.987(4059 of 4059 cases in use)

Now if we want to instead use the predictor with measurement error variance
= 0.2 (note if you tried out the other measurement error specifications you
will need to recreate the errors column and the obslrt columns) we need to
do the following:

Upon running for 5,000 iterations the estimates (ignoring measurement er-
rors) are as follows:
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normexam, ~ N(XB, Q)
normexam,; = f,cons + fobslrt;
Boy =0.004(0.041) +u +e,,
By =0.469(0.019) +u

y 0.018(0.007) 0.012(0.004)

[unj:| “NO, Q) ¢ O, [0.103(0.021) ]
U

[e@.] ~N@O. Q) : Q.= [0.599(0.014)]

PRIOR SPECIFICATIONS
p(ﬁo) o 1

p(ﬁ 1) al
p(Q),) ~ inverse Wishart ,[2*8,.2], §,= |0.097
0.017 0.011

p(1/52,) ~ Gamma(0.001,0.001)
Deviance(MCMC) = 9438.355(4059 of 4059 cases in use)

- | Add Term | Estimates | Honlinear | Clear | Notation | Responses | Store

Here we see that adding measurement error increases the level one variance
and reduces the fixed effect associated with intake score, as in the linear
regression example. At level two the slopes (intake score) variance is reduced.
This makes sense as the regression effects for each school will be reduced in
line with the fixed effect and hence the variance will decrease. The intercept
variance at level two has increased and this is also to be expected as this will
maintain the ratio of the intercept variances at levels one and two.

If we now wish to adjust for measurement error we need simply to set up the
errors as before and use MCMC. The measurement error settings will need
to be set up as for the linear regression example earlier. To run the method

After the method runs for 5,000 iterations we will get the following results:
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£ Equations EE.
normexam_~ N(XB, Q)

normexam, = f3.cons + £, obslrt;
Boy =-0.000(0.044) + u, + e,
B, =0.565(0.024) + u,

.
Uyl <NQ@, Q) : Q,= |0-104(0.021)
uy, 0.023(0.009) 0.022(0.007)

[enaf] =NO. Q) Q.= [0.53?(0.014)]

obslrt} ~ N(obslrt,, 0.200) : obslrt, ~N(g,.4;)

PRIOR SPECIFICATIONS
p(By) a 1
p(f) a1
p(Q),) ~ inverse Wishart ,[2¥S 2]. S = [0.097
[0.017 0.011]

p(1/o2,) ~ Gamma(0.001,0.001)
p(6) o 1 :p(l/g,)~ Gamma(0.001,0.001)
Deviance(MCMC} = 8994.021(4059 of 4059 cases in use)

|ﬂame + | - | Add Term | Estimates Clear | MNotation | Responses Store | Help |Zoom|'10'0 j|

Here we have used a slightly informative prior at level two based on the esti-
mates of the variance matrix at level 2 from the model that doesn’t account
for measurement error. This is a slightly different prior than that used in the
simulations in Browne et al.| (2001a)) but the same conclusions can be drawn.
Here we see that the measurement error model moves all parameters in the
right direction apart from the level two intercept variance. Again, due to the
positive correlation between response and errors we see that most parameters
are over-corrected. In fact Browne et al.| (2001a)) found that the variance pa-
rameters at level two in their thousand simulated datasets exhibited positive
bias but had near perfect coverage properties. This bias however may be
due to the use of the posterior means, rather than modes as point estimates,
which tend to give positive biases (see Browne & Draper; [2000).

14.3 Measurement errors in binomial models

As the restriction to continuous measurement error affects only the predic-
tors and not the response it is possible to allow for measurement errors in
binary response and Poisson models as easily as in Normal models. That
said the additional steps in the MCMC algorithm to update the true values
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of the predictor will now need to be done using Metropolis rather than Gibbs
sampling although this happens automatically and so the user does not need
to worry about this.

We will consider the first simple example from Chapter 10:

We will now set up the simple single level logistic model with age as a
predictor for contraceptive use.

The estimates (from IGLS) are as follows:

use, ~ Binomial(denomb?, ;g'?.)
logit(,) =-0.437(0.047)cons + 0.007(0.005)age,

var(use,|z,) = r,(1 - z,)/denomb,

(1934 of 1934 cases in use)
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The predictor to which we will add measurement error is age. If we use
the Average and Correlations window we will get the following summary
statistics for age:

N Missing | Mean s.d.
|age 1934 | 0 0.0020481 | 9.0134

We will add measurement errors to age with a variance of 25 (s.d. of 5)
which will correspond to a reliability of 81.25/(81.25425) = 76.4%.

To create the measurement errors we need to type the following commands
in the Command Interface window:

Here we have chosen random number seed 3 and this gives simulated errors
that have an average of slightly less than zero. Now to see the effect of the
errors we need to change the predictor in the regression from age to obsage.

Upon convergence we get the following results:

use . ~ Binomial(denomb?, ;_:,-g)
logit(z;) =-0.437(0.047)cons + 0.004(0.005)obsage;

var(use?] ;_:,-y) = ;;-?(1 - ;;g).-’denomb?

(1934 of 1934 cases in use)

So the errors have reduced the coefficient from 0.007 to 0.004. If we now
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wish to use MCMC and adjust for the measurement errors we need to do the
following;:

The window should then look as follows:

Apply measurement errar ko

cong -

abeEe I M. Emar variance I 25

Done

Now click on the Done and Start buttons and after a few minutes we will
get the following results:

use, ~ Biﬂﬂmial(dnE:m:)mbgp ;g'?.)
logit(7,) =-0.437(0.046)cons + 0.006(0.006)obsage,

var(useyj ;g'y.) = ;g'y(l - ;;g)fdenombﬁ

obsage‘;. ~ N(obsaget.gﬂ 25.000) obsaget?. ~N(@4, ¢21 )

PRIOR SPECIFICATIONS

P(ﬂo) o l

p(B)a 1

p(@) o 1 :p(l/g,) ~ Gamma(0.001.0.001)
Deviance(MCMC) = 2591.424(1934 of 1934 cases in use)

- | Add Term | Estimates | Nonlinear = Clear

So we see that the method moves the coefficient for age in the right direction,
although the estimate is still slightly lower than the estimate with the true
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predictor. This is because the errors had a slight negative bias and, given
the coefficient for age is small and non-significant to start with, this small
bias becomes more important.

14.4 Measurement errors in more than one
variable and misclassifications

To finish this chapter we will consider other aspects of measurement error
modelling that are available in MLwiN or currently being researched. Firstly
if we have many predictors in our model we may have measurement errors
on any or all of these predictors. We can account for these errors by adding
independent error assumptions for each predictor via the Measurement
Error window. It is, however, plausible that measurement errors in two
predictors could be correlated, although accounting for correlated errors is
not currently available in MLwiN. Here the user would have to input both
measurement error variances for the predictors and correlations between them
and a multivariate Normal distribution would be assumed for the errors.

As we mentioned earlier we are restricted to specifying continuous measure-
ment errors. If however we had a predictor that was a binary outcome, for
example a pass/fail intake examination mark, we could theoretically use a
continuous error for this predictor. Although this seems rather unusual, a
similar argument to that used for the probit modelling in Chapter 10 could
be used here.

More generally for binary predictors and categorical predictors we would have
to use a misclassification model rather than a measurement error model. For
example, consider a predictor variable that has three categories and was fitted
into our model as two dummy variable predictors. Then we could consider
generating a prior distribution for the probability of observing category A
when the true category is category B. We could work out probabilities for
all nine combinations of observed and true category where the three proba-
bilities for each true category would sum to 1. We would then have to invert
the table of probabilities to produce probabilities of an observation actually
being category B when category A is observed. Here the three probabilities
associated with category A being observed would need to sum to 1. Using
this as a prior distribution we could combine this with the observed data to
create a set of posterior probabilities for the true category for each observa-
tion, at each iteration. This is harder to program as the dummy variables
will have to be modified simultaneously.

Finally we should reiterate that we recommend that measurement error mod-
elling is used primarily as a sensitivity analysis tool. Once measurement er-
rors have been added to a predictor we cannot expect to recover the true
predictor but given an estimate of the variance of the errors we can hope to
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gain a handle on the magnitude of the true predictor coefficients. It should
be noted that currently measurement errors cannot be used in MLwiN on pa-
rameters that are involved in complex level 1 variance functions (see Chapter
9) or in multivariate models (see Chapters 18-20).

Chapter learning outcomes

* What the effects of measurement errors are on predictors.
* How to account for measurement errors using MCMC.
* How to account for measurement errors in various multilevel models.

* How one would in theory account for misclassifications in categorical
predictors.
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Chapter 15

Cross Classified Models

One of the main uses of multilevel modelling is to account for the underlying
structure in a dataset, whether it be pupils nested within schools or women
nested within communities as seen in the examples so far. In accounting for
the structure we are removing the independence assumption between level
one units from the same level two units and instead partitioning the variance
into variances between the units at the various levels in the dataset. The
examples we have looked at so far have mainly concentrated on two-level
structures but we have considered one three level structure (counties within
regions within nations) in Chapter 11.

Historically most multilevel modelling has assumed a hierarchical or nested
structure for two reasons. Firstly many applications naturally have a nested
structure, for example pupils within classes within schools, or patients within
wards within hospitals. Secondly the maximum likelihood based methods,
for example IGLS, have been designed to work well for nested structures,
as fast inversion routines are available for the block diagonal matrices that
nested structures produce. However, as we will see in the next three chapters,
often the structure of the dataset is not strictly nested. In this chapter we
will consider cross-classified models before considering multiple membership
models (Chapter 16) and spatial models (Chapter 17).

When cross-classified and multiple membership effects are combined we can
produce multiple membership multiple classification (MMMC) models which
are described in detail in Browne, Goldstein & Rasbash| (2001al). Detailed
descriptions of likelihood-based methods for both cross-classified models and
multiple membership models are given in |Rasbash & Goldstein| (1994)) and
Rasbash & Browne (2001)), while Rasbash & Browne (2002)) compare the like-
lihood approaches with the MCMC approach that we use here. In this chap-
ter we will describe what we mean by a classification and a cross-classified
model before considering an education-based example from Fife, Scotland
that is considered in Rasbash et al. (2008, chap. 18).

217
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15.1 Classifications and levels

We have so far concentrated on different ‘levels’ in a dataset where the defi-
nition of a level has not been explicitly given, but we have been assuming a
nested relationship between levels. For example in education we may have a
three ‘level” dataset with our three levels being pupil, class and school. Here
pupils are nested within classes and classes are nested within schools. This
implies that all pupils in the same class are also in the same school due to
the nesting of the levels. The response variable will be at the lowest level in
the dataset although predictors may be at the higher levels, for example the
effect of class size on individual pupil scores.

Note that if the response was at a higher level than some of the predictors
then these predictors could only be fitted in the model as aggregates. For
example we may have several previous tests scores for each pupil, which
would imply a lower level of time/test below pupil. If our response was exam
score at 16 then we would either fit each previous test as a separate predictor
or fit an average previous test mark, and so for the model the lowest level is
pupil and not test.

In this chapter we will consider the more general definition of a classification.
Having defined our lowest level in the data as the level at which the response
variable is collected then we can define a classification mathematically as a
function, ¢, that maps from the set 6 of N lowest level units to a set & of
size M where M < N, and we define the resulting set ® of M objects as the
classification units. In this chapter we will only consider single membership
classifications, ¢(n;) = m;, Vn; € 6 where m; € .

In words, if we consider the educational example earlier then our lowest
level was pupil and the lowest level units are the individual pupils. Both
school and class will then be classifications (functions) that given an in-
dividual pupil will return their respective school and class, and so the sets
of all schools and all classes will be the classification units associated with
the classifications school and class respectively. Note that as these classi-
fications map directly from the lowest level there is no guarantee that the
classifications will be nested, and in fact nested classifications are a special
case of the general ‘cross-classified’ classifications that we consider in this
chapter.

MCMC methods treat each set of classification units (residuals in the model)
as an additive term in the model and hence it is no more complicated (once
the classifications have been calculated) to fit a cross-classified model than
a nested model using MCMC. However there is one restriction and that is
that we need unique classification identifiers. For example if we truly have
a three-level nested model with class 1 in school 1 and class 1 in school 2,
then these two classes will need unique identifiers if this model is fitted as a
cross-classified model to differentiate between the two class 1s.
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15.2 Notation

Browne, Goldstein & Rasbash| (2001a|) introduce notation for fitting cross-
classified and more complex models based upon the definition of a classifica-
tion. Rather than trying to introduce more complex indices that take account
of the crossings and nestings (as in [Rasbash & Browne, [2001)) they instead
simply give the response variable subscript ¢ to index lowest level units, and
then use the classification names for the subscripts of random effects. For
example consider the variance components model described first in Chapter
3. This was written there as:

normexamn;; ~ N(X B, ()
normexam;; = [o;;cons + Bistandlrt;;
Boij = Bo + uoj + €oij

In the classification notation we would rewrite this as:

normexam; ~ N(X B, Q)

normexam; = [3p;cons; + [ystandlrt;
2
50i = ﬁO + u((J,s)chool(i) + €oi

As there may be many classifications, rather than using different letters for
each, we give a superscript to represent the classification number (note this
starts at 2 as we consider the lowest level as classification 1). To change be-
tween notations we can use the Notation button on the Equations window
that we earlier used for the alternative complex level 1 notation. We will
now consider a cross-classified example from the educational literature.

15.3 The Fife educational dataset

We will consider here an educational example from Fife in Scotland that is
also considered in the User’s Guide to MLwiN (Chapter 18). The data consist
of pupils’ overall exam attainment at age 16 (as with the tutorial.ws dataset
studied earlier) and several predictor variables, including a verbal reasoning
test taken at age 11 and information on social class and parent’s occupation.
The added complexity in the dataset is that we have information on both the
secondary school (ages 12 through to 16) in which the children studied and
the primary school (ages 5 through to 12) they attended prior to secondary
school. Not all the children from a particular primary school will attend the
same secondary school so we have two classifications that are crossed rather
than nested. The data consists of records for 3,435 children from 148 primary
schools and 19 secondary schools.

First we will load the dataset and look at the variable names:
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The Names window will appear as follows:

Column Data Ci i Window
Name| Description | Toggle Categori || View | Copy | Paste | Detete | | view |copy | Paste | regenerate | | [T Usedcoumns g | peip
Name [Cn [n [ missing [ min [ max [ categorical | ipti ~
vrg 1 3435 0 70 140 False A verbal reasoning score resulting from tests pupils took when they entered secondary scho
attain 2 3435 0 1 10 False Attainment score of pupils at age sixteen.
pid 3 3435 0 1 148 False Primary school identifying code.
sex 4 3435 0 o 1 False Pupils’ gender {0=Male, 1=Female).
sC 5 3435 0 0 3 False Pupils’ social class {scaled from low to high).
sid 6 3435 0 1 19 False Secondary school identifying code.
fed T 3435 0 o 1 False Fathers' education.
choice 8 3435 0 1 4 False Choice number of secondary school attended (where 1 is first choice, etc).
med 9 3435 0 o 1 False Mothers' education.
cons 10 3435 0 1 1 False Constant {(=1).
pupil 1 3435 0 1 72 False Pupil identifying code. v

< m > .

We here see that our response variable (attain) is a score from 1 to 10 that
represents the pupils score on a school leaving exam. The intake ability
is measured by a score in a verbal reasoning test, (vrq) and we also have
predictors that represent gender (sex), social class (sc), father’s education
(fed), mother’s education (med) and the choice of secondary school that
they attend (choice where 1 is first choice and so on).

We can look at the dataset more closely by:

view | Help | Font | ¥ Show value labels

aftain(3435) | pid(3435) | sid( 2435) | pupil( 2435)
2.000 1.000 1.000 39.000
£.000 1.000 1.000 37.000
£.000 1.000 1.000 48.000
£.000 1.000 1.000 41.000
4.000 1.000 1.000 7.000
2.000 1.000 1.000 50.000
9.000 1.000 1.000 17.000
5.000 1.000 1.000 £.000
10.000 5.000 1.000 46.000
2000 A 000 A 000 44 000

The data have been sorted on primary school within secondary school. We
can see here that 8 of the pupils who attended primary school 1 then attended
secondary school 1. If we were to scan down the columns we would find that
the rest of primary school 1 went to two other secondary schools, 45 to
secondary school 9 and 1 to secondary school 18 (to see this quickly type
1355 or 3068 into the goto line box and this will take you to these groups
of pupils). So we can see that school 9 is the ‘main’ secondary school for
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primary school 1 with 83% of pupils attending it. In the entire dataset 59
of the 148 primary schools had all their pupils attend the same secondary
school after leaving primary school and only 288 pupils did not attend their
‘main’ secondary school. So although the dataset structure is not nested it
is close to nested and this helps the likelihood-based methods in the User’s
Guide to MLwiN (see Rasbash & Goldstein| |1994] for details). The degree
of ‘nestedness’ does not matter so much to the MCMC methods and in fact
it is probably easier to distinguish between two classifications if they are less
nested!

As the data are sorted on secondary schools and their effects will have hap-
pened closer (in time) to the exam response of interest we will first con-
sider fitting a two-level model of children within secondary school. We will
however use the classification notation from the start and define the three-
classification structure of the data.

This will have set up the 2 level variance components model and run it using
MCMC. The estimates in the Equations window will be as follows:
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B Equations (=]l
attain, ~ N(XB, Q)

attain; = f3cons;
Bo. =5-608(0.166) +u) . +e,,

1Dy] N o) s o= [0.489(0.210)]
[eq] ~NO Q) 27 [5.989(0.219)]

PRIOR SPECIFICATIONS

p(By) a 1

p(1/Q%),) ~ Gamma(0.001,0.001)

p(1/0Q,4() ~ Gamma(0.001,0.001)

Deviance(MCMC) = 17291.800(3435 of 3435 cases in use)

|ﬂame + | - | Add Term | Estimates Clear | MNotation Responses| Store | Help |Zoom|10’0 j|

Here we see that there is significant variation between the secondary schools
and this accounts for 0.489/(0.489+4-8.989)x100% = 5.1% of the total varia-

tion in exam marks.

We can compare the DIC for this model with a simpler model with no school
effects, and we see a reduction in DIC of 120 showing this is a much better
model. Also the 19 secondary school effects account for 18.2 —2 = 16.2 effec-
tive parameters so there are distinct differences between secondary schools.

Dbar | D(thetabar) pD DIC
17291.80 17273.61 | 18.19 | 17309.99
17429.27 17427.26 | 2.01 | 17431.28 | (no school effect)

15.4 A Cross-classified model

If we now consider adding in the effects of primary schools this can be done
simply via the Equations window.

e Change Estimation method to IGLS.
e Click on z( (cons) and tick the PID(2) box.
e Click on the Start button.

What you have actually just done is fitted a ‘nested’ model of primary school
nested within secondary school using IGLS. This can be confirmed by looking
at the Hierarchy viewer available via the Model menu.
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3. Hierarchy viewer EE.
Summary

level range |total

sid( k ) 1.19 19 Options... Help

pid(j) 1..32| 303

pupi(i) | 1. 72| 343!

Details
L3ID: 1, k= 10of 18 L3ID: 2, k= 2of 19 L3ID: 3, k= 3of 19 L3ID: 4 k= 40of 19 L3ID: 5 k= 5of 19
N2 18, N1 218 N2 13, N1 183 NZ 14, N1 158 MNZ 14, N1 138 N2 17, N1 175

L3ID: 6, k= 60of 19
W2 15, N1 250

L3ID: 7, k= Tof 19
N2 7, N1 108

L3ID: &8 k= &of 19
N2 12, N1 107

L3ID: 9 k= 8of 18
M2 10, N1 114

L31ID: 10, k= 100f 18
N2 17, N1 82

L3ID: 1, k= 11of 18
MNZ 32, N1 234

L3ID: 12 k= 12 of 15|
N2 23, N1 253

L31D: 13, k= 13 of 15
MZ 14, N1 218

L310: 14, k= 14 of 15
M2 26, N1 280

L31D: 15 k= 150f 18
MNZ 14, N1 147

L310: 16, k= 16 of 19

L31D: 17, k= 17 of 15|

L31D: 18 k= 18 of 15

L310: 18, k= 15 of 15

NZ 10, N1 134 N2 18, N1 233 NZ 18, N1 257 NZ 13, N1 111
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Here you can see that MLwiN has treated the individual groups of pupils
that are from the same primary school and secondary school as separate
primary schools, for example the pupils in primary school 1 are treated as
three separate primary schools nested within secondary schools 1, 9 and 18
respectively. This results in 303 rather than 148 primary schools. To fit a
cross-classified model in IGLS instead involves following the procedures given

in Chapter 18 of the User’s Guide to MLwiN.

To fit the model (as cross-classified) using MCMC is however fairly simple.

e Change Estimation method to MCMC.

e Select MCMC /Classifications from the Model menu.

The window will appear as follows:

Classification Information -

Cross Classified Models
Treat levels az cross-classified [

5

ultiple Classification Level 2 : -

Spatial Classification [CAR] Level 2 [

=

Iultiple Clazzification level 3 :

Spatial Classification [CAR]) level 3. [

Done

Here we now simply have to click in the Treat levels as cross-classified
box and click on the Done button. If we now select the Hierarchy Viewer
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from the Model menu we get the alternative classifications viewer as shown
below.

(R Classifications E E.

clagsification | number of units. | including miz=ing |
=id(3) 19 19

pid(2) 148 148

pupil{1) 3435 3438

Here we see that this viewer shows we have only 148 primary schools as we
are now taking account of the cross-classifications. After running the model
by clicking on the Start button we will get the following estimates:

B Equations EE.
attain, ~ N(XB, Q)
attain, = f3ycons,
- 3 2
S = 5-504(0.190) + a0 + 1D +ey,

3 . 3 _
N G Q) 1 QP = [0.414(0210)]

N Oy . A
H[olfmw] NO. @) = Q; [1.153(0.215)]

[eq] ~NO Q) 27 [5.1200.202)]

PRIOR SPECIFICATIONS
p(By) a 1

p(1/0),) ~ Gamma(0.001,0.001)

p(1/Q,) ~ Gamma(0.001,0.001)

p(1/Q,y,) ~ Gamma(0.001,0.001)

Deviance(MCMC) = 16940.564 (3435 of 3435 cases in use)

|uame + | - | AddTerm | Estimates Clear | Notation | Responses| Store | Help |7_oom| 100 j|

The estimates are fairly similar to those achieved using IGLS in the User’s
Guide to MLwiN although the variances for primary school (1.15 versus 1.12)
and particularly secondary school (0.41 versus 0.35) are higher. This is due
to the difference between mean estimates and mode (ML) estimates for the
skewed variance parameter posterior distributions. The trajectory plots con-
firm this for the secondary school variance:
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Accuracy Diagnostics
Raftery-Lewis (quantdle) : Nhat = (11638.4538 )
when q = (0.0250.975 ), r = 0.005 and s = 0.95
Brooks-Draper (mean) : Nhat = 15364
when k =2 sicfiss and alvha = 0.05
Summary Statistics
param name : QE&O posterior mean = 0.414 (0.005) 8D = 0.210 mede =0.352
quantiles :2.5% = 0.142, 5% =0.165, 50% =0.374, 95%=10.790, 97.5% =0.929
5000 actual iterations storing every iteration. Effective Sample Size (ESS) = 1111.

We can also see that primary school is actually more important in predicting
the attainment score than secondary school. One possible reason for this
is that secondary schools are generally larger (see |Goldstein, 2003)). Here
primary school explains 1.15/(0.4141.154+8.12)x100% = 11.9% of variation
while secondary school only explains 0.41/(0.41+1.1548.12)x100% = 4.2%.
The DIC diagnostic again shows that this model is an improvement with a
reduction in DIC of over 250.

Dbar | D(thetabar) pD DIC
16940.56 16833.40 | 107.16 | 17047.73 | (with primary school)
17291.80 17273.61 | 18.19 | 17309.99 | (without primary school)

15.5 Residuals

As with nested models we can work out residuals for the various levels of
our model. This may be done via the Residuals window available from the
Model menu. We will look firstly at secondary school residuals:

The plot will then appear as follows:
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Here we see the lowest ranked secondary school has a very low residual and
may be an outlier. Clicking on the graph on this point we get:

Identify point Titles Scale

clicked point (0.869565217391304,-1.389726782611534)
nearest data point = [1,-1.390685], itern number 19, in
columns [2305,:300)

— Multilzvel Filtering
zid, idcode =19, k=18

I araphs

Leave out
Reset all
highlight{ztyle 1]

Apply | Set styles | Apply |

Help | Click ot a point oh a graph

showing that this is secondary school 19. We will revisit this plot after adding
in other variables. If we now look instead at the primary schools:
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B Graph display E@.

cons

rank

Here we see the 148 primary school residuals. Here there is no evidence of
outliers. If we click on the lowest residual (rank 1) we get the following:

B Graph options .
Identify point | Titles 1 Scale

clicked point (09596273291 92547 -2.147961541 22604)
nearest data point = (1.-2.12353), item number 139, in
columnz (c305,2300)

tultilewvel Filkering

vel 2 pid, idcode =139, |

In araphs In model

~ ~
Leave out Leave out
Reset all Include

highlight{style 1] e Abgorb into dummy | ¥

Spply | Set styles | Apply |

Help Click on a point on a graph

So we see here that the lowest ranked primary school is school number 139
and that even though the data are not nested the residuals screen can identify
correctly the primary school. Note however that unlike nested models we do

not get a level 3 identifier as primary school is not nested within secondary
school.

15.6 Adding predictors to the model

We have so far not considered any of the available predictors in our model.
We will firstly consider the effect of intake score (VRQ) in our model.
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The estimates produced are as follows:

attain, ~ N(XB, Q)
attain, = f3,,cons; + 0.160(0.003)vrq,

By = -10.033(0.279) + 15

o
vsidn T Uopian T €os

[68as] ~ N o) : 0f= [0.016(0.019)]
@ o] “NO QD 07= [02780.061)]

Yo piagy

[e(,i:l ~NO, Q) : Q.= [4.260(0.105)]

PRIOR SPECIFICATIONS

p(By) a 1

p(s) a1

p(1/Q3)y) ~ Gamma(0.001,0.001)

p(1/Q),) ~ Gamma(0.001,0.001)

p(1/0,,,) ~ Gamma(0.001,0.001)

Deviance(MCMC) = 14724.865(3435 of 3435 cases in use)

- | Add Term | Estimates | Honlinear | Clear | Notation | Responses| Store

The predictor, vrq, explains not only a large amount of the residual variation
but also a large amount of the differences between secondary schools and
between primary schools. Of the remaining variation, 6% is explained by
primary schools and less than 0.4% by secondary schools. The DIC diagnostic
gives:

Dbar | D(thetabar) pD DIC
14724.86 14644.21 | 80.66 | 14805.52 | (with vrq)
16940.56 16833.40 | 107.16 | 17047.73 | (without vrq)

which shows a reduction in DIC of over 2000! It is also interesting that the
effective number of parameters is reduced and this is clearly because VRQ is
explaining many of the differences between secondary schools and between
primary schools.
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We can continue adding in the other predictor variables and retaining signif-
icant predictors. In this case all predictors tested apart from gender (SEX)
are significant. The model with all significant predictors can be obtained by:

When the 5,000 iterations have been run we get the following estimates:

attain, ~ N(XB, Q)
attain, = §,,cons, + 0.155(0.003)vrg, +0.027(0.003)sc, +0.215(0.092)fed, +
0.219(0.086)med, + -0.118(0.054)choice,

— 3
B =-9.726(0.294) + S o +ul) o +ey,

N (&) NI
U | ~ N Q) - [0_014(0.017)]

e

] - o) : of = [0.206(0.052)]

0,pid(d)

[eo] N Q) Q= [417100.105)]

Deviance(MCMC) = 14651.560(3435 of 3435 cases in use)

- Add Term | Estimates | Honlinear | Clear | MNotation | Responses| Store

Here we see that on average a pupil’s attainment is higher if they come from
a higher social class, if their parents are better educated or if the school they
attend is their first choice. Adding the additional predictors has the effect of
reducing the DIC diagnostic by 80 and again reducing the effective number of
parameters slightly, suggesting more of the differences between schools have
been explained by the additional predictors.

Dbar | D(thetabar) | pD DIC
14651.56 14575.02 | 76.54 | 14728.10
14724.86 14644.21 | 80.66 | 14805.52 | (without additional predictors)

The secondary school variance is very small and if we now look at the resid-
uals plot of the school residuals against rank (see instructions earlier on how
to produce this) we see that the residual for school 19 is still lowest and looks
like an outlier. (Note that a number of error messages may crop up during
the estimation here. It is safe to ignore them by clicking the OK button.)
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We will therefore consider fitting a dummy variable for school 19 and remov-
ing secondary school from the model.

After the 5,000 iterations have completed our estimates are as follows:
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£ Equations E@.
attain, ~ N(XB, )

attain, = f,,cons, + 0.155(0.003)vrq, + 0.027(0.003)sc, +0.214(0.092)fed, +
0.225(0.086)med, + -0.124(0.056)choice, + -0.632(0.244)school 19,
Boi =-9.646(0.290) + u . +e,,

0 pidte)
[12,] ~NC: % : - [0.209(0.053)]
[eo] ~NO Q5 Q.7 [4168(0.103)]

Deviance(MCMC) = 14649.388(3435 of 3435 cases in use)

|ﬂame + | - |AddIerm|§stimates Clear | Hotation | Responses| Store | Help |Zoom|10’0‘ j|

We can see that school 19 has a significant negative effect on attainment and
if we look at the DIC diagnostic we see an improvement in DIC diagnostic
of 3.4.

Dbar | D(thetabar) pD DIC
14649.39 14574.03 | 75.36 | 14724.74 | (with secondary school 19 only)
14651.56 14575.02 | 76.54 | 14728.10 | (with all secondary school effects)

So in adding the predictors to our model we have explained all the secondary
school variation down to a difference between school 19 and the rest of the
secondary schools. This of course means that, for the Fife dataset, we now
no longer need to fit a cross-classified model. Therefore if we were to re-
sort the data on primary school we could have fitted the final model directly
using IGLS or MCMC. Some people may think this is disappointing but with
only 19 secondary schools to start with it is unlikely that we will find much
variation and in fact we now have a more parsimonious model. It may be
interesting for the researchers to now go and investigate why school 19 was
a potential outlier.

15.7 Current restrictions for cross-classified
models

As has been shown in this chapter it is now possible to quite easily fit cross-
classified models in MLwiN using MCMC, although not all features have
been updated to account for these models. For example currently the Pre-
dictions window does not account for cross-classified random effects and will
therefore give error messages if it is used. It should also be noted that the
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starting values that MCMC gets for the residuals will be based on the values
obtained from the nested model and so will often be meaningless. It is possi-
ble by running the MCMC and other commands in the Command interface
window to fit the separate IGLS two-level models and store these residuals in
columns to be used as starting values, but generally the MCMC routines are
robust to the nested model starting values. Currently cross-classified models
can be fitted using IGLS, but only via additional commands that transform
the cross-classified model into a constrained nested model.

Chapter learning outcomes

* What is meant by a classification and a cross-classified model.
* How to fit cross-classified models in MLwiN using MCMC.
* How to look at residuals in a cross-classified model.

* Some of the current restrictions in fitting cross-classified models in
MLwiN.
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Multiple Membership Models

In the last chapter we considered cross-classified models and introduced the
concept of a classification. All the classifications we considered were what we
would describe as ‘single membership’ classifications. This means that every
lowest level unit is a member of one and only one classification unit. For
example each pupil in the tutorial.ws dataset belongs to one and only one
school and each woman in the bangl.ws dataset belongs to one and only
one district.

It is however possible that we cannot (or do not want to) assign each lowest
level unit to exactly one classification unit. This may be due to movements
between units over the time period for which the data were collected. For
example if our response is exam scores at 16 then some pupils will have been
educated in more than one school and thus we may want to account for the
effects of all schools. Alternatively our response may have been produced by
the aggregation of units. For example in veterinary epidemiology the unit of
measurement may be flocks of chickens and each flock may be produced from
individual parent birds from several parent flocks, each of which has an effect
on the child flock (see [Browne, Goldstein & Rasbash| 2001a, for details).
Both of these scenarios are examples of ‘multiple membership’ classifications.

Formally we can define a multiple membership classification as a map ¢ from
the set © of N lowest level units to the set ® of M classification units such
that each individual, n; € © is mapped to a subset (possibly of size 1) ®; of ®.
So the single membership classifications are a special case where every ®; is
of size 1. We will firstly consider in this chapter a (simulated) example from
employment statistics that has a multiple membership classification, and
finish the chapter with a look at the combination of multiple membership
models and cross-classified models known as multiple membership multiple
classification (MMMC) models (Browne et al., [2001a)).

233
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16.1 Notation and weightings

In the last chapter we introduced a new notation for use with classifications.
We can extend this classification to deal with multiple membership classifi-
cations. When we have a multiple membership classification, a single lowest
level unit will have a random effect for each ‘classification unit’ they belong
to. Generally, to avoid lowest level units that belong to many classification
units being given too much influence in the model, we assign weights for
each pairing of lowest level unit and classification unit. These weights typi-
cally sum to 1 for each lowest level unit and we can write a simple multiple
membership model of pupils nested in multiple schools as:

yi ~ N(XB,Q)
Yi = PoiToi
Boi = Bo + Z wfj)u(()? + €o;
jE€school (i)

Here we have a classification school and the weight wg? is the weight assigned
to the random effect for school j in the equation for pupil .. What quantities
to use as weights is an interesting question. If we have no information other
than that each pupil went to a particular selection of schools over the period
of their education then equal weights would be logical. If however we know
how long they spent in each school then we could use this information to

create weights proportional to the times spent in each school.

Both of these methods are making an assumption that the effect of a school
is some fraction of the amount of time spent in all schools by each pupil and
hence the weights for each pupil sum to 1. An alternative approach would
be that schools have an instantaneous effect that is equal for all pupils no
matter how long they spend there. We could of course fit this instantaneous
effect by having weights of one for each pupil by school combination but this
will make comparison of the between schools variance and residual variance

difficult.

16.2 Office workers salary dataset

We will consider as an example a simulated dataset meant to represent the
yearly salaries of randomly sampled office workers.

e Select Open Sample Worksheet from the File menu.
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The Names window will appear as follows:

Column Data i Window

Name| Description | Toggle Categorical | | View | Copy | Paste | Delete || view |Cony | Paste | Regenerate || 7 Used columns & | Help
Name |Cn |n [ missing | min [ max [ categorical | description ~
id 1 3022 0 1 3022 False Unigue office worker idenfifying code.

company 2 3022 0 1 141 False Identifying code for company worked for over the last 12 months.
company2 3 3022 0 0 141 False I worked for >1 company over the last 12 months, identifying code for sec
company3 4 3022 0 0 140 False If worked for =2 company over the last 12 months, identifying code for thir
company4 5 3022 0 0 1M False If worked for =3 company over the last 12 months, identifying code for fou
age 6 3022 0 16 65 False Age of worker.

parttime 7 3022 0 0 1 False Part or full-time (0=Fulltime, 1=Parttime).

sex & 3022 0 0 1 False Sex of worker (0=Male, 1=Female).

cons 9 3022 0 1 1 False Constant (=1)

earnings 10 3022 0 24 135.6 False Workers' earnings over the last financial year.

logearn 11 3022 0 0.8754688  4.909709 False Workers' (natural) log-transformed earnings over the last financial year.
numjobs 12 3022 0 1 4 False The number of companies worked for over the last 12 months.

weight1 13 3022 0 1.923077E-02 1 False Proportion of time worked for employer listed in company.

weightz 14 3022 0 0 0.9807692 False Proportion of time worked for employer listed in company2.

weight3 15 3022 0 0 0.8 False Proportion of time worked for employer listed in company3.

weightd 16 3022 0 0 0.4 False Proportion of time worked for employer listed in company4.

ewl 17 3022 0 0.25 1 False Alternative (equal) weighting for k! i

ew2 18 3022 0 0 05 False Alternative (equal) weighting for 2 (if numjobs >1 then 1

ewd 19 3022 0 0 0.334 False Alternative (equal) weighting for 3(if ji =2 then 1

ewd 20 3022 0 0 0.25 False Alternative (equal) weighting for {if i =3 then 1

age-40 21 3022 0 24 25 False Age of worker, centered on 40 years. v

< m bR

Here we have as a response variable earnings, the amount (in thousands of
pounds) that 3,022 workers earned in the last financial year. Most individ-
uals worked for one company although some individuals worked for more,
either because they work part time or because they changed job in the time
period. For these individuals we have information on the names of all (up
to 4) companies they worked for in columns labelled company, company2,
company3 and company4. There are 141 companies in the dataset and
we also have the fraction of time the individuals worked for each company
and this is stored in columns weight1 to weight4. As predictors for salary
we have the individual’s age, sex, the number of jobs they worked on and
whether they worked full or part-time.

We can firstly plot a histogram of the earnings:

The graph will then appear as follows:
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. _ Graph display E@.
6601 [
4401 [ ]
220+
0 i ] i
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As is common with earnings data, the graph shows that the response is highly
skewed to the right with the majority of people earning less than £40,000
while a few individuals earn over £100,000. Therefore it is probably better
to consider a log transformation of the response and instead fit a Normal
model to log.(response).

The column logearn was created via the command CALC 'logearn' =
LOGE ('earnings') and is the (natural) logarithm of earnings. If we now
plot a histogram of this variable instead (by changing the y column to lo-
gearn) we will see the following:

. Graph displei E@.
330+ ] __
220+ B B
110+
0 : I I
1.1 22 3.3 4.4

Here we see a much more Gaussian shape to the histogram suggesting that
this will be a better variable to use as a response in a Normal response model.
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16.3 Models for the earnings data

We will firstly consider fitting some simple regression models to the earnings
data. The two predictors we will consider first are age-40 and numjobs
which represent the age of the workers (roughly centred) and the number of
companies they have worked for in the last 12 months.

Upon finishing the 5,000 iterations we get the following estimates:

logearn, ~ N(XB, )
logearn, = 3, cons, + 0.012(0.001)age-40, + -0.130(0.024)mumjobs,
B, =3-080(0.031) +e,,

[e0] ~NO Q) Q.= [0327(0.009)]

Deviance(MCMC) = 5199.678(3022 of 3022 cases in use)

So we see that older workers earn on average more whilst people who work
for more companies in a year earn on average less. For example the average
40 year old with 1 job earns e>%013=19.1k whilst the average 40 year old
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with 2 jobs earns e3087926=16.8k. Note that due to the log transformation
these estimates will be median earnings rather than means.

If we look at the DIC diagnostic we see that it confirms what we see from
the significance of the predictors, that both predictors are important.

Dbar | D(thetabar) | pD DIC
5199.68 5195.62 | 4.06 | 5203.74 | (age + numjobs)
5228.58 5225.56 | 3.03 | 5231.61 | (age only)
5361.67 5359.66 | 2.01 | 5363.69 | (neither)

We can now consider our two other predictor variables, gender and whether
the person works full or part-time:

Upon convergence we see the following estimates:

logearn, ~ N(XB, ()

logearn, = f3,cons; + 0.011(0.001)age-40, + -0.033(0.024 numjobs, +
-0.212(0.020)sex, +-0.388(0.037)parttime,

fo, = 3.086(0.031) +e,,

[eo] ~NO: Q= Q.7 [o306(0.008)]

Deviance(MCMC) = 4989.960(3022 of 3022 cases in use)

- | Add Term | Estimates | Honlinear | Clear | Notation | Responses| Store

Here we see that both being female (sex = 1) and being a part time worker on
average reduces your salary. It is interesting that putting these two variables
into the model has reduced the negative effect of the number of jobs and
it is now not significant. If we compare the DIC diagnostic for this model
with the previous model, and a model with numjobs removed we see the
following:
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Dbar | D(thetabar) | pD DIC
4989.96 4983.98 | 5.98 | 4995.94 | (this model)
5199.68 5195.62 | 4.06 | 5203.74 | (age + numjobs only)
4990.83 4985.82 | 5.01 | 4995.84 | (numjobs removed)

So it seems that the numjobs predictor is not important. If we now look at
the correlations between the predictors:

Correlations
parttime | sex numjobs
parttime | 1.0000
sex 0.0399 1.0000
numjobs | 0.2908 0.1014 | 1.0000

We can see here that there are (small) positive correlations between numjobs
and both sex and parttime and so the significant effect for numjobs in the
earlier model was a surrogate for the actual effects due to gender and part-
time/full-time.

16.4 Fitting multiple membership models to
the dataset

We can now consider accounting for the effects of the various companies on
the earnings of the employees. If we look at the distribution of the number
of jobs variable:

1 2 3 | 4| TOTALS
N | 2496 | 472 | 52 | 2 | 3022

We can see that in our dataset changing company is not a common phe-
nomenon and so we could firstly fit a simple 2-level model that accounts for
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only one company per individual. This would be the type of model we would
have to fit if, for example, we only collected the current employer for each
individual. For our dataset we will consider just fitting the company that
appears in the column company which will be the first in numerical order
of the companies each individual works for.

After running for 5,000 iterations the results are as follows:

logearn, ~ N(XB, Q)
logearn; = 3,cons, + 0.011(0.001)age-40, + -0.212(0.019)sex, +
-0.400(0.033)parttime,

Bor =3.03900.024) +u) . +e,,

EG— ~NO, Q) : Q= [0.052(0.008)]

[e0] ~NO Q5 Q7 [025300.007)]

Deviance(MCMC) = 4421.617(3022 of 3022 cases in use)

- | Add Term | Estimates | Honlinear | Clear | Hotation | Responses| Store

So here we see that the first company of each employee explains 0.052/(0.052+0.253)
= 17% of the remaining variation. If we look at the DIC diagnostic:

Dbar | D(thetabar) pD DIC
4421.62 4311.72 | 109.90 | 4531.52
4990.83 4985.82 5.01 | 4995.84 | (no random effects)

Here we see that the random effects have reduced the DIC by over 400 and
so are very important. There are also 110 — 5 = 105 effective parameters
for the 141 actual random effects so there are many important and distinct
company effects.

If we now want to fit the multiple membership model we need to use the
classifications window that we looked at in the last chapter:
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The window should look as follows:

Cross Classified Models
Treat levels as cross-classified v

Multiple Classification Level 2 I3

Mumber of colurmnns I 4
Weights start Column Iweighﬂ .l

Dore

We now need to click on the Done button to apply the settings. Note that
MLwiN assumes that the identifier columns are in sequential order, so in this
example company (column c2) contains the first set of identifiers and the
other three sets must be in the columns c3—c5 respectively. The same is true
for the weight columns with columns ¢c13—c16 named weightl to weight4.
Note that if an observation is associated with less than 4 companies then
both the identifier and weight for the extra companies should be set equal to
zero. We have here used a system of filling in the end columns with zeroes
although the order of the columns does not matter, as long as the ith weight
column matches up with the ith identifier column.

After running for 5,000 iterations we get the following estimates:
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logearn, ~ N(XB, Q)

logearn, = ,,cons, + 0.011(0.001)age-40, + -0.217(0.019)sex,, +
-0.404(0.032)parttime,

Boy =3.040(0.025) + 5, WU + e,

0

(4D ] O o) o= [0.059(0.009)]

[e0] ~NO Q)1 Q= [0247(0.006)]

Deviance(MCMC) = 4354.605(3022 of 3022 cases in use)

- | Add Term | Estimates | Honlinear | Clear | Notation | Responses | Store

So accounting for all the companies explains 0.059/(0.059+0.247) = 19.3%
of the variation. More importantly if we look at the DIC diagnostic we
see that the DIC diagnostic has been reduced by over 60 and the number
of effective parameters has increased, suggesting again many important and
distinct company effects.

Dbar | D(thetabar) pD DIC
4354.60 4240.64 | 113.97 | 4468.57
4421.62 4311.72 | 109.90 | 4531.52 | (no MM)

16.5 Residuals in multiple membership mod-
els

We can look at the individual company effects via the Residuals window.

The residual graphs will then appear as shown below. Interestingly a couple
of the companies with the highest residuals look like potential outliers.
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B Graph display E@.
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Looking at a plot of the (raw) residuals against normalized scores also shows
similar behaviour:

5 Graph display E@.
i A

-0.4+

-2.8 -2.1 -1.4 -0.7 0 0.7 1.4 2.1 2.8
nscore

We can consider fitting separate terms for these two companies and treating
these as fixed effects. Clicking on their residuals identifies them as companies
54 and 67. Normally we could use the graph window to create dummy vari-
ables for these two companies, but we cannot currently do this for multiple-
membership models as MLwiN would currently only select individuals who
have company = 54 (67) and ignore the other 3 potential companies. We can
however currently create the two columns using the Command Interface
window.

e Open the Command Interface window from the Data Manipu-
lation menu.
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Upon running for 5,000 iterations we get the following estimates:

logearn, ~ N(XB, Q)

logearn, = 3,cons, + 0.011(0.001)age-40, + -0.217(0.019)sex, +
-0.411(0.032)parttime, + 0.748(0.187)companyno54, +
0.851(0.209)companyno67,

Bo: =3-028(0.022) + 3, ooamV G + €,

[u%_)c Wﬂ] ~NO, ) : 0f = [0_045(0_007)]

[eo] ~NO- Q) Q= [02480.007)]

Deviance(MCMC) = 4356.696(3022 of 3022 cases in use)

Here we see that the two companies both have large positive coefficients and
the company level variance has reduced from 0.059 to 0.045. If we look at
the DIC diagnostic for the new model we see that it has been reduced by a
further 4 suggesting this is a slightly improved model:

Dbar | D(thetabar) pD DIC
4356.70 4248.63 | 108.07 | 4464.77 | (with 2 additional fixed effects)
4354.60 4240.64 | 113.97 | 4468.57 | (with all random effects)
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16.6 Alternative weights for multiple mem-
bership models

We have so far used weights that are proportional to the time spent in each
job and, as this is a simulated dataset, these were the weights that were
actually used to generate the response variable. It is possible however to
consider using other weightings, for example we could look at the effect of
using equal weights so that each company you work for has an equal effect
on your final salary.

Upon running for 5,000 iterations we get the following estimates:

logearn, ~ N(XB, ())

logearn, = 3,,cons, + 0.011(0.001)age-40, + -0.216(0.019)sex, +
-0.411(0.033)parttime, + 0.774(0.193)companyno54, +
0.849(0.212)companyno67,

Bo: =3-027(0.023) + X' oam 11 + €

(12 mpens] =N aP) - QP = [0.045(0.007)]

[eo] ~NO Q= Q.= [0.2490.007)]

Deviance(MCMC) = 4369.362(3022 of 3022 cases in use)

- | Add Term | Estimates | Honlinear | Clear | Notation | Responses | Store

The estimates are not greatly different from those we got when using the pro-
portional weights earlier. This is probably because few respondents change
job. However if we now look at the DIC diagnostic we see:

Dbar | D(thetabar) pD DIC
4369.36 4261.93 | 107.43 | 4476.80 | (equal weights)
4356.70 4248.63 | 108.07 | 4464.77 | (proportional weights)
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So we can see that the equal weights give a DIC that is 11 higher, which
suggests that this is a worse model. This is not surprising given that we used
the proportional weights to generate the response. However this shows that
the DIC diagnostic is useful for choosing between possible weighting systems.

16.7 Multiple membership multiple classifi-
cation (MMMC) models

In the past two chapters we have considered both cross-classified and multiple-
membership models. Of course we can think of models that combine both
these advancements in one model. For example in our above analysis we may
also have information on what secondary school the workers attended and
use this as a classification that is crossed with the multiple-membership clas-
sification for companies. We call such models multiple membership multiple
classification (MMMC) models and Browne, Goldstein & Rasbash! (20014
give general MCMC algorithms for fitting such models. In their paper you
will find two large examples from veterinary epidemiology and demography,
which are too large to include in this manual. We will however consider the
third example on Scottish lip cancer in the next chapter where amongst other
models we will fit an MMMC model.

One other innovation in |Browne et al.| (2001a) is the classification diagram’.
When fitting MMMC models using MCMC estimation, knowledge of nesting
relationships is not needed to implement the algorithms. For a simple sum-
mary of the model, however, it is useful to see the nesting relationships and
so we advocate the use of a ‘classification diagram’. A classification diagram
consists of boxes to represent each classification with arrows to represent
nesting between two classifications, single arrows for single membership re-
lationships and double arrows for multiple membership relationships.

Below are classification diagrams for the two examples in the last two chap-
ters.

Primary School Secondary School Company

A

A

Pupil Worker
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Chapter learning outcomes

What is meant by a multiple membership model.

How to transform and fit earnings data.

*
*

* How to fit a multiple membership model in MLwiN.

* How to look at residuals in a multiple membership model.
*

How to compare alternative weighting schemes.

* What is meant by an MMMC model and a classification diagram.
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Chapter 17

Modelling Spatial Data

In this chapter we will consider one particular dataset that has a spatial
structure and discuss what models we can fit to such a dataset. The term
spatial data will mean different things to different people. Here we will be as
general as possible and consider collecting data at a variety of sites and also
collecting some measure of the location of the sites. Of course we can analyse
spatial data in the same way as any other dataset, for example in Chapter 11
we considered counts of melanoma mortality for different areas (locations)
and simply fitted variance components models. However generally when we
have spatial data we also wish to account for the effects of the locations.

How we adjust for location will depend on whether we have single obser-
vations at particular locations or estimates for contiguous areas. We can
account for the effect of location in the first case by simply fitting func-
tions of position, for example fitting polynomials in orthogonal directions or
by considering point-process modelling. In the second case we are usually
interested in fitting models that account for spatial correlation.

In earlier chapters we have considered fitting two level nested models and
here we are assuming a correlation between individual level one units in the
same level 2 unit. In a spatially correlated model we assume that the corre-
lation between observations is some function of the spatial distance between
them. In this chapter we will consider an epidemiological dataset of lip cancer
incidence in Scotland.

17.1 Scottish lip cancer dataset

The dataset consists of observed counts of male lip cancer for the 56 regions of
Scotland over the period 1975-1980 and was analysed in |Clayton & Kaldor
(1987). Research has focused on the effect of sun exposure on lip cancer
deaths using the surrogate measure, percentage of the workforce working in
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outdoor occupations. The data are stored in the worksheet lipsl.ws. First
we will open up the worksheet and look at the variable names.

Here we see that for each of the 56 regions (area) we have observed cases
of lip cancer (obs) and an expected count based on population size and mix
(exp). As in the Melanoma example in Chapter 11 we have calculated the
log of the expected count and this can be found in the column offs. The
predictor of interest is perc_aff, which is the percentage of the region who
work in agriculture, fishing and forestry and which ranges from 0% to 24%.
We also have the neighbourhood structure for the regions, which is stored
in columns neighl to neighll. Each region borders up to 11 other regions
and the region numbers are stored in these columns.

!ie:w |Cupy| Paste | Regenerate |

Data Window
|| View | Copy | Paste | Delete | [~ Usedcolumns o ﬂelp‘

If i |mnx |calego'nl|descr'pliun | -~
area 1 56 0 1 56 False Region ID.
cons 2 56 0 1 1 False Constant (=1).
obs 3 56 0 0 39 False ‘Observed cases of lip cancer.
exp 4 5 0 11 8e7 False Expected count.
perc_aff & 56 0 0 24 False Percentage of the region who work in agriculture, fishing and forestry.
offs 6 56 0 0.0953102 448526 False Log of the expected count.
denom 7 56 0 1 1 False Denominator (=1).
neigh1 8 56 0 1 44 False First neighbours.
neigh2 a 5 0 0 46 False Second neighbours.
neigh3 10 56 0 0 55 False Third neighbours.

17.2 Fixed effects models

We will firstly fit a simple constant risk model, which assumes that there is
an underlying risk of getting lip cancer which is constant across the whole
population and any deviations from this risk in particular regions are simply
random Poisson variation. Note that in this chapter we will again use the
notation introduced in Browne, Goldstein & Rasbash (2001al). We can set

up this model as follows:
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Note that here we have set up the response and its Poisson distribution. We
have also defined the (potential) full structure of the dataset, which is not
important for this first model but will be used later. Both classifications 1
and 2 are defined as area because there is only 1 observation per area and
so classification 2 will be used to account for over-dispersion in later models.
We have also defined the offset parameter to be offs. We now need to set up
the predictor variables. We will start with just an intercept term.

As always we will run the model using IGLS first for starting values.

When the 5,000 iterations are finished we get the following estimates:

obs, ~ Poisson( 1)
log(7,) = offs, + -0.001(0.043)cons,

var(obs | 1) = 71,

PRIOR SPECIFICATIONS

p(ﬂo} a l
Deviance(MCMC) = 589.712(56 of 56 cases in use)
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We see that the estimate of the fixed effect is approximately zero. All this
is saying is that on average the observed count equals the expected count,
which is to be expected. This is because the offset is the expected count. If
instead the offset had been the number of people in the population at risk
then the intercept would equal the observed log-rate. More importantly we
get an estimate of the Poisson deviance for the model and we can get the
DIC diagnostic for this model from the Model menu:

Dbar | D(thetabar) | pD | DIC
589.71 588.70 | 1.01 | 590.72

We have one covariate of interest, perc_aff which is the percentage of the
population working in outdoor activities and we can add this to the model
as follows:

We can now run this model:

When the estimation finishes we get the following estimates:

obs, ~ Poisson( 1)
log(z;) = offs, + -0.542(0.068)cons, + 0.074(0.006)perc_aff,

var(obs |1) = 1,

PRIOR SPECIFICATIONS

p(ﬂo) oL 1

P(ﬂ Da l
Deviance(MCMC) = 448.575(56 of 56 cases in use)

- | Add Term | Estimates | Nonlinear | Clear | Notation | Responses

Here we see that the percentage of workers in agriculture, forestry and fishing
is a significant predictor of lip cancer incidence with a positive association.
This model fits a lot better as the DIC diagnostic shows:
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Dbar | D(thetabar) | pD | DIC
448.58 446.60 | 1.98 | 450.55 | (with predictor)
589.71 588.70 | 1.01 | 590.72 | (without predictor)

17.3 Random effects models

As with the melanoma example in Chapter 11 the next step is to consider
fitting random effects to explain the remaining variation in the data. The
simplest model here is to fit a variance components model where each region is
given an (exchangeable) random effect, and these random effects are assumed
to have a Normal distribution. This will now mean that for our 56 data
points we are fitting 58 parameters (2 fixed effects and 56 random effects) but
this is allowed as the random effects are linked by their Normal distribution
assumption, so in terms of effective parameters we are fitting less than 58
parameters.

As we also saw in Chapter 11, Poisson models often produce highly auto-
correlated chains and so for the rest of the models in this chapter we will
increase the lengths of the stored MCMC chains to 50,000. We will consider
methods of improving mixing of chains for Poisson models in later chapters.
To fit the variance components model we need to do the following:

Upon completion of the 50,000 iterations we will get the following results:
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B Equations EE.

obs, ~ Poisson( z,)
log(7,) = offs, + f3,,cons, +0.068(0.014)perc_aff,
Bo; = -0.487(0.163) + u

0,area(f)

(4 es] ~ N Q) o= [0385(0.112)]

0,area(l
var(obs | 1) = 7,

PRIOR SPECIFICATIONS

p(ﬁo) a l

p(fa l
p(1/03 ) ~ Gamma(0.001,0.001)

Deviance(MCMC) = 270.456(56 of 56 cases in use)

|ﬂame + | - | Add Term | Estimates | Nonlinear | Clear | MNotation | Responses| Store ‘

Here we see the variance of the random effects appears to be quite large
(0.384) and the deviance has been reduced considerably. To compare the
models we can look at the DIC diagnostic:

Dbar | D(thetabar) pD DIC
270.46 230.67 | 39.79 | 310.24 | (with random effects)
448.58 446.60 | 1.98 | 450.55 | (with no random effects)

The DIC diagnostic is reduced by 140 suggesting a substantially improved
model, and we can also see that the 58 parameters translate to only 40
effective parameters.

17.4 A spatial multiple-membership (MM) model

We have so far not taken account of the spatial relationships in the dataset
apart from assuming the areas are separate entities. In the lip cancer data
the only spatial information we have is a list of which regions border each
other. In other words we have, for each region, its nearest neighbours. We
will therefore consider two sets of random effects in our model. Firstly we
will consider the exchangeable area random effects that we have already fitted
and then a multiple membership set of random effects for the neighbours of
each region. This means that the rate of lip cancer in each region is affected
by both the region itself and its nearest neighbours.

This model can be set up as follows:
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The Classification information window should now look as follows:

Cross Classified Models
Treat levels a: cross-classified v

Multiple Clazzification Level 2 : |

Cpatial Classification [CAR) Level 2 [

Iultiple Clazzification level 3 : I

Mumber of columng I 11
weights stark Column Iweight'l ,I

The weight columns contain equal weights for each neighbouring region that
sum to 1. This means that a region with four neighbours will have weights
of 0.25 for the four neighbouring regions (stored in columns weightl to
weight4 with zeroes in the columns weight5 to weight11). As in the last
chapter the neighbouring region identifiers are stored in sequential columns
starting from neighl and there are at most 11 nearest neighbours for each
region.

To run the model we now need to do the following:

After the 50,000 iterations have run the results will be as follows:
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B Equations EE.

obs, ~ Poisson( z,)
log(z,) = offs, + f3,,cons, +0.049(0.015)perc_aff,
Bo =-0-289(0.211) + 7 ng:‘crkf[.r}“'.g_gf}ﬂ [;? tu [Erji:rea[:}

[H[g_.}neighf[:] ~N(©, Qf}) : Qf}z [1.17"5(0.503)]

[u@} ] ~NO, ) : QF= [0.063(0.061)]

0, area(f)

var(obs | 1) = 7,

PRIOR SPECIFICATIONS

(B o 1

P(f)a 1

p(1/Q5,) ~ Gamma(0.001,0.001)

p(1/0) ) ~ Gamma(0.001,0.001)
Deviance(MCMC) = 269.469(56 of 56 cases in use)

|ﬂame + - | Add Term | Estimates | Honlinear | Clear Notation | Responses| Store ‘

The deviance for this model is reduced slightly but we have added another
set of 56 random effects making a total of 114 parameters for 56 data points!
Interestingly, if we look at the DIC diagnostic, adding this second set of
parameters actually reduces the effective number of parameters:

Dbar | D(thetabar) pD DIC
269.47 236.20 | 33.27 | 302.74 | (exchangeable + MM)
270.46 230.67 | 39.79 | 310.24 | (exchangeable random effects only)

The DIC diagnostic shows that this model is a large improvement on the
last model. To explain the reduction in effective parameters, comparing the
last models it can be seen that the variance associated with the exchangeable
random effects is greatly reduced by the addition of the second set of effects.
As the effective number of parameters for these random effects lies somewhere
between 0 and 56 and a variance of 0 would be equivalent to an effective
number of parameters equal to zero, then a reduction in the variance implies
a reduced effective number of parameters. Obviously this has to be balanced
by the additional parameters due to the second set of random effects and so
here the reduction must be greater than the effective number of parameters
introduced by the additional set of random effects.

Langford et al.| (1999)) described the use of multiple membership models in
spatial applications using pseudo-likelihood methods. They also extended



17.5. OTHER SPATIAL MODELS 257

the model to include a correlation between the two sets of random effects.
This extension could also be done using MCMC but is currently not available
in MLwiN.

17.5 Other spatial models

There are more standard ways of fitting spatial models using MCMC to
Poisson data and these are based on the conditional autoregressive (CAR)
prior (Besag et al., [1992)) that was originally used in image analysis. These
priors were used on the Scottish lip cancer dataset originally in Breslow &
Clayton (1993).

The CAR prior is a spatial smoothing prior and CAR models differ from
the multiple membership (MM) model we have just looked at because the
individual random effects are not independent. We can write a CAR model
as follows:

obs; ~ Poisson(m;)

loge(ﬂ-i) = 10ge<expi) + XZ/BQ + u(2)

areali

(2 ~(2) 2
U’area[i] ~ N<uaream7 Uu(2)/rarea[z’])
—(2 2 2
where uz(ar)ea[i] = Z wz(ar)ea[i],j Ug )/ Tarea[i]

j€neighbour(areali])

This model has only one set of random effects, although it is also possible
to fit a model with an additional set of exchangeable random effects as we
will show later. The difference between the CAR model and the MM model
is that whilst the MM model has rarea[ random effects for each observation,
where 7areajj] is the number of neighbours for region 7, the CAR model has one
random effect for each observation. These random effects have as expected
value the average of the surrounding random effects. Note to make the CAR
model identifiable we either need to constrain the random effects to sum to
0 or remove the intercept from the model (as shown above).

17.6 Fitting a CAR model in MLwiN

CAR models are not standard multilevel models and so have only been added
to MLwiN for the MCMC methods and haven’t been extensively tested. We
therefore suggest you compare the results produced for any CAR model with
the results from the WinBUGS package. To set up the above CAR model
we need to do the following:
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The Classifications window should now look as follows:

Treat levels as cross-classiied W

Cross Classified Models
’7 Mean Centre random effects [

Multiple Clazsification Level 2 : —

Spatial Classification [CAR] level 3: [V

MNumber of calumns I 11
Weights start Column Iwcan - I
1D start Coluran Ineigh1 VI

Done

Note that previous versions of MLwiN only allowed one set of CAR residuals.
In this version of MLwiN you can mean centre the random effects and in
this case more than one set of CAR residuals are permissable. Also for the
CAR model (unlike the MM model) we must give the column for the first
set of neighbours on this screen as the classification given in the Equations
window now gives the actual area codes for each observation. This is because
for CAR residuals we need to know both the neighbouring regions and the
actual region, whereas MM residuals are not always used for spatial models
and hence do not always have an associated actual classification (see example
in Chapter 16). Also the CAR procedure typically uses weights of 1 for
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all observations, as these weights will then be divided by the number of
neighbours in the model (n;).

We now need to run this model:

e (Click on the Done buttons on the Classification information win-
dow.

e Click on the Start button.

After the 50,000 updates have run we get the following results:

5. Equations (===
obs, ~ Poisson( 7))
log(z,) = offs, + 0.036(0.013)perc_aff, + zz[gr}ama[!}cons!

® N ey Q0 10ep) + QL= [0.535(0.191)]

0,areal(i)

u

® /0

7G) = ,
u 0.arealf) st neigkbow@ea[:})“area(f}aru 0 " arealt)
var(obs,|z,) = 7,

PRIOR SPECIFICATIONS

p(AP o !

p(1/Q),) ~ Gamma(0.001,0.001)
Deviance(MCMC) =268.831(56 of 56 cases in use)

|ﬂame + | - | Add Term | Estimates | Nonli Clear | Notat Resp Store | Help |Zoom| 100 j|

If we compare this model to the multiple membership model via the DIC
diagnostic we get the following estimates:

Dbar | D(thetabar) pD | DIC
263.83 210.47 | 28.36 | 297.10 | (CAR model)
269.47 936.20 | 33.27 | 302.74 | (MM model)

Here we can see that the CAR model shows an improvement of 5 over the
multiple-membership model. Browne, Goldstein & Rasbash| (2001a)) did
some other comparisons between the CAR and MM models on the lip cancer
dataset and also found a slight improvement with the CAR model.

Here we see that we get an estimate for the effect of the outdoor activity
predictor and the variance of the CAR residuals but no estimate for the
intercept. We can still get a point estimate for the intercept by calculating
the residuals and finding their average.



260 CHAPTER 17.

The following results will appear:

N | Missing | Mean s.d.
¢300 | 56 | 0 -0.21058 | 0.58506

So we see the intercept estimate is —0.211. (Note the s.d. here does not
correspond to the standard error for this parameter).

We can now consider fitting this model in WinBUGS. To save the worksheet
in WinBUGS format we need to do the following:

If we now start up WinBUGS and read in the file car.bug as a text file (from
the directory it was saved) we will see the following (note you will need to
change the Files of type box to All files (*.*) to see the file car.bug) :

#WINBUGS 1.4 code generated from MLwiN program

#--—-MODEL Definition-------------=--

model

{

# Level 1 definition

for(i in 1:N) {

obs[i] ~ dpois(mul[i])

log(mul[i]) <- offs[i] + betal[l] * perc_aff[i]

+ carmean + u3[areal[i]] * cons[i]

}

# Higher level definitions

u3[1:n3] ~ car.normal(adj[],weights[],num([],tau.ul3)
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# Priors for fixed effects
betal[l] ~ dflat()

carmean ~ dflat()

# Priors for random terms
tau.u3 ~ dgamma(0.001000,0.001000)
sigma2.u3 <- 1/tau.u3

}

Here we see the model definition has the special function car.normal that
defines the CAR residuals and accounts for the weights and neighbouring re-
gions. The BUGS code also monitors the intercept, which is called carmean
in the above code.

Note that the BUGS examples volume II (Spiegelhalter et al., [20000) also
contains this lip cancer example dataset.

We can now set up the model and load in the data and initial values via the
Specification window available from the Model menu (see Chapter 7 for
details). We will monitor the parameters beta, carmean and sigma2.u3
by using the Samples window available from the Inference menu. Here you
should also change the beg box to 501 to allow a burnin of 500 iterations.

Now select the Update window from the Model menu and modify the
number of updates to 50,500 (500 for the burnin) and click on the Update
button.

Once the updating has finished we can use the Samples window to get
estimates. If we type * in the node box and click on stats we get the
summary statistics for all monitored parameters as shown below:

node mean sd MC error 2.5% median  97.5%
beta[l] 0.03494 0.0131 2.802E-4 0.008248 0.03521 0.05976
carmean -0.2036  0.1201 0.00249 -0.4365 -0.2037 0.03364
sigma2.u3 0.5671 0.2001 0.002295 0.2702 0.5359 1.042

Here we see a reasonable agreement with the MLwiN estimates and we ad-
ditionally get the standard error for the intercept term.

17.7 Including exchangeable random effects

As was mentioned earlier we can extend our model to include exchangeable
random effects as we did for the multiple membership model. This model is
often described as a convolution model (Besag et al., |1992). To set up the
model in MLwiN we need to do the following:
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Upon completion of the 50,000 iterations the estimates are as follows:

obs, ~ Poisson( z;)
log(z;) = offs, + 0.037(0.013)perc_aff, + u%_::wmmconsi + u(g?maconsi

e G0 . o0
”(g?amca] N#o zreatyr Q' Taroat) * [0.490(0.191)]

-(3) — 3) s ,43)
U areay = Zjensightourarea(n)Warsa(n 1 0/ Taroatt

[45ects ] ~NO. 0D : 0f= [0.023(0.032)]

var(obs,|z) = 7,

PRIOR SPECIFICATIONS
p(B)a l

p(1/05) ) ~ Gamma(0.001,0.001)

p(1/Q) ) ~ Gamma(0.001,0.001)
Deviance(MCMC) = 268.003(56 of 56 cases in use)

The deviance has been reduced slightly but if we look at the DIC diagnostic
we see that this model is slightly worse due to its added complexity, although
there is not much difference in DIC value.

Dbar | D(thetabar) pD | DIC
268.00 238.38 | 29.63 | 297.63 | (Convolution model)
268.83 240.47 | 28.36 | 297.19 | (CAR model)

17.8 Further reading on spatial modelling

There is a very large literature in spatial statistics and here we have only

mentioned a few of the possible spatial models. (1996) gives a good
overview of spatial modelling of epidemiology data from a Bayesian perspec-

tive. [Lawson et al| (1999) and [Elliott et al.| (2000) are also good books on
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the subject of spatial epidemiology. WinBUGS has an add-on package called
GeoBUGS (Thomas et al., 2000), which includes further features in spatial
modelling including facilities to read in data from maps. |Lawson et al.| (2003)
gives further details of fitting spatial models in both MLwiN and WinBUGS.

Both WinBUGS and MLwiN use univariate updating routines for Poisson
models and CAR models are one class of models where the block-updating
Metropolis methods of Rue| (2001]) can be used efficiently (see Knorr-Held &
Rue, 2002). We also consider other methods for improving mixing in Poisson
models in chapters 23 and 25.

Chapter learning outcomes

*

How to fit various spatial models to datasets.

*

How to extend the multiple membership model to spatial applica-
tions.

What a CAR model and a convolution model are.

How to fit CAR models in both MLwiN and WinBUGS.

How to compare various spatial models using the DIC diagnostic.

*

*

*
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Chapter 18

Multivariate Normal Response
Models and Missing Data

We have so far concentrated on problems where we have one distinct ‘re-
sponse’ variable that we are interested in and any other variables in our
dataset are treated as predictor variables for our response. Whether a vari-
able is chosen as a predictor or a response in an analysis generally depends
on the research questions that we have formed. Sometimes factors such as
collection time will govern our choice, for example in the tutorial dataset it
would not make much sense to treat the exam scores at 16 as predictors for
the London reading test scores which were taken five years earlier.

We may find however that our research questions result in us identifying
several variables as responses. We could then fit models to each response
variable in turn using the techniques we have so far discussed. This will result
in separate analyses for each response variable, but we may also be interested
in correlations between the responses. To investigate these correlations we
would have to fit the responses as a multivariate response vector.

Another area where multivariate modelling is useful is the treatment of miss-
ing data. Generally when we fit a univariate model with missing responses,
the missing data have to be discarded unless we make some additional as-
sumptions and impute values for them. In multivariate modelling we will
often have incomplete response vectors but we can still use such data by
imputing the missing responses using the correlations that have been found
from the complete records (see later).

In this chapter we will firstly consider a dataset with two responses and com-
plete records for every individual. This dataset is a subset of a larger dataset,
which also includes individuals who have one or other response missing. We
will then analyse the complete dataset. We finally look at a dataset with
more variables and show how we can use a multivariate multilevel model to
perform multiple imputation (Rubin, [1987)). In this chapter we will consider

265
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continuous responses only but will consider how to deal with other response
types in Chapter 19.

18.1 GCSE science data with complete records
only

We will firstly consider a dataset of pupils’ marks from the General Certificate
of Secondary Education (GCSE) exams taken in 1989. The examination
consisted of two parts, the first being a traditional written question paper
(marked out of 160 but rescaled to create a score out of 100) and the second
being coursework assignments (marked out of 108 but again rescaled to create
a score out of 100). The dataset consists of data on 1905 students from 73
schools in England although we only have complete records on 1523 students.
First we will open up the worksheet and look at the variable names:

The variables will then appear as follows:

Column Data Ci i Window

Name| Description | Toggle Categorical | ‘ @ Copy | Paste | Delete || wiew |copy | Paste | Regenerate | | I Used columns  a| Help ‘
Name |Cn |n | issil |mi|| |mnx Im‘ i '|dmr‘|:‘= | ~
school 1 1523 0 20920 84772 False Identifying code for each school {level 2 unit).

student 2 1523 0 1 5516  False ldentifying code for each pupil (level 1 unit).

female 3 1523 0 0 1 False Gender of pupil, with levels (0=Male, 1=Female).

written 4 1523 0 0.625 90 False Exam score.

csework § 1523 0 9.2503 100 False Coursework score.

cons 6 1523 0 1 1 False Constant {=1). w

Here we see the two response variables, written and csework, identifiers
for the student and the school for each observation and one gender-based
predictor variable female. As with analysis of univariate responses we can
start by considering simple summary statistics and single level models.

We will first look at some summary statistics for the two responses:

The window should now look as follows:
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If we now hit the Calculate button we will get the following estimates:

Operation
" Averages
&+ Correlation

[~ ‘“weights Column
[~ Store in

Help

B3+ Averages and Correlation E o .

school
student

£

= Output B
-=CORMatrix 2 "written® 'o=zework’
1523 observations
Means
written csework
46.937 T3.425
£.D."'=s
written osework
13.4592 16.436
Correlations
written csework
written 1.0000
oczework 0.474% 1.0000

¥

zmm| 100 -| Copy as table

| Clear |

Include output from system
generated commands
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So here we see that the average coursework marks are higher than the written
marks, coursework marks are more variable than written marks and there is
a fairly high positive correlation (0.475) between the pairs of marks.

18.2 Fitting single level multivariate models

To fit multivariate models in MLwiN the software needs to create the correct
format for the data. In earlier versions of MLwiN this was done via a special
Multivariate window but now can be done directly via the Equations
window. Perhaps the simplest multivariate model we could fit would simply
replicate the summary statistics above and we will now show how to construct
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such a model.

The Responses window should now look as follows:

school
student
female

¥ Full level 2 covariance matris

Daone

The Y variable window will now appear and indicates that one level has
been set up with identifiers in a column labelled resp_indicator. As ex-
plained in the User’s Guide to MLwiN, the IGLS algorithm in MLwiN fits
multivariate models by the clever trick of considering them as univariate
models with no random variation at level 1 (an additional level which is cre-
ated underneath the individual level). This can be achieved by transforming
our original data by replication and pre-multiplication by indicator vectors
that identify which variable is associated with each response. Note that this
is done automatically by the software if we set up more than one response
variable.

For example if we have the two equations

Written; = Cons X 31 + uy;

Csework; = Cons X 35 + uo;

then we can stack the two response columns into one response column as
follows:

Resp,, = I(r = 1)xConsx f1+1(r = 2)xConsx fo+1(r = 1) Xuy+1(r = 2)xusg;



18.2. FITTING SINGLE LEVEL MULTIVARIATE MODELS 269

Here r is 1 for a written response and 2 for a coursework response and the
function I(z) is equal to 1 if x is true and 0 otherwise.

To set up a single-level multivariate model we now need to specify the indi-
vidual level identifiers and the intercept terms in the Equations window (as
we would for a univariate model):

The Specify term window will then look as follows:

arder I i] 'l [~ polynomial

variable

cong

centring

* uncentred by groups defined by I vI
i grand mean  around value |

add Seperate | add Common
coeflicients coefficient

LCancel |

As you can see there are two options for adding terms into the multivariate
model. Firstly, as we will use here, we can add Separate coefficients
which will add one term to each response equation. Alternatively we can
use the add Common coefficient option, which allows the user to specify
which responses will share a common term. This is useful if we have several
responses that we believe have the same relationship with a given predictor.

Click on the add Separate coefficients button and we will see the following:

resp i = ﬂOCl‘.)IlS.Wl'lﬂBﬂg

resp 2 = ﬂ ICOHS.CSBWOII(E

(0 of 0 cases in use)

- | Add Term | Estimates | Honlinear | Clear | Notation | Responses

We now need to specify the random part of the model:
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This will produce (after clicking on the + and Estimates buttons twice) the
following IGLS estimates:

resp lij(XB, Q)

resp ,, ~ N(XB, Q)

resp ;. = 5, cons.written,
Boy =46.937(0.346) +u,,
resp 5, = ,,cons.csework;
By, =73.429(0.421) +u,,

181.923(6.593)
105.248(6.287) 269.975(9.783)

Here if we compare our results with the earlier summary statistics we see that
the means are represented in the model by the fixed effects. The variance
matrix in the model at level 2 will give variances that are approximately equal
to the square of the standard deviations quoted earlier. Note however that
IGLS is a maximum likelihood method and so the variances here are based
on a variance formula using a divisor of n whilst RIGLS and the standard
deviations earlier use a divisor of n — 1 (i.e. we get exactly the same results
as before if we switch to RIGLS). The covariance here can also be used along
with the variance to give approximately the same estimate for the correlation
quoted earlier.

If we now want to fit this model using MCMC we need to do the following:

After the 5,000 iterations have run we get (after pressing the + button once
again) the following estimates:
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B Equations EE.
resp |~ N(XB, O)

Tesp 5 ~ N(XB, )

resp ;= focons .writteng
Bo = 46.941(0.345) + u 0
respy; = ﬁljcons.csework{,
By = 73.432(0.424) + u i

Uyl ~N@©, Q) : Q,= |182.269(6.638)
Uy 105.412(6.216) 270.570(9.897)

PRIOR SPECIFICATIONS
p(By) o 1
p(f) a1
p(Q,) ~ inverse Wishart ,[2*S 2], §,= | 181.923
|:105.248 269.975:|

Deviance(MCMC) = 24711.268(3046 of 3046 cases in use)

|ﬂame + | - | Add Term | Estimates Clear | Notation | Responses| Store | Help |Zoom|10’0 j|

Here we see that MCMC gives slightly larger variance estimates but this is
mainly because the estimates are means rather than modes and the parame-
ters have skew distributions. As with univariate models we can now use the
DIC diagnostic for model comparison. The deviance formula for multivariate
Normal models is:

N
— (yi — 9:)7 5, (i — )
=1

N 1 .
Deviance = Y log(27) — 3 log ‘Zu

Selecting MCMC /DIC diagnostic from the Model menu we get the fol-
lowing;:

Dbar | D(thetabar) | pD DIC
24711.27 24706.25 | 5.02 | 24716.29
25099.52 25095.50 | 4.02 | 25103.54 | (separate models)

Here as with other one level models the pD diagnostic corresponds almost
exactly to the correct degrees of freedom. We can compare this model with
a model that assumes no correlation between responses and hence separate
models for each response and we see a large reduction of DIC.
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18.3 Adding predictor variables

As with single response models we can now add predictor variables to our
model as fixed effects. In this dataset we only have one additional predictor,
the sex of the individual students. To add new variables into a multivariate
model we need to use the Add Term window.

This will add the additional two fixed effects, one to each of the response
equations. We can now run the model:

After running for 5,000 iterations we get the following estimates:

resp ; ~ N(XB, )

resp  ~ N(AB, Q)

resp ;= ﬁojcons.wriﬂnnﬁ + -3.327(0.698)["emale.wriﬂnn?.
Boy =48.895(0.537) + u,,

tesp ,; = fycons.csework, +6.257(0.841)female.csework
By, =69.739(0.650) +u,,

uy| ~N@©, Q) : Q,= |179.765(6.604)
uy, 110.675(6.339) 261.637(9.553)

PRIOR SPECIFICATIONS
p(By) a1
p(p) a1
p(f) a1
p(B:) a1
p(Q,) ~ inverse Wishart ,[2%8 2], S, = [179.228
|:110.285 260.558:|

Deviance(MCMC) = 24566.185(3046 of 3046 cases in use)

- | Add Term | Estimates | Honlinear | Clear Notation | Responses| Store
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Here we see that girls do 6.3 points better on average at coursework but 3.3
points worse on average at the written paper. If we compare our model with
the last model via the DIC diagnostic we see a significant reduction in DIC,
which is to be expected given the two gender effects are both significantly
larger than their standard errors.

Dbar | D(thetabar) | pD DIC
24566.19 24559.21 | 6.98 | 24573.16 | (with gender effects)
24711.27 24706.25 | 5.02 | 24716.29 | (without gender effects)

18.4 A multilevel multivariate model

We can now consider the effect of school attended on the exam score. As
there are 73 schools we will fit the school effects as random terms and this
results in a two level multivariate response model which is treated in MLwiN
as a three level model (with the responses treated as an additional lower
level). In the bivariate case the school attended can affect both responses
and so we will have two school level effects for each school and these could
be correlated. This will result in a 2x2 school level variance matrix. To fit

this model we firstly need to return to the Equations window and define
our additional level.

We now need to add the two sets of random effects in the Equations window
and run the model using firstly IGLS and then MCMC.
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After running for 5,000 iterations we get the following estimates:

resp ;. ~ N(XB, )

resp ,; ~ N(XB, Q)

resp . = ﬁwkcons.writtengk + -2.464(0.599)female.writtengk
Boe =49.628(0.985) + v, T uy,

resp o5 = fBicons.csework,, + 6.963(0.710)female.csework,;,
B =69.803(1262) +v, +u,,

Voe| ~N(O, Q) : Q= |52:197(10.749)
Vi 29.107(10.281) 79.696(16.015)

Uy | ~N(0, Q) : Q,= |125.441(4.600)
| % 1 74.417(4.413) 184.120(6.847)

PRIOR SPECIFICATIONS
p(By) a 1
p(B)a 1
p(B)a 1
p(B) a1
p(Q,) ~ inverse Wishart ,[2%8 2], S = | 49.305
[2?.349 ?4.?4?]

p(Q,) ~ inverse Wishart ,[2*S 2], S = |124.974
74.144 183.497

Deviance(MCMC) = 23524.145(3046 of 3046 cases in use)

- | Add Term | Estimates  Honlinear | Clear | Notation | Responses | Store

If we were to compare the multilevel model to the single level model via the
DIC diagnostic we will see the following:

Dbar | D(thetabar) pD DIC
23524.14 23397.53 | 126.61 | 23650.76 | (multilevel model)
24566.19 24559.21 6.98 | 24573.16 | (single level model)
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Here we see that the multilevel specification reduces the DIC by roughly
900 suggesting a much better model. The effective number of parameters
(126.66) is slightly less than the 153 parameters in the model.

As with the univariate models in earlier chapters we have partitioned our
unexplained variation into that which is due to the schools and that which
is due to the students.

Here the school level explains 29.3% (52.197/(52.197+125.441)) of the re-
maining variation in the written scores and 30.2% (79.696/(79.696+184.120))
of the remaining variation in the coursework scores. There is also a fairly
strong positive correlation between responses at the school level (0.45) sug-
gesting that schools with high average coursework scores also have high av-
erage written scores.

We can investigate this further by looking at the school level residuals for
this model.

It should be noted that MLwiN may give some error messages here. If
so simply click on the OK button. These messages refer to the deletion
residuals, which are currently not calculated correctly when MCMC' is
used. If the tick for deletion residuals is removed on the Residuals
window the error messages will not appear.

The school residuals have been stored in columns ¢300 and ¢301. We can
now look at ‘caterpillar’ plots of the residuals as we have seen in earlier
chapters:

Two ‘caterpillar’ plots (minus the highlighting) will appear as shown below:
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5. Graph display IE"E.

rank

rank

In the graphs we have highlighted (in various colours) the highest and lowest
performing school for each response, and two other schools that are interest-
ing as we will see in the next plot. As we have two residuals we can also look
at pair-wise comparisons, which construct a 2 dimensional representation of
the above caterpillar plots.

e Select the Residuals button in the pair-wise box.
e (lick on the Apply button.

The following graph will then appear:

B Graph display EE‘.

cons.csework
o
|
-
<l
>
>

A A
51 & ﬂ 4 AAA A
10+ A A A A , A
15 A A
A A A
20T | | | | 1 |
-20 -15 -10 -5 0 5 10
cons.written

Here we see the school effects for both the written and coursework scores
and we see why the two additional schools have been highlighted. School
22710 (highlighted yellow in the top left of the graph) has a below average
written test effect but an above average coursework effect whilst school 67105
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(highlighted grey in the bottom right of the graph) has an above average
written score but a below average coursework. The reason these schools are
interesting is that the written test score was externally marked whilst the
coursework score was internally assessed but externally moderated. Thus
it would be interesting to investigate these schools more closely to confirm
whether the difference in scores is due to actual disparities between pupils’
practical and examination abilities or due to differences between external and
internal assessment.

18.5 GCSE science data with missing records

The analyses we have performed so far would be appropriate if we had com-
plete records for all the data collected, but in our dataset we have other
partial records that we have so far ignored. Ignoring missing data is dan-
gerous because this can introduce biases into all the estimates in the model.
We will now consider how to deal with missing data in a more sensible way.
There are many techniques that deal with missing data and these can be
split into two families: First imputation-based techniques that attempt to
generate complete datasets before fitting models in the usual way to the im-
puted data. Secondly model-based techniques that include the missing data
as a part of the model, and hence fit more complex models that account for
the missing data.

Imputation-based techniques are usually simpler but may perform worse if
they fail to account for the uncertainty in the missing data whilst model-
based techniques may become impractical for more complex problems. In this
example we will consider a model based MCMC algorithm for multivariate
Normal models with missing responses. Then for our second example we will
consider an imputation technique called ‘multiple imputation’ (Rubinl, {1987)
which gets around some of the lack of uncertainty in the missing data by
generating several imputed datasets.

Firstly we will load up the complete data for the Science GCSE example:

e Select Open Sample Worksheet from the File menu.

e Select gcsemvl.ws from the list and click on the Open button.

The Names window will then appear as shown below. It should be noted
here that the missing data has been coded globally (you can use the Op-
tions/Numbers window to do this with your own data) as missing rather
than —1 as in the example in the User’s Guide to MLwiN.
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B Names EE.
Column Data Categories Window

Name| Description | Toggle Categorical | Copy Paste| Delete | | ‘ Paste| [ Used columns ﬂ Help
Mame [cn [n | missing [min | max [ categorical | description [ |

school 1 1905 0 20920 B4772 False School identification

student 2 1905 0 1 5521 False Student identification

female 3 1905 0 0 1 False Gender, with levels (0=Female, 1=Male}.

age-mths 4 1905 0 186 510 False Age in months

written 5 1905 202 0.625 90 False Score on the written component

csework 6 1905 180 9.2593 100 False Score on the coursework component

cons T 1905 0 1 1 False Constant 