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Introduction 
 
In Module 6 we saw how multiple regression models for continuous responses can be 
generalised to handle binary responses, and in Module 7 these models were further 
extended for the analysis of binary data with a two-level hierarchical structure. In 
this module and the next, we consider standard (single-level) and multilevel models 
for categorical response variables with more than two categories. We begin in this 
module with models for ordinal variables, where the numeric codes assigned to 
categories imply some ordering (see C1.3.8 for a classification scheme for variables). 
 
Ordinal responses are especially common in the social sciences. Examples include 
Likert scale items where respondents are asked to indicate their strength of 
agreement with a statement from ‘strongly agree’ to ‘strongly disagree’, and 
educational tests where marks are available as grades rather than percentage 
scores. While many researchers simply treat ordinal variables as if they were 
continuous and analyse them using ordinary least squares regression, this is not 
recommended for two main reasons: (i) the differences between numeric codes 
assigned to categories have no meaning (only their relative values can be 
interpreted), and (ii) ordinal variables very often have skewed distributions. Another 
approach might be to collapse categories of an ordinal variable to obtain a binary 
variable, and to apply the methods of Modules 6 and 7, but this clearly wastes 
information. Fortunately, methods have been developed specifically for ordinal 
variables and these have been extended to handle multilevel data structures. 
 
In this module, we begin by describing two models for single-level ordinal responses: 
the cumulative logit model and the continuation ratio model. We then consider 
multilevel cumulative logit models for two-level structures. We shall see that models 
for ordinal responses are direct extensions of the models for binary responses 
described in Modules 6 and 7. The same generalisations of the basic multilevel model 
– for example, random slopes and contextual effects – are possible for ordinal 
responses, and the same issues in interpretation arise. 
 

Introduction to the Example Dataset 
 
Our main example dataset for this module comes from the 2008 National Travel 
Survey (NTS)2. The 2008 NTS is one of a series of annual cross-sectional household 
surveys, designed to provide regular data on personal travel in Great Britain. We will 
use data from personal face-to-face interviews (the survey also includes travel 
diaries), and restrict the sample to household members who were aged 16 or older. 
 
The response variable for the analysis is frequency of walking, which is recorded on 
a seven-point scale: 
 

Code Label 

1 Less than once a year or never 

                                         
2Department for Transport, National Travel Survey, 2002-2008 [computer file]. 5th edition. 
Colchester, Essex: UK Data Archive [distributor], June 2010. SN: 5340. The data are free to 
download after registration from http://www.data-archive.ac.uk/ 
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2 1-2 times a year 

3 More than twice a year but less than monthly 

4 1-2 times a month 

5 More than twice a month but less than weekly 

6 1-2 times a week 

7 3+ times a week 

 
We consider three individual-level characteristics as explanatory variables (all 
categorical): 
 

• Gender 

• Age (16-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70+ years) 

• Employment status (employed full-time, employed part-time, unemployed, 
retired or permanently sick, student, looking after family/home, or other) 

 
The survey is based on a stratified two-stage random probability sample of private 
households in Great Britain. The primary sampling units (PSUs) at the first stage of 
sampling arepostcode sectors. At the second stage, a sample of households was 
drawn from the selected PSUs.3  We will ignore the household level in this module, 
and treat the data as a two-level structure with individuals at level 1 and PSUs at 
level 2.  
 
We consider one PSU-level explanatory variable: 
 

• Type of area (London boroughs, metropolitan built-up areas, other urban 
areas over 250,000 population, urban 25,000-250,000 population, urban 
10,000-25,000 population, urban 3000-10,000 population, rural) 

 
After excluding a small number of individuals with missing data on at least one of 
the variables, the analysis file contains 16,393 individuals nested within 683 PSUs. 
 
 

  

                                         
3See Anderson, Christophersen, Pickering, Southwood and Tipping (2009) National Travel Survey 
2008 Technical Report. Prepared for the Department of Transport. This report and other 
documentation can be downloaded with the dataset from http://www.data-archive.ac.uk/ 



Module 9 (Concepts): Single-level and Multilevel Models for Ordinal Responses 

Centre for Multilevel Modelling, 2011 3 

C9.1 Cumulative Logit Model for Single-Level Data 
 
Two widely used approaches for analysing ordinal responses are the cumulative logit 
model and thecontinuation ratio model. The cumulative logit model is described in 
this section. We focus on logit models in this module, but each model has a probit 
counterpart – called the ordered probit model and sequential probit model 
respectively. 
 

C9.1.1 Preliminaries 
 
Consider response variable y which takes values 1, 2, . . ., C. 
 
We define response probabilities for each category as 
 
Pr(𝑦 = 𝑘) = πk    (9.1) 
 
where  π1 + π2  + . . . + πC = 1 
 
In addition we can define cumulative response probabilities which reflect the 
ordering of the values of y. We define by γk the cumulative probability of being in 
category k or lower: 
 
γk = Pr(y ≤ k) = π1 + π2 +⋯πk  (9.2) 
 
where γ1 =π1 and γC = 1. 
 
Equation (9.2) shows how cumulative probabilities are based on the response 
probabilities. We can also work backwards to derive response probabilities from 
cumulative probabilities using 
 

πk = Pr(y = k) = Pr(y ≤ k) − Pr(y ≤ k − 1) = γk − γk−1 
 
Note that in the binary case, cumulative probabilities are redundant because  
Pr(y ≤ 0) = 1 – π and Pr(y ≤ 1) = 1. 
 

C9.1.2 The cumulative logit model 
 
We begin be considering models for a single-level ordinal response. The cumulative 
logit model, sometimes called the ordered logit model, is based on the cumulative 
response probabilities defined in (9.2) above. Suppose we have one continuous or 
binary explanatory variable x, then the model for the cumulative response 
probability for individual i (i = 1,  . . ., n) can be written 
 

log (
Pr(yi≤k)

Pr(yi>k)
) = logit(γki) = αk + βxi,    k = 1,⋯C − 1 (9.3) 

 
where αk are referred to as threshold parameters (analogous to the intercept in a 
binary response model, and explained below) and β is the coefficient of x. 
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Before discussing interpretation of (9.3), it is useful to show that the model is a 
generalisation of the binary logit model described in Module 6. For a binary response 
yi coded 0 and 1, with the response probability defined in the usual way as Pr(y = 1) 
= π, (9.3) reduces to a single equation:  
 

log (
Pr(yi ≤ 0)

Pr(yi > 0)
) = log (

Pr(yi = 0)

Pr(yi = 1)
) = log (

1 − πi
πi

) = −log (
πi

1 − πi
) = α + βxi 

 
Multiplying each side by -1 gives 
 

log (
πi

1 − πi
) = −α − βxi 

 
which is the familiar binary logit model with the signs of the coefficients reversed. 
(Recall that one of the properties of the logit (and probit) models for binary 
responses is that switching the coding of y simply reverses the signs of the 
coefficients. This property is a consequence of the symmetry of the logistic and 
probit transformations.) 
 
Let’s now return to the ordinal case (9.3). The coefficient β is interpreted as the 
effect of a 1-unit change in x on the log-odds of being in a lower category of y rather 
than a higher category. In this model, the effect of x is assumed to be constant 
wherever the lower category is fixed. (This is the proportional odds assumption 
which is discussed below.) Thus β>0 implies that higher values of x are associated 
with lower values of y. This interpretation is counterintuitive because we are used 
to interpreting a positive regression coefficient as implying a positive relationship 
between x and y. For this reason, (9.3) is sometimes written with a negative sign in 
front ofβ so that a positive value for β then implies a positive relationship. In this 
module, however, we will continue to write down models with positive signs for all 
coefficients, as in (9.3), but note that software packages differ in whether they 
output β or - β.4 
 
Model (9.3) also includes parameters αkwhich are referred to as cut-points or 
thresholds, and can be interpreted as intercept terms. For example, α2is the log-
odds of being in either category 1 or 2 (rather than 3 or above) for an individual with 
x = 0. While only one intercept is needed for a binary response (C=2), C-1 intercepts 
are required for an ordinal response with C categories. Furthermore, because we 
are modelling the logits of the cumulative response probabilities which must 
necessarily increase with k, the intercepts must also be ordered with α1 <α2< … αC-1 
 
As in the binary case, we can take exponentials of the regression coefficients and 
interpret them as odds ratios. For a continuous x, exp(β) compares the odds of being 
in a lower category of y for two individuals with x-values spaced 1 unit apart (but 
with the same values on any other explanatory variables included in the model). 
Equivalently, we can interpret exp(β) as the multiplicative effect of a 1-unit increase 
in x on the odds of being in a lower category of y. 
 

                                         
4If in any doubt about whether a software package outputs β or - β, it is a good idea to fit a simple 
model with one explanatory variable x and compare the results with a cross-tabulation of y and x. 
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For a binary x, exp(β) compares the odds of being in a lower category of y for an 
individual with x = 1 with the odds for an individual with x = 0. As for the binary logit 
model, exp(β) = 1 implies that there is no relationship between x and y. 
 
Examples of interpretation of β and exp(β) will be given in the next section. 
However, it is often easier to assess the magnitude of an effect by calculating 
predicted probabilities, either response probabilities πk or cumulative response 
probabilities γk. 
 
Proportional odds 
 
Another important point about model (9.3) is that β does not have a k subscript. This 
is why we did not specify a particular category when interpreting β as the effect of 
a 1-unit change in x on the log-odds of being in a lower category rather than a higher 
category of y: the effect is the same whether we compare category 1 versus 
categories 2, . . ., C or categories 1 and 2 versus categories 3, . . ., C.  
 
The above property is known as the proportional odds assumption, and model (9.3) 
is often referred to as a proportional odds model. This assumption is commonly 
made, but it can and should be tested. The proportional odds assumption will be 
explained in more detail in C9.2.3. 
 

C9.1.3 Example: walking frequency 
 
Correspondence between observed and predicted probabilities 
 
Table 9.1 shows the observed probabilities for categories of frequency of walking 
which was measured on a seven-point ordinal scale. Cumulative probabilities are 
also shown indicating, for example, that 30.3% of respondents walk less than once a 
month. In this section we will fit cumulative logit models to these data.  
 

Table 9.1. Observed probabilities and cumulative probabilities of frequency of walking, 
National Travel Survey 2008 

k Frequency of walking πk γk n 

1 Less than once a year or never 0.250 0.250 4094 

2 1-2 times a year 0.020 0.270 333 

3 More than twice a year but less than monthly 0.033 0.303 544 

4 1-2 times a month 0.071 0.374 1167 

5 More than twice a month but less than weekly 0.045 0.419 738 

6 1-2 times a week 0.218 0.638 3580 

7 3+ times a week 0.362 1.000 5937 

 Total 1.000  16393 

 
We begin by fitting a model without explanatory variables to demonstrate that this 
simple model will reproduce exactly the observed sample response probabilities that 
were shown in Table 9.1. All we are doing at this point is fitting a model tothe overall 
response probabilities for each category. This model is of little practical use, but we 
fit it here to show how the estimated model parameters can be transformed to 
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