Browse/search for people

Publication - Dr Kara Ranaghan

    Teaching Enzyme Catalysis Using Interactive Molecular Dynamics in Virtual Reality

    Citation

    Bennie, S, Deeks, H, Glowacki, D, O'Connor, M, Mulholland, A & Ranaghan, K, 2019, ‘Teaching Enzyme Catalysis Using Interactive Molecular Dynamics in Virtual Reality’. Journal of Chemical Education.

    Abstract

    The reemergence of virtual reality (VR) in the past few years has led to affordable, high-quality commodity
    hardware that can offer new ways to teach, communicate, and engage with complex concepts. In a higher-education context,
    these immersive technologies make it possible to teach complex molecular topics in a way that may aid or even supersede
    traditional approaches such as molecular models, textbook images, and traditional screen-based computational environments. In
    this work we describe a study involving 22 third-year UK undergraduate chemistry students who undertook a traditional
    computational chemistry class complemented by an additional component which we designed to utilize real-time interactive
    molecular dynamics simulations in VR (iMD-VR). Exploiting the flexibility of an open-source iMD-VR framework which we
    recently described, the students were given three short tasks to complete in iMD-VR: (1) interactive rearrangement of the
    chorismate molecule to prephenate using forces obtained from density functional theory calculations; (2) unbinding of
    chorismate from the active site chorismate mutase enzyme using molecular mechanics forces calculated in real-time; and (3)
    docking of chorismate with chorismate mutase using real-time molecular mechanics forces. A student survey indicated that most
    students found the iMD-VR component more engaging than the traditional approach, and also that it improved their perceived
    educational outcomes and their interest in continuing on in the field of computational sciences.

    Full details in the University publications repository